[go: up one dir, main page]

JPH08335515A - Multilayer magnetoresistive film and magnetic head - Google Patents

Multilayer magnetoresistive film and magnetic head

Info

Publication number
JPH08335515A
JPH08335515A JP13905295A JP13905295A JPH08335515A JP H08335515 A JPH08335515 A JP H08335515A JP 13905295 A JP13905295 A JP 13905295A JP 13905295 A JP13905295 A JP 13905295A JP H08335515 A JPH08335515 A JP H08335515A
Authority
JP
Japan
Prior art keywords
layer
magnetic
thickness
multilayer film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13905295A
Other languages
Japanese (ja)
Inventor
Ryoichi Nakatani
亮一 中谷
Katsumi Hoshino
勝美 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13905295A priority Critical patent/JPH08335515A/en
Publication of JPH08335515A publication Critical patent/JPH08335515A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Abstract

(57)【要約】 【構成】高磁気抵抗効果を有する磁性層と非磁性層から
なる多層膜の、非磁性層厚を基板11から近い部分では
薄く、基板11から遠い部分では厚くした。また、磁気
抵抗効果素子を磁気ヘッドおよび磁気記録再生装置に用
いた。 【効果】非磁性層厚の制御により、多層膜の凹凸による
実効的な層厚の変化に対応することができ、高い磁気抵
抗変化率を示す多層膜を得ることができ、高い再生出力
を示した。
(57) [Summary] [Structure] The thickness of the non-magnetic layer of the multilayer film including the magnetic layer and the non-magnetic layer having a high magnetoresistive effect is thin in the portion close to the substrate 11 and thick in the portion far from the substrate 11. Further, the magnetoresistive effect element was used in a magnetic head and a magnetic recording / reproducing apparatus. [Effect] By controlling the thickness of the non-magnetic layer, it is possible to cope with an effective change in the layer thickness due to the unevenness of the multilayer film, and it is possible to obtain a multilayer film exhibiting a high magnetoresistance change rate, and a high reproduction output is exhibited. It was

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高い磁気抵抗効果を有す
る多層膜、これを用いた磁気抵抗効果素子,磁気ヘッ
ド,磁気記録再生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer film having a high magnetoresistive effect, a magnetoresistive effect element using the same, a magnetic head and a magnetic recording / reproducing apparatus.

【0002】[0002]

【従来の技術】磁気記録の高密度化に伴い、再生用磁気
ヘッドに用いる磁気抵抗効果材料として、高い磁気抵抗
効果を示す材料が求められている。フィジカル・レビュ
ー・レターズ(Pysical Review Letters),第61巻,第
21号,2472〜2475ページに記載の「(001)
Fe/(001)Cr磁性超格子の巨大磁気抵抗効果(Gia
nt Magnetoresistance of (001)Fe/(001)
Cr Magnetic Superlattices)」のように、多層構
造を持つ磁性膜(Fe/Cr多層膜)において、約50
%の磁気抵抗変化率(4.2Kにおいて)が報告されて
いる。
2. Description of the Related Art As the magnetic recording density increases, a material having a high magnetoresistive effect is required as a magnetoresistive effect material used for a reproducing magnetic head. "(001)" described in Physical Review Letters, Vol. 61, No. 21, pp. 2472-2475.
Giant magnetoresistance effect of Fe / (001) Cr magnetic superlattice
nt Magnetoresistance of (001) Fe / (001)
Cr magnetic superlattices) ", a magnetic film having a multilayer structure (Fe / Cr multilayer film) has about 50
% Magnetoresistance change (at 4.2K) is reported.

【0003】[0003]

【発明が解決しようとする課題】Fe/Cr多層膜と類
似した構造を有するNi−Fe/Cu多層膜は、比較的
高い磁気抵抗変化率を有するが、飽和磁界の低い積層構
造においては、磁気抵抗変化率が不十分であるという問
題がある。
The Ni--Fe / Cu multilayer film having a structure similar to that of the Fe / Cr multilayer film has a relatively high magnetoresistive change rate, but in a laminated structure having a low saturation magnetic field, There is a problem that the rate of resistance change is insufficient.

【0004】本発明の目的は、多層膜の磁気抵抗変化率
を簡便に向上する方法を提供することにある。
An object of the present invention is to provide a method for easily improving the magnetoresistance change rate of a multilayer film.

【0005】[0005]

【課題を解決するための手段】本発明者等は、磁性層,
非磁性層を積層した多層膜について鋭意研究を重ねた結
果、上記多層膜の成長とともに多層膜の各層の平坦性が
劣化することを見出し、本発明を完成するに至った。
The present inventors have found that the magnetic layer,
As a result of intensive studies on a multilayer film in which a non-magnetic layer is laminated, it was found that the flatness of each layer of the multilayer film deteriorates as the multilayer film grows, and the present invention has been completed.

【0006】すなわち本発明においては、上記のような
多層膜で、基板から遠くなる程、非磁性層を厚くした。
That is, in the present invention, in the multilayer film as described above, the non-magnetic layer is made thicker as the distance from the substrate increases.

【0007】[0007]

【作用】一般に多層膜では、基板に近い部分では各層の
平坦性は良いが、基板から遠くなる程、凹凸が増加す
る。非磁性層の凹凸が増加すると、非磁性層を通過する
電子の感じる非磁性層の実質的な厚さは、膜厚方向の非
磁性層の厚さよりも薄くなる。従って、非磁性層厚の非
常に狭い領域でのみ高い磁気抵抗変化率を示す多層膜に
おいて、凹凸の増加した膜の上部では非磁性層を厚くす
る必要がある。上記のように層厚を制御した多層膜を用
いた磁気抵抗効果素子は磁気ヘッドなどに好適であり、
また、上記磁気ヘッドを用いることにより、高性能磁気
記録再生装置を得ることができる。
In general, in a multilayer film, the flatness of each layer is good in the portion close to the substrate, but the unevenness increases as the distance from the substrate increases. When the unevenness of the non-magnetic layer increases, the substantial thickness of the non-magnetic layer felt by the electrons passing through the non-magnetic layer becomes smaller than the thickness of the non-magnetic layer in the film thickness direction. Therefore, in a multilayer film showing a high magnetoresistance change rate only in a region where the thickness of the non-magnetic layer is very narrow, it is necessary to thicken the non-magnetic layer above the film with increased unevenness. The magnetoresistive effect element using the multilayer film whose layer thickness is controlled as described above is suitable for a magnetic head or the like,
Further, by using the above magnetic head, a high performance magnetic recording / reproducing apparatus can be obtained.

【0008】[0008]

【実施例】【Example】

〈実施例1〉標準的な多層膜の構造を図1に示す。従来
例として、Siからなる基板11の上に、バッファ層1
2として厚さ5nmのFe層を形成し、その上に磁性層
13として厚さ1.0nm のNi−20at%Fe合金
層および非磁性層14として種々の厚さのCu層を交互
に積層した。積層周期数は20である。多層膜の形成に
はイオンビームスパッタリング装置を用いた。スパッタ
リング条件は、Ar圧力0.02Pa ,イオンガン加速
電圧300V,イオン電流30mAである。但し、Fe
層の形成時には、イオン電流を60mAとした。
Example 1 The structure of a standard multilayer film is shown in FIG. As a conventional example, the buffer layer 1 is formed on the substrate 11 made of Si.
A Fe layer having a thickness of 5 nm was formed as No. 2, and a Ni-20 at% Fe alloy layer having a thickness of 1.0 nm as the magnetic layer 13 and a Cu layer having various thicknesses as the nonmagnetic layer 14 were alternately laminated thereon. . The number of stacking cycles is 20. An ion beam sputtering device was used to form the multilayer film. The sputtering conditions are an Ar pressure of 0.02 Pa, an ion gun acceleration voltage of 300 V, and an ion current of 30 mA. However, Fe
When forming the layer, the ion current was set to 60 mA.

【0009】図2にCu非磁性層厚と多層膜の磁気抵抗
変化率との関係を示す。図のように、多層膜は特定の非
磁性層厚の時にのみ高い磁気抵抗変化率を示す。これ
は、その非磁性層厚の時に磁性層間に磁化の向きを反平
行にする交換相互作用が働くためである。交換相互作用
が働くと、多層膜に磁界を印加していない時に、磁性層
の磁化の向きが交互に反平行になる。このとき、多層膜
の電気抵抗率は高い。多層膜に磁界を印加し、磁化の向
きが平行になると多層膜の電気抵抗率が低下する。これ
が多層膜における磁気抵抗効果である。
FIG. 2 shows the relationship between the Cu nonmagnetic layer thickness and the magnetoresistance change rate of the multilayer film. As shown in the figure, the multilayer film exhibits a high magnetoresistance change rate only when the thickness of the nonmagnetic layer is specific. This is because when the thickness of the non-magnetic layer is large, an exchange interaction acts between the magnetic layers to make the directions of magnetization antiparallel. When the exchange interaction works, the magnetization directions of the magnetic layers alternate with each other when no magnetic field is applied to the multilayer film. At this time, the electrical resistivity of the multilayer film is high. When a magnetic field is applied to the multilayer film and the directions of magnetization become parallel, the electrical resistivity of the multilayer film decreases. This is the magnetoresistive effect in the multilayer film.

【0010】上述のように、多層膜では特定の非磁性層
厚の時にのみ高い磁気抵抗変化率を得ることができる。
図2の結果では、磁気抵抗変化率のピークは、非磁性層
厚が1.0,2.2,3.8nmの時に見られる。第1の
ピーク(非磁性層厚1.0nm)では、磁気抵抗変化率は
高い。しかし、この時、磁性層間に働く磁化の向きを反
平行にする交換相互作用が非常に強く、2.8kOe と
いう高い磁界を印加しないと多層膜の磁化の向きを平行
にすることができなかった。これは、この層厚領域では
高い磁界を印加しないと磁気抵抗効果を生じないことを
示す。
As described above, in the multilayer film, a high magnetoresistance change rate can be obtained only when the thickness of the nonmagnetic layer is specific.
In the result of FIG. 2, the peak of the magnetoresistance change rate is seen when the nonmagnetic layer thickness is 1.0, 2.2, 3.8 nm. At the first peak (nonmagnetic layer thickness 1.0 nm), the rate of change in magnetoresistance is high. However, at this time, the exchange interaction that makes the directions of magnetization acting between the magnetic layers antiparallel is very strong, and the directions of magnetization of the multilayer film could not be made parallel unless a high magnetic field of 2.8 kOe was applied. . This indicates that the magnetoresistive effect does not occur unless a high magnetic field is applied in this layer thickness region.

【0011】比較的高い磁気抵抗変化率を得ることがで
き、飽和磁界も低い領域は、第2ピーク(非磁性層厚2.
2nm)である。この領域の飽和磁界は160Oeであ
った。従って、多層膜を磁気抵抗効果型ヘッドに用いる
時は、この第2ピークの非磁性層厚を用いることにな
る。
In the region where a relatively high magnetoresistance change rate can be obtained and the saturation magnetic field is low, the second peak (the nonmagnetic layer thickness 2.
2 nm). The saturation magnetic field in this region was 160 Oe. Therefore, when the multilayer film is used for the magnetoresistive head, this non-magnetic layer thickness of the second peak is used.

【0012】さて、図2のように、磁気抵抗変化率の第
1および第2ピークの間隔は1.2nmである。これに
対し、第2および第3ピークの間隔は1.6nm と、前
記の間隔よりも広い。この原因は以下のように考えられ
る。多層膜における非磁性層が厚くなると、多層膜全体
の膜厚が厚くなる。このため、多層膜上部では、各層の
平坦性が悪くなり、凹凸が生じる。多層膜に凹凸が生じ
ると、図3のように、膜厚方向の層厚31よりも最も薄
い層厚32の方が薄くなる。層厚31は、設計値であ
り、図2における非磁性層厚はこの値である。また、一
般に多層膜を形成する時にも、この層厚31を制御す
る。これに対し、非磁性層を通過する電子の感じる非磁
性層厚は層厚32である。電子は、膜厚方向に流れるの
ではなく、いろいろな方向に流れるためである。磁性層
間の交換相互作用は、伝導電子によって生じる。従っ
て、層厚32が特定の値にならないと磁化の向きを反平
行にする交換相互作用が働かず、磁気抵抗効果が生じな
い。このため、層厚32の厚くなる、厚い非磁性層厚領
域にピークがシフトするのである。
Now, as shown in FIG. 2, the interval between the first and second peaks of the magnetoresistance change rate is 1.2 nm. On the other hand, the interval between the second and third peaks is 1.6 nm, which is wider than the above interval. The cause of this is considered as follows. When the non-magnetic layer in the multilayer film becomes thicker, the film thickness of the entire multilayer film becomes thicker. Therefore, in the upper portion of the multilayer film, the flatness of each layer deteriorates and unevenness occurs. When unevenness occurs in the multilayer film, as shown in FIG. 3, the thinnest layer thickness 32 is thinner than the layer thickness 31 in the film thickness direction. The layer thickness 31 is a design value, and the nonmagnetic layer thickness in FIG. 2 is this value. Further, generally, when forming a multilayer film, the layer thickness 31 is controlled. On the other hand, the nonmagnetic layer thickness felt by the electrons passing through the nonmagnetic layer is the layer thickness 32. This is because the electrons do not flow in the film thickness direction but in various directions. Exchange interaction between magnetic layers is caused by conduction electrons. Therefore, if the layer thickness 32 does not reach a specific value, the exchange interaction that makes the magnetization directions antiparallel does not work, and the magnetoresistive effect does not occur. Therefore, the peak shifts to the thick nonmagnetic layer thickness region where the layer thickness 32 becomes thicker.

【0013】実際に使用する第2ピーク領域でも、上述
のような平坦性の問題が生じるものと考えられる。そこ
で、本実施例では、非磁性層の厚さを段階的に変化した
多層膜を形成した。
It is considered that the above-mentioned problem of flatness occurs even in the second peak region actually used. Therefore, in this example, a multilayer film was formed in which the thickness of the non-magnetic layer was changed stepwise.

【0014】本実施例では、まず、図1の構造におい
て、Siからなる基板11上に厚さ5nmのNi−O系
のバッファ層12を形成した。スパッタリングターゲッ
トには、NiOを用いたが、スパッタリングにより形成
したバッファ層の組成は、化学量論的組成からはずれて
いるものと考えられる。スパッタリング条件は、Ar圧
力0.02Pa,イオンガン加速電圧900V,イオン
電流120mAである。Ni−O系のバッファ層を形成
した基板を一度、イオンビームスパッタリング装置から
出し、再び、装置内に戻した。さらに、基板11上に形
成したNi−O系のバッファ層12の上に、厚さ1.5
nm のNi−Fe−Co系合金からなる磁性層13お
よびCuからなる非磁性層14を交互に積層した。非磁
性層14の厚さは、積層周期5周期までは2.2nm、
その上では、2.3nmとした。磁性層13の層数は1
0層である。スパッタリング条件は、Ar圧力0.02
Pa ,イオンガン加速電圧300V,イオン電流30
mAである。Ni−Fe−Co磁性層形成用のスパッタ
リングターゲットには、Ni−16at%Fe−18at
%Coの組成の合金ターゲットを用いた。
In this embodiment, first, in the structure of FIG. 1, a Ni—O type buffer layer 12 having a thickness of 5 nm was formed on a substrate 11 made of Si. Although NiO was used as the sputtering target, it is considered that the composition of the buffer layer formed by sputtering deviates from the stoichiometric composition. The sputtering conditions are an Ar pressure of 0.02 Pa, an ion gun acceleration voltage of 900 V, and an ion current of 120 mA. The substrate on which the Ni—O-based buffer layer was formed was once taken out from the ion beam sputtering apparatus and then returned to the inside of the apparatus. Further, a thickness of 1.5 is formed on the Ni—O based buffer layer 12 formed on the substrate 11.
nm magnetic layers 13 made of a Ni—Fe—Co alloy and nonmagnetic layers 14 made of Cu were alternately laminated. The thickness of the non-magnetic layer 14 is 2.2 nm up to a stacking period of 5 cycles,
On top of that, the thickness was 2.3 nm. The number of magnetic layers 13 is 1.
It is layer 0. The sputtering conditions are Ar pressure 0.02
Pa, ion gun acceleration voltage 300V, ion current 30
mA. The sputtering target for forming the Ni—Fe—Co magnetic layer includes Ni-16 at% Fe-18 at.
An alloy target having a composition of% Co was used.

【0015】上述の試料を試料Aとする。また、上述の
試料Aと同様の方法で形成し、非磁性層の厚さを1〜3
周期では2.1nm、4〜6周期では2.2nm、7〜9
周期までは2.3nm とした試料を試料Bとする(磁性
層13の層数が10なので、非磁性層14の層数は9
層)。さらに、比較例として、非磁性層14の厚さが
2.2nm と一定の試料Cも形成した。
The above sample is referred to as sample A. Further, the nonmagnetic layer is formed by the same method as the above-mentioned sample A, and the thickness of the nonmagnetic layer is 1 to 3.
2.1 nm in the period, 2.2 nm in the 4 to 6 period, 7 to 9
A sample having a thickness of 2.3 nm up to the period is referred to as sample B (the number of magnetic layers 13 is 10, so the number of nonmagnetic layers 14 is 9).
layer). Further, as a comparative example, a sample C in which the thickness of the nonmagnetic layer 14 was 2.2 nm and was constant was also formed.

【0016】上述の試料の磁気抵抗変化率を測定したと
ころ、試料Aおよび試料Bの磁気抵抗変化率は、それぞ
れ、12.2%,13.5%であり、これらは従来例の試
料Cの磁気抵抗変化率9.8% よりも高かった。これ
は、多層膜の各層の基板からの距離により、最適な非磁
性層厚が異なるためと考えられる。また、試料および試
料Bの飽和磁界は、約25Oeであった。
When the magnetoresistance change rates of the above-mentioned samples were measured, the magnetoresistance change rates of sample A and sample B were 12.2% and 13.5%, respectively, which were the same as those of sample C of the conventional example. The rate of change in magnetic resistance was higher than 9.8%. It is considered that this is because the optimum nonmagnetic layer thickness differs depending on the distance of each layer of the multilayer film from the substrate. The saturation magnetic field of the sample and the sample B was about 25 Oe.

【0017】なお、本実施例では磁性層材料としてNi
−Fe−Co系合金を用いたが、他の磁性層材料を用い
ることもできる。しかし、磁性層材料は軟磁性であるこ
とが望ましく、このためには、Ni−Fe系合金および
Ni−Fe−Co系合金が好ましい。また、本実施例で
は非磁性層材料としてCuを用いたが、Au,Ag、あ
るいはCu,Au,Agを主成分とする合金を用いるこ
ともできる。しかし、Au,Ag層は薄く均一な層とし
て形成することが困難である。このため、CuおよびC
uを主成分とする合金を用いることが好ましい。
In this embodiment, Ni is used as the magnetic layer material.
Although the —Fe—Co alloy was used, other magnetic layer materials can be used. However, it is desirable that the magnetic layer material be soft magnetic. For this purpose, Ni—Fe based alloys and Ni—Fe—Co based alloys are preferable. Although Cu is used as the non-magnetic layer material in this embodiment, Au, Ag, or an alloy containing Cu, Au, or Ag as a main component may be used. However, it is difficult to form the Au and Ag layers as thin and uniform layers. Therefore, Cu and C
It is preferable to use an alloy containing u as a main component.

【0018】〈実施例2〉実施例1で述べた試料Bの多
層膜をフォト・リソグラフィー工程により、磁気抵抗効
果素子の感磁部形状に加工した。トラック幅方向の多層
膜の長さは2μm、トラック幅方向に垂直な膜面内方向
の多層膜の長さは1μmとした。さらに、リフトオフ法
により、図4に示すように、多層膜の端部にCuからな
る電極15を形成した。また、多層膜上に絶縁層21を
形成し、さらに永久磁石層22を積層した。絶縁層21
は、電極間の電気的短絡を防ぐために必要である。ま
た、永久磁石層22は、多層膜にバイアス磁界を印加
し、磁気抵抗効果素子の動作磁界を制御する目的で用い
る。本実施例では、絶縁層21および永久磁石層22と
して、それぞれ、Al23およびCo−Pt合金を用い
た。さらに、磁気抵抗効果素子をAl23からなる絶縁
体を介して、2枚のシールド層で挟んだ。
Example 2 The multilayer film of sample B described in Example 1 was processed into a magneto-sensitive portion shape of a magnetoresistive effect element by a photolithography process. The length of the multilayer film in the track width direction was 2 μm, and the length of the multilayer film in the in-plane direction perpendicular to the track width direction was 1 μm. Further, by the lift-off method, as shown in FIG. 4, the electrode 15 made of Cu was formed at the end of the multilayer film. Further, the insulating layer 21 was formed on the multilayer film, and the permanent magnet layer 22 was further laminated. Insulating layer 21
Are necessary to prevent electrical shorts between the electrodes. Further, the permanent magnet layer 22 is used for the purpose of applying a bias magnetic field to the multilayer film and controlling the operating magnetic field of the magnetoresistive effect element. In this example, Al 2 O 3 and Co—Pt alloy were used as the insulating layer 21 and the permanent magnet layer 22, respectively. Further, the magnetoresistive effect element was sandwiched between two shield layers with an insulator made of Al 2 O 3 interposed therebetween.

【0019】磁気抵抗効果素子に磁界を印加し、電気抵
抗率の変化を測定したところ、本発明の多層磁気抵抗効
果膜を用いた磁気抵抗効果素子は、2.4kA/m(30
Oe)程度の印加磁界で12%程度の磁気抵抗変化率を示
した。また、本発明の磁気抵抗効果素子の再生出力は、
Ni−Fe単層膜を用いた磁気抵抗効果素子と比較して
3.7 倍であった。
When a magnetic field was applied to the magnetoresistive effect element and a change in electric resistivity was measured, the magnetoresistive effect element using the multilayer magnetoresistive effect film of the present invention was 2.4 kA / m (30).
A magnetic resistance change rate of about 12% was shown with an applied magnetic field of about Oe). Further, the reproduction output of the magnetoresistive element of the present invention is
The value was 3.7 times that of the magnetoresistive element using the Ni-Fe single layer film.

【0020】〈実施例3〉実施例2で述べた磁気抵抗効
果素子を用い、磁気ヘッドを作製した。磁気ヘッドの構
造を以下に示す。図5は、記録再生分離型ヘッドの一部
分を切断した場合の斜視図である。多層磁気抵抗効果膜
61をシールド層62,63で挾んだ部分が再生ヘッド
として働き、コイル64を挾む下部磁極65,上部磁極
66の部分が記録ヘッドとして働く。また、電極68に
は、Cr/Cu/Crという多層構造の材料を用いた。
Example 3 A magnetic head was produced using the magnetoresistive effect element described in Example 2. The structure of the magnetic head is shown below. FIG. 5 is a perspective view when a part of the recording / reproducing separated type head is cut. The portion of the multilayer magnetoresistive effect film 61 sandwiched by the shield layers 62 and 63 functions as a reproducing head, and the portions of the lower magnetic pole 65 and the upper magnetic pole 66 that sandwich the coil 64 function as a recording head. Further, a material having a multilayer structure of Cr / Cu / Cr is used for the electrode 68.

【0021】以下にこのヘッドの作製方法を示す。Al
23・TiCを主成分とする焼結体をスライダ用の基板
67とした。シールド層,記録磁極にはスパッタリング
法で形成したNi−Fe合金を用いた。各磁性膜の膜厚
は、以下のようにした。上下のシールド層62,63は
1.0μm、下部磁極65,上部66は3.0μm、各層
間のギャップ材としてはスパッタリングで形成したAl
23を用いた。ギャップ層の膜厚は、シールド層と磁気
抵抗効果素子間で0.2μm 、記録磁極間では0.4μ
m とした。さらに再生ヘッドと記録ヘッドの間隔は約
4μmとし、このギャップもAl23で形成した。コイ
ル64には膜厚3μmのCuを使用した。
The manufacturing method of this head will be described below. Al
A sintered body containing 2 O 3 .TiC as a main component was used as the slider substrate 67. A Ni-Fe alloy formed by a sputtering method was used for the shield layer and the recording magnetic pole. The thickness of each magnetic film was as follows. The upper and lower shield layers 62 and 63 are 1.0 μm, the lower magnetic pole 65 and the upper part 66 are 3.0 μm, and the gap material between the layers is Al formed by sputtering.
2 O 3 was used. The film thickness of the gap layer is 0.2 μm between the shield layer and the magnetoresistive effect element, and 0.4 μm between the recording magnetic pole.
m. Further, the distance between the reproducing head and the recording head was set to about 4 μm, and this gap was also formed of Al 2 O 3 . Cu having a film thickness of 3 μm was used for the coil 64.

【0022】以上述べた構造の磁気ヘッドで記録再生を
行ったところ、Ni−Fe単層膜を用いた磁気ヘッドと
比較して、3.1 倍高い再生出力を得た。これは、本発
明の磁気ヘッドに高磁気抵抗効果を示す多層膜を用いた
ためと考えられる。また、再生波形には、大きなノイズ
は見られなかった。
When recording / reproducing was performed with the magnetic head having the structure described above, a reproducing output 3.1 times higher than that of the magnetic head using the Ni--Fe single layer film was obtained. It is considered that this is because the magnetic head of the present invention uses a multilayer film having a high magnetoresistive effect. Also, no large noise was found in the reproduced waveform.

【0023】〈実施例4〉実施例3で述べた本発明の磁
気ヘッドを用い、磁気ディスク装置を作製した。装置の
構造を図6に示す。磁気記録媒体71には、残留磁束密
度0.75T のCo−Ni−Pt−Ta系合金からなる
材料を用いた。磁気ヘッド73の記録トラック幅は3μ
mとした。磁気ヘッド73における磁気抵抗効果素子
は、再生出力が高いため、信号処理に負担をかけない高
性能磁気ディスク装置が得られた。
<Embodiment 4> Using the magnetic head of the present invention described in Embodiment 3, a magnetic disk device was manufactured. The structure of the device is shown in FIG. For the magnetic recording medium 71, a material made of a Co—Ni—Pt—Ta alloy having a residual magnetic flux density of 0.75T was used. The recording track width of the magnetic head 73 is 3μ.
m. Since the magnetoresistive effect element in the magnetic head 73 has a high reproduction output, a high-performance magnetic disk device which does not burden the signal processing was obtained.

【0024】[0024]

【発明の効果】多層膜の下部では非磁性層を薄く、凹凸
の増加した多層膜の上部では非磁性層を厚くすることに
より、高い磁気抵抗変化率を示す多層磁気抵抗効果膜を
得た。さらに、多層磁気抵抗効果膜を用いた磁気抵抗効
果素子は、磁界センサ,磁気ヘッドなどに好適である。
また、磁気ヘッドを用いることにより、高性能磁気記録
再生装置を得ることができる。
By making the non-magnetic layer thin in the lower part of the multilayer film and thickening the non-magnetic layer in the upper part of the multilayer film with increased irregularities, a multi-layered magnetoresistive film showing a high magnetoresistance change rate was obtained. Furthermore, the magnetoresistive effect element using the multilayer magnetoresistive effect film is suitable for a magnetic field sensor, a magnetic head, and the like.
Further, by using the magnetic head, a high performance magnetic recording / reproducing device can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】多層磁気抵抗効果膜の構造を示す断面図。FIG. 1 is a sectional view showing the structure of a multilayer magnetoresistive effect film.

【図2】多層膜におけるCu非磁性層厚による磁気抵抗
変化率を示すグラフ。
FIG. 2 is a graph showing the rate of change in magnetoresistance depending on the thickness of a Cu nonmagnetic layer in a multilayer film.

【図3】多層膜の凹凸による実質的な非磁性層厚の減少
を示す説明図。
FIG. 3 is an explanatory diagram showing a substantial reduction in nonmagnetic layer thickness due to unevenness of a multilayer film.

【図4】本発明の一実施例の磁気抵抗効果素子の構造を
示す断面図。
FIG. 4 is a sectional view showing the structure of a magnetoresistive effect element according to an example of the present invention.

【図5】本発明の一実施例の磁気ヘッドの構造を示す斜
視図。
FIG. 5 is a perspective view showing a structure of a magnetic head according to an embodiment of the present invention.

【図6】本発明の一実施例の磁気記録再生装置の説明
図。
FIG. 6 is an explanatory diagram of a magnetic recording / reproducing apparatus according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11…基板、12…バッファ層、13…磁性層、14…
非磁性層、15…電極、21…絶縁層、22…永久磁石
層。
11 ... Substrate, 12 ... Buffer layer, 13 ... Magnetic layer, 14 ...
Nonmagnetic layer, 15 ... Electrode, 21 ... Insulating layer, 22 ... Permanent magnet layer.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】基板上ないしは上記基板上に他の物質を介
して形成した磁性層と非磁性層とが交互に積層されてい
る多層膜において、上記非磁性層の膜厚方向の厚さが、
上記基板との距離により変化していることを特徴とする
多層磁気抵抗効果膜。
1. In a multilayer film in which magnetic layers and nonmagnetic layers formed on a substrate or on the substrate via another substance are alternately laminated, the thickness of the nonmagnetic layer in the film thickness direction is ,
A multi-layer magnetoresistive effect film, which is changed according to a distance from the substrate.
【請求項2】請求項1において、上記基板からの距離が
長くなる程、上記非磁性層の膜厚方向の層厚が厚くなる
多層磁気抵抗効果膜。
2. The multilayer magnetoresistive film according to claim 1, wherein the non-magnetic layer has a larger thickness in the film thickness direction as the distance from the substrate increases.
【請求項3】請求項1または2において、上記磁性層が
Ni−Fe系合金あるいはNi−Fe−Co系合金であ
る多層磁気抵抗効果膜。
3. The multilayer magnetoresistive film according to claim 1, wherein the magnetic layer is a Ni—Fe based alloy or a Ni—Fe—Co based alloy.
【請求項4】請求項1,2または3において、上記非磁
性層がCuないしはCuを主成分とする合金からなる多
層磁気抵抗効果膜。
4. The multilayer magnetoresistive film according to claim 1, wherein the nonmagnetic layer is made of Cu or an alloy containing Cu as a main component.
【請求項5】請求項1,2,3または4に記載の上記多
層磁気抵抗効果膜がNi−Oからなるバッファ層上に形
成されている多層磁気抵抗効果膜。
5. A multilayer magnetoresistive effect film in which the multilayer magnetoresistive effect film according to claim 1, 2, 3 or 4 is formed on a buffer layer made of Ni—O.
【請求項6】請求項1,2,3,4または5に記載の上
記多層磁気抵抗効果膜と一対の電極からなる磁気抵抗効
果素子。
6. A magnetoresistive effect element comprising the multilayer magnetoresistive effect film according to claim 1, 2, 3, 4 or 5 and a pair of electrodes.
【請求項7】請求項6に記載の上記磁気抵抗効果素子と
シールド層からなる磁気抵抗効果型ヘッド。
7. A magnetoresistive head comprising the magnetoresistive element according to claim 6 and a shield layer.
【請求項8】請求項7に記載の上記磁気抵抗効果型ヘッ
ドと誘導型磁気ヘッドを組み合わせた複合型磁気ヘッ
ド。
8. A composite magnetic head in which the magnetoresistive head according to claim 7 and an inductive magnetic head are combined.
【請求項9】請求項7または8に記載の磁気ヘッドを用
いた磁気記録再生装置。
9. A magnetic recording / reproducing apparatus using the magnetic head according to claim 7.
JP13905295A 1995-06-06 1995-06-06 Multilayer magnetoresistive film and magnetic head Pending JPH08335515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13905295A JPH08335515A (en) 1995-06-06 1995-06-06 Multilayer magnetoresistive film and magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13905295A JPH08335515A (en) 1995-06-06 1995-06-06 Multilayer magnetoresistive film and magnetic head

Publications (1)

Publication Number Publication Date
JPH08335515A true JPH08335515A (en) 1996-12-17

Family

ID=15236362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13905295A Pending JPH08335515A (en) 1995-06-06 1995-06-06 Multilayer magnetoresistive film and magnetic head

Country Status (1)

Country Link
JP (1) JPH08335515A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000096230A (en) * 1998-05-21 2000-04-04 Internatl Business Mach Corp <Ibm> Double chamber deposition system and production of magnetic reluctance sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000096230A (en) * 1998-05-21 2000-04-04 Internatl Business Mach Corp <Ibm> Double chamber deposition system and production of magnetic reluctance sensor

Similar Documents

Publication Publication Date Title
JP3137580B2 (en) Magnetic multilayer film, magnetoresistive element and magnetic transducer
JPH0969211A (en) Magnetoresistive film, magnetic head, and magnetic recording / reproducing device
JP3527786B2 (en) Multilayer magnetoresistive film and magnetic head
JPH0950612A (en) Magnetoresistive film, magnetoresistive element, magnetic head and magnetic recording / reproducing apparatus
JPH076329A (en) Magnetoresistive element, magnetic head and magnetic recording / reproducing apparatus using the same
JPH07220246A (en) Magnetoresistive film, magnetoresistive head, and magnetic recording / reproducing apparatus
JPH08335515A (en) Multilayer magnetoresistive film and magnetic head
JP3083237B2 (en) Magnetoresistive element and magnetic head
JPH0774022A (en) Multilayer magnetoresistive film and magnetic head
JP2907805B1 (en) Magnetoresistive element, magnetoresistive head and magnetic recording / reproducing device
JPH06310329A (en) Multilayer magnetoresistive film and magnetic head
JPH09161243A (en) Multilayer magnetoresistive film and magnetic head
JPH09245320A (en) Multilayer magnetoresistive effect film, magnetic head using the same, and magnetic recording / reproducing apparatus
JPH05175572A (en) Magnetoresistive element, magnetic head and recording / reproducing apparatus using the same
JP3096589B2 (en) Magnetoresistive head
JPH08111010A (en) Multilayer magnetoresistive film and magnetic head
JPH0661048A (en) Multilayer magnetoresistive film and magnetic head
JPH07254118A (en) Magnetoresistive head and magnetic recording / reproducing apparatus
JP2004178659A (en) Spin valve head and magnetic recording device
JPH06260337A (en) Multilayer magnetoresistive film and magnetic head
JPH08153314A (en) Multilayer magnetoresistive film and magnetic head
JP3044012B2 (en) Magnetoresistive element, magnetoresistive head, magnetic head, and magnetic recording / reproducing device
JPH07105509A (en) Multilayer film and magnetic head using the same
JPH08241506A (en) Multilayer magnetoresistive film and magnetic head
JPH09237410A (en) Multilayer magnetoresistive effect film, magnetic head using the same, and magnetic recording / reproducing apparatus