JPH09245320A - Multilayer magnetoresistive effect film, magnetic head using the same, and magnetic recording / reproducing apparatus - Google Patents
Multilayer magnetoresistive effect film, magnetic head using the same, and magnetic recording / reproducing apparatusInfo
- Publication number
- JPH09245320A JPH09245320A JP8049809A JP4980996A JPH09245320A JP H09245320 A JPH09245320 A JP H09245320A JP 8049809 A JP8049809 A JP 8049809A JP 4980996 A JP4980996 A JP 4980996A JP H09245320 A JPH09245320 A JP H09245320A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- magnetic
- magnetoresistive effect
- alloy
- multilayer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 149
- 230000000694 effects Effects 0.000 title claims abstract description 49
- 230000005290 antiferromagnetic effect Effects 0.000 claims abstract description 56
- 229910045601 alloy Inorganic materials 0.000 claims description 24
- 239000000956 alloy Substances 0.000 claims description 24
- 239000013078 crystal Substances 0.000 claims description 18
- 229910000914 Mn alloy Inorganic materials 0.000 claims description 11
- 229910000575 Ir alloy Inorganic materials 0.000 claims 2
- 229910001260 Pt alloy Inorganic materials 0.000 claims 2
- 230000005415 magnetization Effects 0.000 claims 2
- 229910000510 noble metal Inorganic materials 0.000 claims 2
- 239000002131 composite material Substances 0.000 claims 1
- 230000006698 induction Effects 0.000 claims 1
- 239000010410 layer Substances 0.000 description 160
- 239000000463 material Substances 0.000 description 9
- 239000000758 substrate Substances 0.000 description 9
- 229910000531 Co alloy Inorganic materials 0.000 description 4
- 229910003271 Ni-Fe Inorganic materials 0.000 description 4
- 229910017061 Fe Co Inorganic materials 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 229910002551 Fe-Mn Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910020632 Co Mn Inorganic materials 0.000 description 1
- 229910020678 Co—Mn Inorganic materials 0.000 description 1
- 229910018499 Ni—F Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000001659 ion-beam spectroscopy Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
- 239000010970 precious metal Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Landscapes
- Magnetic Heads (AREA)
- Hall/Mr Elements (AREA)
Abstract
(57)【要約】
【課題】磁気抵抗効果型ヘッド用の高磁気抵抗効果多層
膜における交換バイアス磁界の不足の問題がある。
【解決手段】反強磁性層厚を10〜25nmにした。ま
た、上記多層磁気抵抗効果膜を磁気抵抗効果素子、磁気
ヘッドおよび磁気記録再生装置に用いる。
【効果】本発明の多層磁気抵抗効果膜は、磁性層に印加
される交換バイアス磁界が高いため、ヒステリシスが少
なく、優れた特性を示す。また、上記多層磁気抵抗効果
膜を使用した磁気ヘッドは、優れた再生特性を示し、上
記磁気ヘッドを磁気記録再生装置に用いることにより、
高性能磁気記録再生装置が得られる。(57) Abstract: There is a problem of insufficient exchange bias magnetic field in a high magnetoresistive effect multilayer film for a magnetoresistive effect type head. An antiferromagnetic layer has a thickness of 10 to 25 nm. Further, the multilayer magnetoresistive effect film is used for a magnetoresistive effect element, a magnetic head and a magnetic recording / reproducing apparatus. [Effect] The multilayer magnetoresistive film of the present invention has a high exchange bias magnetic field applied to the magnetic layer, and therefore exhibits little hysteresis and exhibits excellent characteristics. Further, the magnetic head using the multilayer magnetoresistive effect film shows excellent reproduction characteristics, and by using the magnetic head in a magnetic recording / reproducing apparatus,
A high performance magnetic recording / reproducing apparatus can be obtained.
Description
【0001】[0001]
【発明の属する技術分野】本発明は高い磁気抵抗効果を
有する膜および素子に係り、特に多層磁気抵抗効果膜及
びこれを用いた磁気ヘッド、並びに磁気記録再生装置に
関する。The present invention relates to a film and an element having a high magnetoresistive effect, and more particularly to a multilayer magnetoresistive effect film, a magnetic head using the same, and a magnetic recording / reproducing apparatus.
【0002】[0002]
【従来の技術】磁気記録の高密度化に伴い、再生用磁気
ヘッドに用いる磁気抵抗効果材料として、高い磁気抵抗
効果を示す材料が求められている。そこで、Dienyらに
よるフィジカル・レビュ−・B(Pysical Review B)、第
43巻、第1号、1297〜1300ペ−ジに記載の「軟磁性多層
膜における巨大磁気抵抗効果」(Giant Magnetoresistanc
e in Soft Ferromagnetic Multilayers)のように2層の
磁性層を非磁性層で分離し、一方の磁性層に反強磁性層
からの交換バイアス磁界を印加する方法が考案された。
この反強磁性層材料には、Fe−Mn系合金が用いられ
ている。上記のような多層膜は、通常、基板側から、結
晶性制御層、磁性層、非磁性層、磁性層、反強磁性層の
順に形成する。しかし、磁気抵抗効果素子の構造によっ
ては、基板側から、結晶性制御層、結晶形制御層、反強
磁性層、磁性層、非磁性層、磁性層の順に形成する必要
がある可能性がある。この構造の多層膜は、Noguchi等
によるJpn. J. Appl. Phys., 第33巻、第10号、5734〜5
738ペ−ジに記載の「3層のNi-Fe-Co層を有するスピンバ
ルブ多層膜の磁気抵抗効果」(Magneto-resistance Effec
ts in Spin-Valve Multilayers Including Three Ni-Fe
-Co Layers)で開示されている。2. Description of the Related Art As the magnetic recording density increases, a material having a high magnetoresistive effect is required as a magnetoresistive effect material used for a reproducing magnetic head. Therefore, Physical Review B by Dieny et al.
Vol. 43, No. 1, pp. 1297-1300, "Giant Magnetoresistanc Effect in Soft Magnetic Multilayer Films" (Giant Magnetoresistanc
A method has been devised in which two magnetic layers are separated by a non-magnetic layer and an exchange bias magnetic field from the antiferromagnetic layer is applied to one magnetic layer (e in Soft Ferromagnetic Multilayers).
An Fe-Mn-based alloy is used for this antiferromagnetic layer material. The multilayer film as described above is usually formed in order of the crystallinity control layer, the magnetic layer, the nonmagnetic layer, the magnetic layer, and the antiferromagnetic layer from the substrate side. However, depending on the structure of the magnetoresistive effect element, it may be necessary to form the crystallinity control layer, the crystal form control layer, the antiferromagnetic layer, the magnetic layer, the nonmagnetic layer, and the magnetic layer in this order from the substrate side. . Multilayer films of this structure are described by Noguchi et al. In Jpn. J. Appl. Phys., Volume 33, No. 10, 5734-5.
Pp. 738, "Magnetoresistive Effect of Spin-Valve Multilayer Film with Three Ni-Fe-Co Layers" (Magneto-resistance Effec
ts in Spin-Valve Multilayers Including Three Ni-Fe
-Co Layers).
【0003】また、上記のような多層膜の磁気抵抗変化
率を高くするために、星屋等により、磁性層を3層に増
加した多層膜が考案されており、日本応用磁気学会誌、
第18巻、355〜357ペ−ジに記載されている。星屋等によ
り考案された多層膜では、反強磁性層としてNiOが用
いられているが、実用される磁気抵抗効果素子では、M
nを含む金属系の反強磁性層が用いられるものと考えら
れる。磁性層を3層に増加した多層膜においても、Nogu
chi等による上述の文献に記載のように、「基板側か
ら、結晶性制御層、結晶形制御層、反強磁性層」という
積層構造を含む。In order to increase the magnetoresistive change rate of the above-mentioned multilayer film, Hoshiya et al. Have devised a multilayer film in which the number of magnetic layers is increased to three layers.
Vol. 18, pp. 355-357. NiO is used as the antiferromagnetic layer in the multilayer film devised by Hoshiya et al.
It is considered that a metallic antiferromagnetic layer containing n is used. Even in a multilayer film with the magnetic layer increased to three layers, Nogu
As described in the above-mentioned document by Chi et al., it includes a laminated structure of "a crystallinity control layer, a crystal form control layer, an antiferromagnetic layer from the substrate side".
【0004】[0004]
【発明が解決しようとする課題】上記のような「基板側
から、結晶性制御層、結晶形制御層、反強磁性層」とい
う積層構造を含む多層膜は、Noguchi等による上述の文
献に記載のように、反強磁性層上に形成した磁性層に印
加される交換バイアス磁界が低いという問題がある。こ
の問題の原因は、現在のところ明確ではない。しかし、
実用上では、交換バイアス磁界以上の外部磁界を多層膜
に印加すると、磁気抵抗効果曲線にヒステリシスが生じ
る。多層膜を磁気抵抗効果素子に用いる場合、上記ヒス
テリシスが生じると、素子の出力の線形性が損なわれ
る、出力が低下する、ノイズが生じる、などの問題が生
じる。従って、反強磁性層から磁性層に印加される交換
バイアス磁界は高い方が好ましい。A multilayer film including a laminated structure of "a crystallinity control layer, a crystal form control layer, an antiferromagnetic layer from the substrate side" as described above is described in Noguchi et al. As described above, there is a problem that the exchange bias magnetic field applied to the magnetic layer formed on the antiferromagnetic layer is low. The cause of this problem is currently unclear. But,
In practice, when an external magnetic field higher than the exchange bias magnetic field is applied to the multilayer film, hysteresis occurs in the magnetoresistive effect curve. When a multilayer film is used in a magnetoresistive effect element, the above hysteresis causes problems such as impairing the linearity of the output of the element, lowering the output, and generating noise. Therefore, it is preferable that the exchange bias magnetic field applied from the antiferromagnetic layer to the magnetic layer is high.
【0005】磁気記録の高密度化に伴い、再生用磁気ヘ
ッドに用いる磁気抵抗効果材料として、現在、使用され
ているパ−マロイよりも高い磁気抵抗効果を示す材料が
求められている。最近、反強磁性層/磁性層/非磁性層
/磁性層/非磁性層/磁性層/反強磁性層という構造を
有する高磁気抵抗効果を示す多層膜が報告されている。
しかし、反強磁性層上に形成した磁性層に印加される交
換相互作用による一方向異方性エネルギーが低いとの問
題がある。As the magnetic recording density has increased, a material having a magnetoresistive effect higher than that of the currently used permalloy has been required as a magnetoresistive material used for a reproducing magnetic head. Recently, a multilayer film having a high magnetoresistive effect having a structure of antiferromagnetic layer / magnetic layer / nonmagnetic layer / magnetic layer / nonmagnetic layer / magnetic layer / antiferromagnetic layer has been reported.
However, there is a problem that the unidirectional anisotropic energy due to the exchange interaction applied to the magnetic layer formed on the antiferromagnetic layer is low.
【0006】本発明の目的は、上述の磁気抵抗効果型ヘ
ッド用の高磁気抵抗効果多層膜における交換バイアス磁
界の不足の問題の解決方法を提供することにある。An object of the present invention is to provide a method for solving the problem of insufficient exchange bias magnetic field in the above-described high magnetoresistive effect multilayer film for the magnetoresistive head.
【0007】[0007]
【課題を解決するための手段】本発明者等は、種々の材
料および層厚を有する反強磁性層を有する多層磁性膜を
用いた磁気抵抗効果素子について鋭意研究を重ねた結
果、反強磁性層の厚さを調節することにより、磁性層に
印加される交換バイアス磁界の値を低下させないことを
見出し、本発明を完成するに至った。The inventors of the present invention have conducted extensive studies on a magnetoresistive effect element using a multilayer magnetic film having antiferromagnetic layers having various materials and layer thicknesses, and as a result, antiferromagnetic properties have been obtained. The inventors have found that the value of the exchange bias magnetic field applied to the magnetic layer is not lowered by adjusting the layer thickness, and have completed the present invention.
【0008】すなわち、反強磁性層上に磁性層を積層し
た場合には、反強磁性層に厚さにより、磁性層に印加さ
れる交換バイアス磁界が変化する。反強磁性層厚が10
nmまでは、反強磁性層厚とともに、交換バイアス磁界
は高くなる。反強磁性層厚が10〜25nmでは、交換
バイアス磁界は、ほぼ一定である。さらに、反強磁性層
が厚くなると、交換バイアス磁界は低下する。従って、
反強磁性層厚を10〜25nmとすることにより、磁性
層に印加される交換バイアス磁界を高くすることができ
る。That is, when a magnetic layer is laminated on the antiferromagnetic layer, the exchange bias magnetic field applied to the magnetic layer changes depending on the thickness of the antiferromagnetic layer. Antiferromagnetic layer thickness is 10
Up to nm, the exchange bias magnetic field increases with the antiferromagnetic layer thickness. When the antiferromagnetic layer thickness is 10 to 25 nm, the exchange bias magnetic field is almost constant. In addition, the thicker antiferromagnetic layer reduces the exchange bias field. Therefore,
By setting the thickness of the antiferromagnetic layer to 10 to 25 nm, the exchange bias magnetic field applied to the magnetic layer can be increased.
【0009】このようにして得られた多層膜に比較的高
い磁界を印加しても、磁気抵抗効果曲線にヒステリシス
が生じにくいため、上記多層磁気抵抗効果膜は、磁気抵
抗効果素子、磁界センサ、磁気ヘッドなどに好適であ
る。また、上記磁気ヘッドを用いることにより、高性能
磁気記録再生装置を得ることができる。Even when a relatively high magnetic field is applied to the thus obtained multilayer film, hysteresis hardly occurs in the magnetoresistive effect curve. It is suitable for magnetic heads and the like. Further, by using the magnetic head, a high-performance magnetic recording / reproducing apparatus can be obtained.
【0010】[0010]
[実施例1]反強磁性層厚による、磁性層に印加される
交換バイアス磁界の変化を調べるために、図2に示すよ
うな構造の多層膜を形成した。基板21にはSi(10
0)単結晶を用いた。また、結晶性制御層22として、
厚さ5nmのHfを用いた。結晶形制御層23として
は、厚さ5nmのCuを用いた。結晶形制御層は、Mn
系合金である反強磁性層24の結晶構造を制御するため
に用いる。本実施例では、反強磁性層24として、種々
の厚さのFe−40at%Mn合金層を用いた。磁性層
25には、厚さ5nmのNi−16at%Fe−18a
t%Co合金を用いた。また、保護層26には、厚さ5
nmのHfを用いた。[Example 1] In order to investigate the change of the exchange bias magnetic field applied to the magnetic layer depending on the thickness of the antiferromagnetic layer, a multilayer film having a structure as shown in FIG. 2 was formed. The substrate 21 has Si (10
0) A single crystal was used. Further, as the crystallinity control layer 22,
Hf having a thickness of 5 nm was used. As the crystal form control layer 23, Cu having a thickness of 5 nm was used. The crystal form control layer is Mn
It is used to control the crystal structure of the antiferromagnetic layer 24 which is a system alloy. In this embodiment, as the antiferromagnetic layer 24, Fe-40 at% Mn alloy layers having various thicknesses are used. The magnetic layer 25 has a thickness of 5 nm of Ni-16 at% Fe-18a.
A t% Co alloy was used. The protective layer 26 has a thickness of 5
nm Hf was used.
【0011】多層膜の作製にはイオンビ−ムスパッタリ
ング法を用いた。到達真空度は、5/105Pa、スパ
ッタリング時のAr圧力は0.02Paである。また、
膜形成速度は、0.01〜0.02nm/sである。An ion beam sputtering method was used for producing a multilayer film. The ultimate vacuum is 5/10 5 Pa, and the Ar pressure during sputtering is 0.02 Pa. Also,
The film formation rate is 0.01 to 0.02 nm / s.
【0012】反強磁性層24の厚さによる、反強磁性層
24から磁性層25に印加される交換バイアス磁界の変
化を図3に示す。図のように、反強磁性層厚が10nm
までは、反強磁性層厚とともに、交換バイアス磁界は高
くなる。反強磁性層厚が10〜25nmでは、交換バイ
アス磁界は、ほぼ一定である。さらに、反強磁性層が厚
くなると、交換バイアス磁界は低下する。従って、反強
磁性層厚を10〜25nmとすることにより、磁性層に
印加される交換バイアス磁界を高くすることができる。FIG. 3 shows changes in the exchange bias magnetic field applied from the antiferromagnetic layer 24 to the magnetic layer 25 depending on the thickness of the antiferromagnetic layer 24. As shown, the antiferromagnetic layer thickness is 10 nm
Up to, the exchange bias field increases with antiferromagnetic layer thickness. When the antiferromagnetic layer thickness is 10 to 25 nm, the exchange bias magnetic field is almost constant. In addition, the thicker antiferromagnetic layer reduces the exchange bias field. Therefore, by setting the thickness of the antiferromagnetic layer to 10 to 25 nm, the exchange bias magnetic field applied to the magnetic layer can be increased.
【0013】[実施例2]実施例1と同様の条件で多層
膜を形成した。形成した多層膜の断面構造を図1に示
す。基板11にはSi(100)単結晶を用いた。ま
た、結晶性制御層12として、厚さ5nmのHfを用い
た。結晶形制御層13としては、厚さ5nmのCuを用
いた。反強磁性層14には、厚さ10nmのFe−40
at%Mn合金を用いた。磁性層15および磁性層19
には、それぞれ、厚さ3nmおよび9nmのNi−16
at%Fe−18at%Co合金を用いた。磁性層16
および磁性層18には、それぞれ、厚さ2nmおよび1
nmのCoを用いた。また、非磁性層17には、厚さ
2.5nmのCuを用いた。多層膜の磁気抵抗変化率は
4.8%であった。また、磁性層に印加される交換バイ
アス磁界が高いため、磁気抵抗効果素子を使用する範囲
の磁界では、磁気抵抗効果曲線に大きなヒステリシスは
認められなかった。[Example 2] A multilayer film was formed under the same conditions as in Example 1. FIG. 1 shows a cross-sectional structure of the formed multilayer film. As the substrate 11, a single crystal of Si (100) was used. As the crystallinity control layer 12, Hf with a thickness of 5 nm was used. As the crystal form control layer 13, Cu having a thickness of 5 nm was used. The antiferromagnetic layer 14 has a thickness of 10 nm of Fe-40.
An at% Mn alloy was used. Magnetic layer 15 and magnetic layer 19
Contains Ni-16 having a thickness of 3 nm and 9 nm, respectively.
An at% Fe-18at% Co alloy was used. Magnetic layer 16
And the magnetic layer 18 has a thickness of 2 nm and 1 respectively.
nm Co was used. Moreover, Cu having a thickness of 2.5 nm was used for the non-magnetic layer 17. The magnetoresistive change rate of the multilayer film was 4.8%. Further, since the exchange bias magnetic field applied to the magnetic layer is high, no large hysteresis was observed in the magnetoresistive effect curve in the magnetic field in the range where the magnetoresistive effect element is used.
【0014】本発明の構造は、3層の磁性層を含む多層
膜にも応用できる。すなわち、図4のように、基板31
上に厚さ5nmのHfからなる結晶性制御層32を形成
し、さらに、厚さ5nmのCuからなる結晶形制御層3
3、厚さ10nmのFe−40at%Mn合金からなる
反強磁性層34を形成した。磁性層35および磁性層4
3には、厚さ3nmのNi−16at%Fe−18at
%Co合金を用いた。磁性層39には、厚さ8nmのN
i−16at%Fe−18at%Co合金を用いた。磁
性層36および磁性層42には、厚さ2nmのCoを用
いた。磁性層38および磁性層40には、厚さ1nmの
Coを用いた。また、非磁性層37および非磁性層41
には、厚さ2.5nmのCuを用いた。また、反強磁性
層44にも、厚さ10nmのFe−40at%Mn合金
層を用いた。この多層膜の磁気抵抗変化率は7.0%で
あった。また、磁性層に印加される交換バイアス磁界が
高いため、磁気抵抗効果素子を使用する範囲の磁界で
は、磁気抵抗効果曲線に大きなヒステリシスは認められ
なかった。The structure of the present invention can also be applied to a multilayer film including three magnetic layers. That is, as shown in FIG.
A crystallinity control layer 32 made of Hf having a thickness of 5 nm is formed thereon, and a crystal form control layer 3 made of Cu having a thickness of 5 nm is further formed.
3. An antiferromagnetic layer 34 of Fe-40 at% Mn alloy having a thickness of 10 nm was formed. Magnetic layer 35 and magnetic layer 4
3 has a thickness of 3 nm of Ni-16 at% Fe-18 at.
% Co alloy was used. The magnetic layer 39 has a thickness of 8 nm of N
An i-16 at% Fe-18 at% Co alloy was used. Co having a thickness of 2 nm was used for the magnetic layer 36 and the magnetic layer 42. Co having a thickness of 1 nm was used for the magnetic layers 38 and 40. In addition, the nonmagnetic layer 37 and the nonmagnetic layer 41
For this, Cu with a thickness of 2.5 nm was used. Further, as the antiferromagnetic layer 44, a Fe-40 at% Mn alloy layer having a thickness of 10 nm was used. The rate of change in magnetoresistance of this multilayer film was 7.0%. Further, since the exchange bias magnetic field applied to the magnetic layer is high, no large hysteresis was observed in the magnetoresistive effect curve in the magnetic field in the range where the magnetoresistive effect element is used.
【0015】本実施例では、結晶形制御層としてCu層
を用いたが、本発明の目的からはMn系反強磁性層を面
心立方構造とすることができれば、結晶形制御層として
用いることができる。In this embodiment, the Cu layer is used as the crystal shape control layer, but for the purpose of the present invention, if the Mn-based antiferromagnetic layer can have a face-centered cubic structure, it is used as the crystal shape control layer. You can
【0016】また、本実施例では、結晶性制御層として
Hfを用いたが、Ti,Zr,V,Nb,Taから選ば
れる金属、あるいは、上記Ti,Zr,Hf,V,N
b,Ta相互の合金、あるいは、上記金属を主成分とす
る合金を用いても、結晶形制御層の結晶配向性が(11
1)となり、結晶形制御層上に形成したMn系反強磁性
層を面心立方構造とすることができる。Although Hf is used as the crystallinity control layer in this embodiment, a metal selected from Ti, Zr, V, Nb and Ta, or the above Ti, Zr, Hf, V and N.
Even if alloys of b and Ta or alloys containing the above metals as main components are used, the crystal orientation of the crystal form control layer is (11
In 1), the Mn-based antiferromagnetic layer formed on the crystal form control layer can have a face-centered cubic structure.
【0017】また、本実施例では、磁性層として、Ni
−Fe−Co系合金層とCo層との積層体を用い、非磁
性層と接触している磁性層をCo層とした。これは、多
層膜の磁気抵抗変化率を高くするためである。しかし、
特に磁性層の軟磁気特性を重視する場合は、磁性層とし
てNi−Fe系合金層、あるいは、Ni−Fe−Co系
合金層を用いることが好ましい。また、Co層の代わり
に、Coを主成分とする合金層を用いることもできる。In this embodiment, the magnetic layer is made of Ni.
A laminated body of a —Fe—Co based alloy layer and a Co layer was used, and the magnetic layer in contact with the non-magnetic layer was the Co layer. This is to increase the magnetoresistance change rate of the multilayer film. But,
Especially when the soft magnetic characteristics of the magnetic layer are emphasized, it is preferable to use a Ni—Fe based alloy layer or a Ni—Fe—Co based alloy layer as the magnetic layer. Further, instead of the Co layer, an alloy layer containing Co as a main component can be used.
【0018】また、本実施例では、Mnを含む反強磁性
層として、Fe−Mn系合金層を用いたが、他のMn系
合金を用いても良い。他のMn系合金としては、Mn−
Ir系合金層、Co−Mn系合金層、Co−Mn−Pt
系合金層、Cr−Mn系合金層、Cr−Mn系合金に貴
金属元素を添加した合金層などが好ましい。In this embodiment, the Fe-Mn alloy layer is used as the antiferromagnetic layer containing Mn, but other Mn alloys may be used. Other Mn-based alloys include Mn-
Ir-based alloy layer, Co-Mn-based alloy layer, Co-Mn-Pt
A system alloy layer, a Cr-Mn system alloy layer, an alloy layer in which a precious metal element is added to a Cr-Mn system alloy, and the like are preferable.
【0019】また、本実施例では、非磁性層として、C
uを用いたが、電気抵抗率の低い、Au,Agを用いて
も同様の結果が得られる。しかし、磁性層として3d遷
移金属を用いる場合には、磁性層とのフェルミ面のマッ
チングの観点から、非磁性層はCuであることが好まし
い。In this embodiment, the nonmagnetic layer is made of C
Although u was used, similar results can be obtained by using Au or Ag, which has a low electric resistivity. However, when a 3d transition metal is used for the magnetic layer, the non-magnetic layer is preferably Cu from the viewpoint of matching the Fermi surface with the magnetic layer.
【0020】[実施例3]本発明の多層膜を用いた磁気
抵抗効果素子を形成した。本実施例では、実施例2で述
べた3層の磁性層を有する多層膜を用いた。図5に磁気
抵抗効果素子の構造を示す。磁気抵抗効果素子は、多層
磁気抵抗効果膜51および電極52をシールド層53、
54で挟んだ構造を有する。上記磁気抵抗効果素子に磁
界を印加し、電気抵抗率の変化を測定したところ、本発
明の多層磁気抵抗効果膜を用いた磁気抵抗効果素子は、
1.6kA/m(20Oe)程度の印加磁界で6.8%
の磁気抵抗変化率を示した。また、本発明の磁気抵抗効
果素子の再生出力は、Ni−Fe単層膜を用いた磁気抵
抗効果素子と比較して3.8倍であった。[Example 3] A magnetoresistive effect element using the multilayer film of the present invention was formed. In this example, the multilayer film having the three magnetic layers described in Example 2 was used. FIG. 5 shows the structure of the magnetoresistive effect element. The magnetoresistive effect element includes a multilayer magnetoresistive effect film 51 and an electrode 52, a shield layer 53,
It has a structure sandwiched by 54. When a magnetic field was applied to the magnetoresistive effect element and a change in electric resistivity was measured, the magnetoresistive effect element using the multilayer magnetoresistive effect film of the present invention was
6.8% with applied magnetic field of about 1.6 kA / m (20 Oe)
The magnetic resistance change rate of The reproduction output of the magnetoresistive effect element of the present invention was 3.8 times that of the magnetoresistive effect element using the Ni-Fe single layer film.
【0021】[実施例4]実施例3で述べた磁気抵抗効
果素子を用い、磁気ヘッドを作製した。磁気ヘッドの構
造を以下に示す。図6は、記録再生分離型ヘッドの一部
分を切断した場合の斜視図である。多層磁気抵抗効果膜
61をシ−ルド層62、63で挾んだ部分が再生ヘッド
として働き、コイル64を挾む下部磁極65、上部磁極
66の部分が記録ヘッドとして働く。また、電極68に
は、Cr/Cu/Crという多層構造の材料を用いた。[Embodiment 4] A magnetic head was manufactured using the magnetoresistive effect element described in Embodiment 3. The structure of the magnetic head is shown below. FIG. 6 is a perspective view when a part of the recording / reproducing separated type head is cut. The portion of the multi-layered magnetoresistive film 61 sandwiched by the shield layers 62 and 63 serves as a reproducing head, and the lower magnetic pole 65 and the upper magnetic pole 66 sandwiching the coil 64 serve as a recording head. For the electrode 68, a material having a multilayer structure of Cr / Cu / Cr was used.
【0022】以下にこのヘッドの作製方法を示す。Al
2O3・TiCを主成分とする焼結体をスライダ用の基板
67とした。シ−ルド層、記録磁極にはスパッタリング
法で形成したNi−Fe合金を用いた。各磁性膜の膜厚
は、以下のようにした。上下のシ−ルド層62、63は
1.0μm、下部磁極65、上部66は3.0μm、各
層間のギャップ材としてはスパッタリングで形成したA
l2O3を用いた。ギャップ層の膜厚は、シ−ルド層と磁
気抵抗効果素子間で0.2μm、記録磁極間では0.4
μmとした。さらに再生ヘッドと記録ヘッドの間隔は約
4μmとし、このギャップもAl2O3で形成した。コイ
ル64には膜厚3μmのCuを使用した。 以上述べた
構造の磁気ヘッドで記録再生を行ったところ、Ni−F
e単層膜を用いた磁気ヘッドと比較して、3.6倍高い
再生出力を得た。これは、本発明の磁気ヘッドに高磁気
抵抗効果を示す多層膜を用いたためと考えられる。The manufacturing method of this head will be described below. Al
A sintered body mainly composed of 2 O 3 .TiC was used as a slider substrate 67. A Ni-Fe alloy formed by a sputtering method was used for the shield layer and the recording magnetic pole. The thickness of each magnetic film was as follows. The upper and lower shield layers 62 and 63 are 1.0 μm, the lower magnetic pole 65 and the upper 66 are 3.0 μm, and a gap material between the layers is formed by sputtering.
l 2 O 3 was used. The thickness of the gap layer is 0.2 μm between the shield layer and the magnetoresistive element, and 0.4 μm between the recording magnetic poles.
μm. Further, the distance between the reproducing head and the recording head was about 4 μm, and this gap was also formed of Al 2 O 3 . Cu having a film thickness of 3 μm was used for the coil 64. When recording / reproducing was performed with the magnetic head having the above-described structure, Ni-F
A reproduction output 3.6 times higher than that of a magnetic head using a single-layer film was obtained. This is probably because the magnetic head of the present invention used a multilayer film exhibiting a high magnetoresistance effect.
【0023】また、本発明の磁気抵抗効果素子は、磁気
ヘッド以外の磁界検出器にも用いることができる。The magnetoresistive effect element of the present invention can also be used in magnetic field detectors other than magnetic heads.
【0024】[実施例5]実施例4で述べた本発明の磁
気ヘッドを用い、磁気ディスク装置を作製した。[Embodiment 5] Using the magnetic head of the present invention described in Embodiment 4, a magnetic disk device was manufactured.
【0025】装置の構造を図7に示す。磁気記録媒体7
1には、残留磁束密度0.75TのCo−Ni−Pt−
Ta系合金からなる材料を用いた。磁気ヘッド73のト
ラック幅は2.5μmとした。磁気ヘッド73における
磁気抵抗効果素子は、再生出力が高いため、信号処理に
負担をかけない高性能磁気ディスク装置が得られた。The structure of the device is shown in FIG. Magnetic recording medium 7
1 is Co-Ni-Pt- with a residual magnetic flux density of 0.75T.
A material made of a Ta-based alloy was used. The track width of the magnetic head 73 was 2.5 μm. Since the magnetoresistive effect element of the magnetic head 73 has a high reproduction output, a high-performance magnetic disk device that does not impose a burden on signal processing was obtained.
【0026】[0026]
【発明の効果】上述のように、反強磁性層上に磁性層を
積層した場合には、反強磁性層に厚さにより、磁性層に
印加される交換バイアス磁界が変化する。反強磁性層厚
が10nmまでは、反強磁性層厚とともに、交換バイア
ス磁界は高くなる。反強磁性層厚が10〜25nmで
は、交換バイアス磁界は、ほぼ一定である。さらに、反
強磁性層が厚くなると、交換バイアス磁界は低下する。
従って、反強磁性層厚を10〜25nmとすることによ
り、磁性層に印加される交換バイアス磁界を高くするこ
とができる。このようにして得られた多層膜に比較的高
い磁界を印加しても、磁気抵抗効果曲線にヒステリシス
が生じにくいため、上記多層磁気抵抗効果膜は、磁気抵
抗効果素子、磁界センサ、磁気ヘッドなどに好適であ
る。また、上記磁気ヘッドを用いることにより、高性能
磁気記録再生装置を得ることができる。As described above, when the magnetic layer is laminated on the antiferromagnetic layer, the exchange bias magnetic field applied to the magnetic layer changes depending on the thickness of the antiferromagnetic layer. When the antiferromagnetic layer thickness is up to 10 nm, the exchange bias magnetic field increases with the antiferromagnetic layer thickness. When the antiferromagnetic layer thickness is 10 to 25 nm, the exchange bias magnetic field is almost constant. In addition, the thicker antiferromagnetic layer reduces the exchange bias field.
Therefore, by setting the thickness of the antiferromagnetic layer to 10 to 25 nm, the exchange bias magnetic field applied to the magnetic layer can be increased. Even when a relatively high magnetic field is applied to the thus obtained multilayer film, hysteresis hardly occurs in the magnetoresistive effect curve. Suitable for Further, by using the magnetic head, a high-performance magnetic recording / reproducing apparatus can be obtained.
【図1】本発明の2層の磁性層を有する多層磁気抵抗効
果膜の構造を示す断面図。FIG. 1 is a cross-sectional view showing a structure of a multilayer magnetoresistive effect film having two magnetic layers of the present invention.
【図2】反強磁性層と磁性層を積層した多層膜の構造を
示す断面図。FIG. 2 is a sectional view showing a structure of a multilayer film in which an antiferromagnetic layer and a magnetic layer are stacked.
【図3】反強磁性層厚による交換バイアス磁界の変化を
示す線図。FIG. 3 is a diagram showing a change in an exchange bias magnetic field depending on the thickness of an antiferromagnetic layer.
【図4】本発明の3層の磁性層を有する多層磁気抵抗効
果膜の構造を示す断面図。FIG. 4 is a sectional view showing the structure of a multilayer magnetoresistive effect film having three magnetic layers of the present invention.
【図5】本発明の磁気抵抗効果素子の構造を示す斜視
図。FIG. 5 is a perspective view showing a structure of a magnetoresistive effect element of the present invention.
【図6】本発明の磁気ヘッドの構造を示す斜視図。FIG. 6 is a perspective view showing the structure of a magnetic head of the present invention.
【図7】本発明の磁気ディスク装置の構造を示す概略
図。FIG. 7 is a schematic diagram showing the structure of a magnetic disk device of the present invention.
11,21,31…基板、12,22,32…結晶性制
御層、13,23,33…結晶形制御層、14,24,
34,44…反強磁性層、15,16,18,19,2
5,35,36,39,42,43…磁性層、17,3
7,41…非磁性層、26…保護層、51…多層磁気抵
抗効果膜、52…電極、53,54…シ−ルド層、61
…多層磁気抵抗効果膜、62,63…シ−ルド層、64
…コイル、65…下部磁極、66…上部磁極、67…基
板、68…電極、71…磁気記録媒体、72…磁気記録
媒体駆動部、73…磁気ヘッド、74…磁気ヘッド駆動
部、75…記録再生信号処理系。11, 21, 31 ... Substrate, 12, 22, 32 ... Crystallinity control layer, 13, 23, 33 ... Crystal form control layer, 14, 24,
34,44 ... Antiferromagnetic layer, 15, 16, 18, 19, 2
5, 35, 36, 39, 42, 43 ... Magnetic layer, 17, 3
7, 41 ... Nonmagnetic layer, 26 ... Protective layer, 51 ... Multilayer magnetoresistive film, 52 ... Electrode, 53, 54 ... Shield layer, 61
... Multi-layered magnetoresistive film, 62, 63 ... Shield layer, 64
... coil, 65 ... lower magnetic pole, 66 ... upper magnetic pole, 67 ... substrate, 68 ... electrode, 71 ... magnetic recording medium, 72 ... magnetic recording medium drive section, 73 ... magnetic head, 74 ... magnetic head drive section, 75 ... recording Reproduction signal processing system.
Claims (7)
反強磁性層、磁性層、非磁性層、磁性層の順に形成され
ている多層膜において、上記Mnを含む反強磁性層の厚
さが10〜25nmであり、上記非磁性層を挟む磁性層
の磁化のなす相対角度により多層膜の電気抵抗率が変化
することを特徴とする多層磁気抵抗効果膜。1. A multi-layer film in which a crystallinity control layer, a crystal form control layer, an antiferromagnetic layer containing Mn, a magnetic layer, a non-magnetic layer, and a magnetic layer are formed in this order, and the antiferromagnetic layer containing Mn. Is 10 to 25 nm, and the electric resistivity of the multilayer film changes depending on the relative angle formed by the magnetizations of the magnetic layers sandwiching the non-magnetic layer.
合金層、Mn−Ir系合金層、Co−Mn系合金層、C
o−Mn−Pt系合金層、Cr−Mn系合金層、Cr−
Mn系合金に貴金属元素を添加した合金層から選ばれる
合金層であることを特徴とする請求項1記載の多層磁気
抵抗効果膜。2. The antiferromagnetic layer containing Mn is a Fe--Mn alloy layer, a Mn--Ir alloy layer, a Co--Mn alloy layer, and C.
o-Mn-Pt alloy layer, Cr-Mn alloy layer, Cr-
The multilayer magnetoresistive effect film according to claim 1, which is an alloy layer selected from an alloy layer in which a noble metal element is added to a Mn-based alloy.
反強磁性層、磁性層、非磁性層、磁性層、非磁性層、磁
性層、Mnを含む反強磁性層の順に形成されている多層
膜において、上記Mnを含む反強磁性層の厚さが10〜
25nmであり、上記2層の非磁性層を挟む磁性層の磁
化のなす相対角度により多層膜の電気抵抗率が変化する
ことを特徴とする多層磁気抵抗効果膜。3. A crystallinity control layer, a crystal form control layer, an antiferromagnetic layer containing Mn, a magnetic layer, a nonmagnetic layer, a magnetic layer, a nonmagnetic layer, a magnetic layer, and an antiferromagnetic layer containing Mn. The thickness of the antiferromagnetic layer containing Mn is 10 to 10 nm.
A multilayer magnetoresistive effect film having a thickness of 25 nm, wherein the electrical resistivity of the multilayer film changes depending on the relative angle formed by the magnetizations of the magnetic layers sandwiching the two nonmagnetic layers.
合金層、Mn−Ir系合金層、Co−Mn系合金層、C
o−Mn−Pt系合金層、Cr−Mn系合金層、Cr−
Mn系合金に貴金属元素を添加した合金層から選ばれる
合金層であることを特徴とする請求項3記載の多層磁気
抵抗効果膜。4. The antiferromagnetic layer containing Mn is a Fe--Mn alloy layer, a Mn--Ir alloy layer, a Co--Mn alloy layer, and C.
o-Mn-Pt alloy layer, Cr-Mn alloy layer, Cr-
The multilayer magnetoresistive effect film according to claim 3, which is an alloy layer selected from alloy layers obtained by adding a noble metal element to a Mn-based alloy.
層磁気抵抗効果膜を少なくとも一部に用いた磁気抵抗効
果素子を有することを特徴とする磁気ヘッド。5. A magnetic head comprising a magnetoresistive effect element using at least a part of the multilayer magnetoresistive effect film according to claim 1. Description:
層磁気抵抗効果膜を少なくとも一部に用いた磁気抵抗効
果素子と誘導型磁気ヘッドとを組み合わせたことを特徴
とする複合型磁気ヘッド。6. A composite magnetic device comprising a combination of a magnetoresistive effect element using at least a part of the multilayer magnetoresistive effect film according to claim 1 and an induction type magnetic head. head.
することを特徴とする磁気記録再生装置。7. A magnetic recording / reproducing apparatus comprising the magnetic head according to claim 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8049809A JPH09245320A (en) | 1996-03-07 | 1996-03-07 | Multilayer magnetoresistive effect film, magnetic head using the same, and magnetic recording / reproducing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8049809A JPH09245320A (en) | 1996-03-07 | 1996-03-07 | Multilayer magnetoresistive effect film, magnetic head using the same, and magnetic recording / reproducing apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09245320A true JPH09245320A (en) | 1997-09-19 |
Family
ID=12841466
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8049809A Pending JPH09245320A (en) | 1996-03-07 | 1996-03-07 | Multilayer magnetoresistive effect film, magnetic head using the same, and magnetic recording / reproducing apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09245320A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100330524B1 (en) * | 1999-03-30 | 2002-03-28 | 포만 제프리 엘 | Dual gmr sensor with a single afm layer |
US6980405B2 (en) | 2002-01-02 | 2005-12-27 | International Business Machines Corporation | Method and apparatus for providing precise control of magnetic coupling field in NiMn top spin valve heads and amplitude enhancement |
CN114038993A (en) * | 2021-11-10 | 2022-02-11 | 山东大学 | Magnetic heterojunction structure and method for regulating and controlling logic and multi-state storage function |
-
1996
- 1996-03-07 JP JP8049809A patent/JPH09245320A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100330524B1 (en) * | 1999-03-30 | 2002-03-28 | 포만 제프리 엘 | Dual gmr sensor with a single afm layer |
US6980405B2 (en) | 2002-01-02 | 2005-12-27 | International Business Machines Corporation | Method and apparatus for providing precise control of magnetic coupling field in NiMn top spin valve heads and amplitude enhancement |
US7038891B2 (en) | 2002-01-02 | 2006-05-02 | International Business Machines Corporation | Method and apparatus for providing precise control of magnetic coupling field in NiMn top spin valve heads and amplitude enhancement |
CN114038993A (en) * | 2021-11-10 | 2022-02-11 | 山东大学 | Magnetic heterojunction structure and method for regulating and controlling logic and multi-state storage function |
CN114038993B (en) * | 2021-11-10 | 2025-02-25 | 山东大学 | A magnetic heterojunction structure and a method for controlling and realizing logic and polymorphic storage functions |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2005044490A (en) | Cpp type giant magnetoresistance head | |
JP2001014616A (en) | Magnetic conversion element, thin-film magnetic head and their production | |
JPH0969211A (en) | Magnetoresistive film, magnetic head, and magnetic recording / reproducing device | |
JP3527786B2 (en) | Multilayer magnetoresistive film and magnetic head | |
JPH0950612A (en) | Magnetoresistive film, magnetoresistive element, magnetic head and magnetic recording / reproducing apparatus | |
JPH09245320A (en) | Multilayer magnetoresistive effect film, magnetic head using the same, and magnetic recording / reproducing apparatus | |
JP3083237B2 (en) | Magnetoresistive element and magnetic head | |
JPH076329A (en) | Magnetoresistive element, magnetic head and magnetic recording / reproducing apparatus using the same | |
JPH07220246A (en) | Magnetoresistive film, magnetoresistive head, and magnetic recording / reproducing apparatus | |
JP3872958B2 (en) | Magnetoresistive element and manufacturing method thereof | |
JPH09161243A (en) | Multilayer magnetoresistive film and magnetic head | |
JPH06310329A (en) | Multilayer magnetoresistive film and magnetic head | |
JPH0992904A (en) | Giant magnetoresistance material film, its manufacture, and magnetic head using the same | |
JPH09237411A (en) | Multilayer magnetoresistive effect film, magnetic head using the same, and magnetic recording / reproducing apparatus | |
JPH0774022A (en) | Multilayer magnetoresistive film and magnetic head | |
JPH09237410A (en) | Multilayer magnetoresistive effect film, magnetic head using the same, and magnetic recording / reproducing apparatus | |
JP2656449B2 (en) | Magnetoresistive head | |
JPH07230610A (en) | Magneto-resistance effect type head | |
JP2907805B1 (en) | Magnetoresistive element, magnetoresistive head and magnetic recording / reproducing device | |
JPH0661048A (en) | Multilayer magnetoresistive film and magnetic head | |
JPH08241506A (en) | Multilayer magnetoresistive film and magnetic head | |
JPH05175572A (en) | Magnetoresistive element, magnetic head and recording / reproducing apparatus using the same | |
JP3096589B2 (en) | Magnetoresistive head | |
JPH0766036A (en) | Multilayer magnetoresistive effect film, magnetoresistive effect element and magnetic head using the same | |
JPH07254118A (en) | Magnetoresistive head and magnetic recording / reproducing apparatus |