[go: up one dir, main page]

JPH08241506A - Multilayer magnetoresistive film and magnetic head - Google Patents

Multilayer magnetoresistive film and magnetic head

Info

Publication number
JPH08241506A
JPH08241506A JP4382395A JP4382395A JPH08241506A JP H08241506 A JPH08241506 A JP H08241506A JP 4382395 A JP4382395 A JP 4382395A JP 4382395 A JP4382395 A JP 4382395A JP H08241506 A JPH08241506 A JP H08241506A
Authority
JP
Japan
Prior art keywords
layer
magnetic
film
multilayer
magnetoresistive effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4382395A
Other languages
Japanese (ja)
Inventor
Katsumi Hoshino
勝美 星野
Ryoichi Nakatani
亮一 中谷
Hiroyuki Hoshiya
裕之 星屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4382395A priority Critical patent/JPH08241506A/en
Publication of JPH08241506A publication Critical patent/JPH08241506A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Power Engineering (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE: To obtain a multilayered film having high heat resistance without considerably deteriorating magnetoresistance variation by forming a Co-noble metal alloy layer at the interface between each of two magnetic layers and a nonmagnetic layer. CONSTITUTION: A (100) single crystal substrate of Si is used as a substrate 11. An Hf layer of 5nm thickness is used as a buffer layer 12, Ni-19 atomic % Fe alloy layers of 4nm thickness are used as magnetic layers 13, 17 and Co-Pt alloy layers of 1nm thickness are used as magnetic layers 14, 16. A Cu layer of 2.5nm thickness is used as a nonmagnetic layer 15, an Fe-40 atomic % Mn alloy layer of 5nm thickness is used as an antiferromagnetic layer 18 and an Hf layer of 5nm thickness is used as a protective layer 19. A layer of an alloy of Co with <=25 atomic % noble metal selected from among Pt, Pd, Rh and Ir is formed at the interface between each of the magnetic layers 14, 16 and the nonmagnetic layer 15. The objective multilayered film having high heat resistance is obtd. without considerably deteriorating magnetoresistance variation.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高い磁気抵抗効果を有す
る多層磁気抵抗効果膜およびこれを用いた磁気抵抗効果
素子,磁気ヘッド,磁気記録再生装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multilayer magnetoresistive effect film having a high magnetoresistive effect, a magnetoresistive effect element using the same, a magnetic head and a magnetic recording / reproducing apparatus.

【0002】[0002]

【従来の技術】磁気記録の高密度化に伴い、再生用磁気
ヘッドに用いる磁気抵抗効果材料として、高い磁気抵抗
効果を示す材料が求められている。現在、使用されてい
るパーマロイの磁気抵抗変化率は約3%であり、新材料
はこれを上回る磁気抵抗変化率を有することが必要であ
る。
2. Description of the Related Art As the magnetic recording density increases, a material having a high magnetoresistive effect is required as a magnetoresistive effect material used for a reproducing magnetic head. At present, the magnetoresistance change rate of permalloy used is about 3%, and it is necessary for the new material to have a magnetoresistance change rate higher than this.

【0003】フィジカル・レビュー・B(Pysical Revi
ew B),第43巻,第1号,1297〜1300ページに記
載の「軟磁性多層膜における巨大磁気抵抗効果(Giant
Magnetoresistance in Soft Ferromagnetic Multil
ayers )」のように二層の磁性層を非磁性層で分離し、
一方の磁性層に反強磁性層からの交換バイアス磁界を印
加する方法が考案された。このような多層膜では、EP
(European Patent )0 490 608 A2に記載のように、多
層膜の組織,結晶粒径等を調整するために、基板上にT
a,Ru,Cr,Vからなるバッファ層を形成してい
る。
Physical Review B (Pysical Revi
ew B), Vol. 43, No. 1, pp. 1297-1300, "Giant magnetoresistance effect in soft magnetic multilayer film (Giant
Magnetoresistance in Soft Ferromagnetic Multil
ayers) ”, the two magnetic layers are separated by a non-magnetic layer,
A method of applying an exchange bias magnetic field from the antiferromagnetic layer to one magnetic layer has been devised. In such a multilayer film, EP
As described in (European Patent) 0 490 608 A2, in order to adjust the structure, crystal grain size, etc. of the multilayer film, T is formed on the substrate.
A buffer layer made of a, Ru, Cr, V is formed.

【0004】また、ジャパニーズ・ジャーナル・オブ・
アプライド・フィジックス(Japanese Journal of Appl
ied Physics ),第33巻,第1A号,133〜137
ページに記載の「様々なバッファ層材料を用いたFe−
Mn/Ni−Fe/Cu/Ni−Feサンドイッチ膜に
おける磁気抵抗と結晶配向性(Magnetoresistance and
Preffered Orientation in Fe−Mn/Ni−Fe/
Cu/Ni−Fe Sandwiches with Various Buffer L
ayer Materials)」では、二層の磁性層を非磁性層で分
離し、一方の磁性層に反強磁性層からの交換バイアス磁
界を印加する方法を用いた多層膜において、多層膜の結
晶配向を制御するためにHf,Zr,Ti,Ta,Nb
からなるバッファ層を形成している。
In addition, the Japanese Journal of
Applied Physics (Japanese Journal of Appl
ied Physics), Vol. 33, No. 1A, 133-137.
"Fe-using various buffer layer materials"
Magnetoresistance and crystalline orientation in Mn / Ni-Fe / Cu / Ni-Fe sandwich film
Preffered Orientation in Fe-Mn / Ni-Fe /
Cu / Ni-Fe Sandwiches with Various Buffer L
ayer Materials) ”, the two layers of magnetic layers are separated by a non-magnetic layer, and the crystal orientation of the multilayer film is determined by applying the exchange bias magnetic field from the antiferromagnetic layer to one magnetic layer. Hf, Zr, Ti, Ta, Nb to control
To form a buffer layer.

【0005】アプライド・フィジックス・レター(Appl
ied Physics Letters ),第62巻,1478〜148
1ページに記載の「巨大磁気抵抗スピンバルブ構造の界
面におよぼす熱処理の効果(Effect of annealing on t
he interface of giant−magnetoresistance spin-valv
e structures )」のように、二層の磁性層を非磁性層
で分割し、一方の磁性層に反強磁性層からの交換バイア
ス磁界を印加する方法を用いた多層膜では、200℃以
上の熱処理により、磁気抵抗変化率は低下する。
Applied Physics Letter (Appl
ied Physics Letters), Volume 62, 1478-148
“Effect of annealing on t interface of giant magnetoresistive spin valve structure” on page 1
he interface of giant-magnetoresistance spin-valv
e structure)), the two magnetic layers are divided into non-magnetic layers, and the exchange bias magnetic field from the antiferromagnetic layer is applied to one magnetic layer. The heat treatment reduces the rate of change in magnetoresistance.

【0006】また、日本応用磁気学会誌、第18巻,第
2号,355〜359ページに記載の「NiO反強磁性
膜を用いたスピンバルブ積層膜の巨大磁気抵抗」のよう
に、二層の磁性層を非磁性層で分割し、一方の磁性層に
反強磁性層からの交換バイアス磁界を印加する方法を用
いた多層膜において、磁性層にNi−Feを用いた多層
膜の場合、200℃以上、Ni−Fe磁性層と非磁性層
との界面にCo層を形成した多層膜の場合、250℃以
上の熱処理により、磁気抵抗効果が低下する。
In addition, as described in "Giant Magnetoresistance of Spin-Valve Laminated Film Using NiO Antiferromagnetic Film" described in Journal of Applied Magnetics, Vol. 18, No. 2, pp. 355-359, two layers In the multi-layered film using the method of dividing the magnetic layer by the non-magnetic layer and applying the exchange bias magnetic field from the antiferromagnetic layer to one magnetic layer, in the case of the multi-layered film using Ni-Fe as the magnetic layer, In the case of a multilayer film in which a Co layer is formed at the interface between the Ni—Fe magnetic layer and the non-magnetic layer at 200 ° C. or higher, the magnetoresistive effect is lowered by the heat treatment at 250 ° C. or higher.

【0007】[0007]

【発明が解決しようとする課題】磁気抵抗効果型ヘッド
の作製工程において、磁気抵抗効果膜は加熱プロセスを
通る。このため、多層磁気抵抗効果膜は、高い耐熱性を
有することが望まれる。
In the manufacturing process of the magnetoresistive head, the magnetoresistive film goes through a heating process. Therefore, the multilayer magnetoresistive effect film is desired to have high heat resistance.

【0008】本発明の目的は、多層磁気抵抗効果膜にお
ける耐熱性の問題の解決方法を提供することにある。
An object of the present invention is to provide a method for solving the problem of heat resistance in a multilayer magnetoresistive effect film.

【0009】[0009]

【課題を解決するための手段】本発明者等は、種々の材
料および膜厚を有する磁性層,非磁性層を積層した多層
磁性膜を用いた磁気抵抗効果素子について鋭意研究を重
ねた結果、磁性層と非磁性層との界面に、Coと貴金属
との合金層を形成することにより、多層磁気抵抗効果膜
の磁気特性を大きく劣化することなく、耐熱性を向上さ
せることができることを見出し、本発明を完成するに至
った。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies on a magnetoresistive effect element using a multilayer magnetic film in which magnetic layers and nonmagnetic layers having various materials and film thicknesses are laminated, and as a result, It was found that by forming an alloy layer of Co and a noble metal at the interface between the magnetic layer and the non-magnetic layer, heat resistance can be improved without significantly deteriorating the magnetic characteristics of the multilayer magnetoresistive effect film, The present invention has been completed.

【0010】すなわち、複数層の磁性層を非磁性層で分
割し、少なくとも一層の磁性層に反強磁性層からの交換
バイアス磁界が印加されており、少なくとも一層の磁性
層に反強磁性層からの交換バイアス磁界は直接には印加
されていない多層膜を用いた磁気抵抗効果膜において、
磁性層と非磁性層との界面に、CoとPt,Pd,R
h,Irから選ばれる貴金属との合金を形成し、上記合
金における貴金属の濃度を25at%以下とすることに
より、多層膜の磁気抵抗変化率を大きく低下させること
なく、耐熱性を向上させることができる。また、多層膜
と基板との間に、周期律表上のIVa族金属元素,Va族
金属元素からなるバッファ層を形成することにより、上
記バッファ層上に形成された多層膜は(111)配向を
示す。この時、磁性層間の相互作用は磁気的に分離さ
れ、且つ、反強磁性層からの交換バイアス磁界は磁性層
に十分印加される。
That is, a plurality of magnetic layers are divided by non-magnetic layers, an exchange bias magnetic field from the antiferromagnetic layer is applied to at least one magnetic layer, and at least one magnetic layer is separated from the antiferromagnetic layer. The exchange bias magnetic field of is not directly applied in the magnetoresistive film using the multilayer film,
At the interface between the magnetic layer and the non-magnetic layer, Co, Pt, Pd, R
By forming an alloy with a noble metal selected from h and Ir and setting the concentration of the noble metal in the alloy to 25 at% or less, the heat resistance can be improved without significantly decreasing the magnetoresistance change rate of the multilayer film. it can. Further, by forming a buffer layer composed of a group IVa metal element and a group Va metal element on the periodic table between the multilayer film and the substrate, the multilayer film formed on the buffer layer has a (111) orientation. Indicates. At this time, the interaction between the magnetic layers is magnetically separated, and the exchange bias magnetic field from the antiferromagnetic layer is sufficiently applied to the magnetic layer.

【0011】また、上記多層磁気抵抗効果膜は、磁気抵
抗効果素子,磁界センサ,磁気ヘッドなどに好適であ
る。また、上記磁気ヘッドを用いることにより、高性能
磁気記録再生装置を得ることができる。
The multilayer magnetoresistive effect film is suitable for a magnetoresistive effect element, a magnetic field sensor, a magnetic head and the like. Further, by using the above magnetic head, a high performance magnetic recording / reproducing apparatus can be obtained.

【0012】[0012]

【作用】上述のように、二つの磁性層を非磁性層で分割
し、片側の磁性層に反強磁性層からの交換バイアス磁界
が印加された多層磁気抵抗効果膜において、磁性層と非
磁性層との界面に、CoとPt,Pd,Ir,Rhから
選ばれた貴金属との合金層を形成し、合金層における貴
金属の濃度を25at%以下にすることにより、磁気抵
抗変化率を大きく低下させることなく、耐熱性を向上さ
せることができる。さらに、多層磁気抵抗効果膜は、磁
気抵抗効果素子,磁界センサ,磁気ヘッドなどに好適で
ある。また、上記磁気ヘッドを用いることにより、高性
能磁気記録再生装置を得ることができる。
As described above, in the multilayer magnetoresistive effect film in which the two magnetic layers are divided by the nonmagnetic layer and the exchange bias magnetic field from the antiferromagnetic layer is applied to one magnetic layer, the magnetic layer and the nonmagnetic layer are separated. By forming an alloy layer of Co and a noble metal selected from Pt, Pd, Ir, and Rh at the interface with the layer and setting the concentration of the noble metal in the alloy layer to 25 at% or less, the magnetoresistance change rate is significantly reduced. It is possible to improve the heat resistance without doing so. Furthermore, the multilayer magnetoresistive effect film is suitable for a magnetoresistive effect element, a magnetic field sensor, a magnetic head, and the like. Further, by using the above magnetic head, a high performance magnetic recording / reproducing apparatus can be obtained.

【0013】[0013]

【実施例】【Example】

<実施例1>多層膜の作製にはイオンビームスパッタリ
ング法を用いた。到達真空度は、3/105Pa、スパ
ッタリング時のAr圧力は0.02Paである。また、
膜形成速度は、0.01〜0.02nm/sである。形成
した多層膜の断面構造を図1に示す。基板11にはSi
(100)単結晶基板を用いた。また、バッファ層12
として、厚さ5nmのHfを用いた。磁性層13および
17には、厚さ4nmのNi−19at%Fe合金を用
いた。また、磁性層14及び16には、厚さ1nmのC
o−Pt合金を用い、その組成を変化させた。非磁性層
15には、厚さ2.5nm のCuを用いた。また、反強
磁性層18には、厚さ5nmのFe−40at%Mn合
金を用いた。また、保護層19には、厚さ5nmのHf
を用いた。
<Example 1> An ion beam sputtering method was used for manufacturing the multilayer film. The ultimate vacuum is 3/10 5 Pa, and the Ar pressure during sputtering is 0.02 Pa. Also,
The film formation rate is 0.01 to 0.02 nm / s. The cross-sectional structure of the formed multilayer film is shown in FIG. Si on the substrate 11
A (100) single crystal substrate was used. In addition, the buffer layer 12
As the material, Hf having a thickness of 5 nm was used. For the magnetic layers 13 and 17, a Ni-19 at% Fe alloy having a thickness of 4 nm was used. In addition, the magnetic layers 14 and 16 have a C thickness of 1 nm.
An o-Pt alloy was used and its composition was changed. For the non-magnetic layer 15, Cu having a thickness of 2.5 nm was used. Further, for the antiferromagnetic layer 18, a Fe-40 at% Mn alloy having a thickness of 5 nm was used. Further, the protective layer 19 has a thickness of 5 nm of Hf.
Was used.

【0014】図2にPt濃度に対する磁気抵抗変化率の
変化を示す。図に示すように、Pt濃度0at%(純C
o)の場合、磁気抵抗変化率は4.7% である。Ptを
添加するにつれて、わずかに磁気抵抗変化率は減少する
が、Ptを25at%添加した多層膜の場合でも、磁気
抵抗変化率は4.2% と高い。さらにPtを添加すると
磁気抵抗変化率は急激に減少する。
FIG. 2 shows the change in the magnetoresistance change rate with respect to the Pt concentration. As shown in the figure, the Pt concentration is 0 at% (pure C
In the case of o), the magnetoresistance change rate is 4.7%. Although the magnetoresistive change rate slightly decreases as Pt is added, the magnetoresistive change rate is as high as 4.2% even in the case of the multilayer film in which Pt is added at 25 at%. If Pt is further added, the rate of change in magnetoresistance sharply decreases.

【0015】図3には、Pt濃度が0,17,29at
%であるCo−Pt層を用いた多層膜における、熱処理
温度に対する磁気抵抗変化率の依存性を示す。試料を真
空中、所定の温度で1時間保持し、容易磁化方向に85
Oeの磁界中で冷却した後、室温で磁気抵抗変化率を測
定した。図にみるように、Ptを添加するにつれて、磁
気抵抗変化率が低下し始める熱処理温度が高くなってい
る。
In FIG. 3, the Pt concentration is 0, 17, 29 at
The dependence of the magnetoresistance change rate with respect to the heat treatment temperature in the multilayer film using the Co—Pt layer of which the content is% is shown. Hold the sample in the vacuum at the specified temperature for 1 hour,
After cooling in a magnetic field of Oe, the magnetoresistance change rate was measured at room temperature. As shown in the figure, as Pt is added, the heat treatment temperature at which the rate of change in magnetoresistance starts to decrease becomes higher.

【0016】このように、磁気抵抗変化率を大きく低減
することなく、耐熱性を上げるためには、Pt濃度を2
5at%以下にする必要がある。
As described above, in order to improve the heat resistance without greatly reducing the magnetoresistance change rate, the Pt concentration is set to 2
It must be 5 at% or less.

【0017】本実施例では、バッファ層12として、H
fを用いた。多層膜に対してX線回折を行ったところ、
これら多層膜は全て(111)結晶配向を示した。バッ
ファ層12のない多層膜を作製したところ、多層膜は
(111)結晶配向を示さず、磁気抵抗効果はあらわれ
なかった。磁気抵抗変化率の高い多層膜を得るには、多
層膜が(111)配向を示すことが必要である。また、
バッファ層12に他の周期律表上のIVa金属元素,Va
金属元素を主成分とする非磁性合金を用いても、同様な
結果が得られる。
In this embodiment, H is used as the buffer layer 12.
f was used. When X-ray diffraction was performed on the multilayer film,
All of these multilayer films showed a (111) crystal orientation. When a multilayer film without the buffer layer 12 was prepared, the multilayer film did not exhibit (111) crystal orientation, and the magnetoresistive effect did not appear. In order to obtain a multilayer film having a high magnetoresistance change rate, it is necessary that the multilayer film exhibits a (111) orientation. Also,
In the buffer layer 12, another IVa metal element on the periodic table, Va
Similar results can be obtained by using a non-magnetic alloy containing a metal element as a main component.

【0018】また、磁気抵抗効果曲線にバルクハウゼン
ノイズが生じる場合は、多層磁気抵抗効果膜の磁界検出
方向と直角の方向にバイアス磁界を印加する機構を設け
ることが、バルクハウゼンノイズの抑止に効果がある。
磁気抵抗効果膜をトラック幅1μm以下の狭トラック磁
気ヘッドに用いる場合には、トラック幅を厳密に規定す
る必要があるため、バイアス磁界を印加する機構は、反
強磁性層から直接交換バイアス磁界が印加されていない
磁性層のトラック以外の部分に、反強磁性層または硬磁
性層を接触させる方法が好ましい。
When Barkhausen noise is generated in the magnetoresistive effect curve, a mechanism for applying a bias magnetic field in a direction perpendicular to the magnetic field detection direction of the multilayer magnetoresistive effect film is effective in suppressing Barkhausen noise. There is.
When the magnetoresistive film is used for a narrow track magnetic head having a track width of 1 μm or less, the track width needs to be strictly defined. Therefore, the mechanism for applying the bias magnetic field is that the exchange bias magnetic field is directly applied from the antiferromagnetic layer. A method in which the antiferromagnetic layer or the hard magnetic layer is brought into contact with the portion of the magnetic layer to which no voltage is applied is preferable.

【0019】また、本実施例では、磁性層13および1
7としてNi−Fe系合金を使用したが、他の面心立方
構造を有する磁性層を用いても、バッファ層材料による
磁化曲線および磁気抵抗効果曲線の変化は同様である。
しかし、反強磁性層から直接交換バイアス磁界が印加さ
れていない磁性層は、軟磁性を示すことが必要であり、
磁性層として、Ni−Fe系合金,Ni−Fe−Co系
合金を用いることが好ましい。
Further, in this embodiment, the magnetic layers 13 and 1 are
Although a Ni—Fe alloy was used as No. 7, even if a magnetic layer having another face-centered cubic structure is used, the changes in the magnetization curve and the magnetoresistive effect curve due to the buffer layer material are the same.
However, the magnetic layer to which the exchange bias magnetic field is not directly applied from the antiferromagnetic layer needs to exhibit soft magnetism,
For the magnetic layer, it is preferable to use a Ni—Fe based alloy or a Ni—Fe—Co based alloy.

【0020】また、本実施例では、非磁性層15とし
て、Cuを用いたが、Cuを主成分とする合金を用いて
も同様の結果が得られる。しかし、磁性層として3d遷
移金属を用いる場合には、磁性層とのフェルミ面のマッ
チングの観点から、非磁性層はCuであることが好まし
い。
Although Cu is used for the non-magnetic layer 15 in this embodiment, the same result can be obtained by using an alloy containing Cu as a main component. However, when a 3d transition metal is used for the magnetic layer, the non-magnetic layer is preferably Cu from the viewpoint of matching the Fermi surface with the magnetic layer.

【0021】また、本実施例では、反強磁性層18とし
て、Fe−Mn系合金を用いたが、他の反強磁性材料を
用いることもできる。反強磁性材料としては、Fe−M
n系合金およびFe−Mn系合金に耐食性向上元素を添
加した合金が好ましい。Fe−Mn系合金に耐食性向上
元素を添加した合金としては、Fe−Mn−Ru系合金
が、耐食性,ネール温度の高さの点から好ましい。ま
た、他のMn系金属合金、例えば、Mn−Co,Mn−
Ni,Mn−Pd,Mn−Pt,Mn−Rh,Mn−I
rなどの反強磁性金属を用いることもできる。
In this embodiment, the Fe-Mn alloy is used as the antiferromagnetic layer 18, but other antiferromagnetic materials can be used. As an antiferromagnetic material, Fe-M
An alloy in which a corrosion resistance improving element is added to the n-based alloy and the Fe-Mn-based alloy is preferable. As the alloy in which the corrosion resistance improving element is added to the Fe—Mn alloy, a Fe—Mn—Ru alloy is preferable from the viewpoint of corrosion resistance and high Neel temperature. In addition, other Mn-based metal alloys such as Mn-Co and Mn-
Ni, Mn-Pd, Mn-Pt, Mn-Rh, Mn-I
An antiferromagnetic metal such as r can also be used.

【0022】<実施例2>実施例1と同じ方法で多層膜
を形成した。図1の基板11にはSi(100)単結晶
基板を用いた。また、バッファ層12として、厚さ5n
mのHfを用いた。磁性層13および17には、厚さ4
nmのNi−19at%Fe合金を用いた。また、磁性
層14及び16には、Coに20at%の貴金属を添加
した合金を用い、厚さを1nmとした。貴金属には、A
u,Ag,Pt,Pd,Ir,Rhを用いた。非磁性層
15には、厚さ2.5nm のCuを用いた。また、反強
磁性層18には、厚さ5nmのFe−40at%Mn合
金を用いた。また、保護層19には、厚さ5nmのHf
を用いた。また、比較のため、磁性層14及び16に純
Coを用いた膜も同時に作製した。
Example 2 A multilayer film was formed by the same method as in Example 1. A Si (100) single crystal substrate was used as the substrate 11 in FIG. The thickness of the buffer layer 12 is 5n.
m Hf was used. The magnetic layers 13 and 17 have a thickness of 4
nm Ni-19 at% Fe alloy was used. Further, for the magnetic layers 14 and 16, an alloy obtained by adding 20 at% of a noble metal to Co was used, and the thickness was set to 1 nm. A for precious metals
u, Ag, Pt, Pd, Ir and Rh were used. For the non-magnetic layer 15, Cu having a thickness of 2.5 nm was used. Further, for the antiferromagnetic layer 18, a Fe-40 at% Mn alloy having a thickness of 5 nm was used. Further, the protective layer 19 has a thickness of 5 nm of Hf.
Was used. For comparison, films using pure Co for the magnetic layers 14 and 16 were also prepared at the same time.

【0023】図4,図5に本実施例および比較例の多層
膜における熱処理温度に対する磁気抵抗変化率の依存性
を示す。Coに何も添加しない場合、250℃付近で磁
気抵抗変化率は低下し始めるのに対し、CoにAu,A
gを添加した場合には、280℃付近まで磁気抵抗変化率
は大きく低下しない。さらに、CoにPt,Pd,I
r,Rhを用いた場合には、300℃付近まで磁気抵抗
変化率の大きな低下はみられない。このように、磁性層
と非磁性層との界面にCoと貴金属との合金層を形成す
ることにより、高い耐熱性を有する磁気抵抗効果多層膜
が得られる。
FIGS. 4 and 5 show the dependence of the magnetoresistance change rate on the heat treatment temperature in the multilayer films of this example and the comparative example. When nothing is added to Co, the magnetoresistance change rate starts to decrease at around 250 ° C., whereas Co and Au and A
When g is added, the rate of change in magnetoresistance does not decrease significantly up to around 280 ° C. Furthermore, Pt, Pd, and I are added to Co.
When r and Rh are used, the magnetoresistance change rate does not decrease significantly up to around 300 ° C. Thus, by forming the alloy layer of Co and the noble metal at the interface between the magnetic layer and the nonmagnetic layer, a magnetoresistive effect multilayer film having high heat resistance can be obtained.

【0024】<実施例3>実施例1と同じ構造を持つ多
層膜を作製した。基板11にはSi(100)単結晶を
用いた。また、バッファ層12として、厚さ5nmのZ
rを用いた。磁性層13にはNi−19at%Fe合金
を、磁性層14にはCo−20at%Ptを用い、磁性
層13と磁性層14との膜厚の和が5nmとなるように
した。磁性層17には、厚さ4nmのNi−19at%
Fe合金を用いた。また、磁性層16には、厚さ1nm
のCo−20at%Ptを用いた。非磁性層15には、
厚さ2.5nm のCuを用いた。また、反強磁性層18
には、厚さ10nmのFe−40at%Mn合金を用い
た。また、保護層19には、厚さ5nmのZrを用い
た。
Example 3 A multilayer film having the same structure as in Example 1 was produced. The substrate 11 was made of Si (100) single crystal. In addition, as the buffer layer 12, Z having a thickness of 5 nm is used.
r was used. A Ni-19 at% Fe alloy was used for the magnetic layer 13, and Co-20 at% Pt was used for the magnetic layer 14 so that the total thickness of the magnetic layers 13 and 14 would be 5 nm. The magnetic layer 17 has a thickness of 4 nm of Ni-19 at%.
An Fe alloy was used. The magnetic layer 16 has a thickness of 1 nm.
Co-20 at% Pt was used. In the non-magnetic layer 15,
Cu having a thickness of 2.5 nm was used. In addition, the antiferromagnetic layer 18
For this, an Fe-40 at% Mn alloy having a thickness of 10 nm was used. The protective layer 19 was made of Zr having a thickness of 5 nm.

【0025】図6に、Co−Pt層厚に対する、磁気抵
抗変化率と反強磁性層に接していない磁性層の保磁力の
変化を示す。図のように、磁気抵抗変化率はCo−Pt
層が1nmの厚さになるまで増加し、それ以上の膜厚で
はほぼ一定の値である。また、反強磁性層に接していな
い磁性層の保磁力は、Co−Pt層の厚さにより増加
し、Co−Pt層厚が2nmより厚くなると、保磁力は
急激に高くなる。
FIG. 6 shows changes in the magnetoresistance change rate and the coercive force of the magnetic layer not in contact with the antiferromagnetic layer with respect to the thickness of the Co—Pt layer. As shown in the figure, the magnetoresistance change rate is Co-Pt.
The layer increases until it reaches a thickness of 1 nm, and it has a substantially constant value when the layer thickness is increased. Further, the coercive force of the magnetic layer not in contact with the antiferromagnetic layer increases with the thickness of the Co—Pt layer, and when the Co—Pt layer thickness exceeds 2 nm, the coercive force sharply increases.

【0026】このように、反強磁性層に接していない磁
性層が優れた軟磁気特性を持ち、且つ、高い磁気抵抗変
化率を有する多層磁気抵抗効果膜を得るためには、磁性
層と非磁性層との界面に形成するCoと貴金属との合金
層の厚さを、2nm以下とすることが望ましい。
As described above, in order to obtain a multilayer magnetoresistive effect film in which the magnetic layer not in contact with the antiferromagnetic layer has excellent soft magnetic characteristics and has a high magnetoresistance change rate, It is desirable that the thickness of the alloy layer of Co and the noble metal formed at the interface with the magnetic layer be 2 nm or less.

【0027】<実施例4>本発明の多層膜を用いた磁気
抵抗効果素子を形成した。本実施例では、図1の基板1
1にはSi(100)単結晶基板を用いた。バッファ層
12として、厚さ5nmのHfを用いた。磁性層13お
よび磁性層17には、厚さ4nmのNi−19at%F
e合金を用いた。磁性層14及び磁性層16には厚さ1
nmのCo−10at%Ptを用いた。非磁性層15に
は、厚さ2.5nm のCuを用いた。反強磁性層18に
は、厚さ10nmのFe−40at%Mn合金を用い
た。また、保護層19には、厚さ5nmのHfを用い
た。
Example 4 A magnetoresistive effect element using the multilayer film of the present invention was formed. In this embodiment, the substrate 1 of FIG.
1 was a Si (100) single crystal substrate. As the buffer layer 12, Hf having a thickness of 5 nm was used. The magnetic layer 13 and the magnetic layer 17 have a thickness of 4 nm of Ni-19 at% F.
e alloy was used. The magnetic layer 14 and the magnetic layer 16 have a thickness of 1
nm Co-10 at% Pt was used. For the non-magnetic layer 15, Cu having a thickness of 2.5 nm was used. For the antiferromagnetic layer 18, a Fe-40 at% Mn alloy having a thickness of 10 nm was used. The protective layer 19 is made of Hf having a thickness of 5 nm.

【0028】図7に磁気抵抗効果素子の構造を示す。磁
気抵抗効果素子は、多層磁気抵抗効果膜21および電極
22をシールド層23,24で挟んだ構造を有する。磁
気抵抗効果素子に磁界を印加し、電気抵抗率の変化を測
定したところ、本発明の多層磁気抵抗効果膜を用いた磁
気抵抗効果素子は、30Oe程度の印加磁界で4.2%
程度の磁気抵抗変化率を示した。また、本発明の磁気抵
抗効果素子の再生出力は、Ni−Fe単層膜を用いた磁
気抵抗効果素子と比較して3.6 倍であった。
FIG. 7 shows the structure of the magnetoresistive effect element. The magnetoresistive effect element has a structure in which the multilayer magnetoresistive effect film 21 and the electrode 22 are sandwiched by shield layers 23 and 24. When a magnetic field was applied to the magnetoresistive effect element and a change in electric resistivity was measured, the magnetoresistive effect element using the multilayer magnetoresistive effect film of the present invention showed 4.2% in an applied magnetic field of about 30 Oe.
The degree of magnetoresistance change was shown. Further, the reproduction output of the magnetoresistive effect element of the present invention was 3.6 times that of the magnetoresistive effect element using the Ni-Fe single layer film.

【0029】<実施例5>実施例4で述べた磁気抵抗効
果素子を用い、磁気ヘッドを作製した。磁気ヘッドの構
造を以下に示す。図8は、記録再生分離型ヘッドの一部
分を切断した場合の斜視図である。多層磁気抵抗効果膜
31をシールド層32,33で挾んだ部分が再生ヘッド
として働き、コイル34を挾む下部磁極35,上部磁極
36の部分が記録ヘッドとして働く。多層磁気抵抗効果
膜31は実施例5に記載の多層膜からなる。また、電極
38には、Cr/Cu/Crという多層構造の材料を用
いた。
Example 5 A magnetic head was manufactured using the magnetoresistive effect element described in Example 4. The structure of the magnetic head is shown below. FIG. 8 is a perspective view when a part of the recording / reproducing separated type head is cut. The portion of the multilayer magnetoresistive effect film 31 sandwiched by the shield layers 32 and 33 functions as a reproducing head, and the portions of the lower magnetic pole 35 and the upper magnetic pole 36 that sandwich the coil 34 function as a recording head. The multilayer magnetoresistive effect film 31 is composed of the multilayer film described in the fifth embodiment. The electrode 38 is made of a material having a multi-layer structure of Cr / Cu / Cr.

【0030】以下にこのヘッドの作製方法を示す。The manufacturing method of this head will be described below.

【0031】Al23・TiCを主成分とする焼結体を
スライダ用の基板37とした。シールド層,記録磁極に
はスパッタリング法で形成したNi−Fe合金を用い
た。各磁性膜の膜厚は、以下のようにした。上下のシー
ルド層32,33は1.0μm,下部磁極35,上部磁
極36は3.0μm 、各層間のギャップ材としてはスパ
ッタリングで形成したAl23を用いた。ギャップ層の
膜厚は、シールド層と磁気抵抗効果素子間で0.2μ
m、記録磁極間では0.4μmとした。さらに再生ヘッ
ドと記録ヘッドの間隔は約4μmとし、このギャップも
Al23で形成した。コイル44には膜厚3μmのCu
を使用した。
A sintered body containing Al 2 O 3 .TiC as a main component was used as the substrate 37 for the slider. A Ni-Fe alloy formed by a sputtering method was used for the shield layer and the recording magnetic pole. The thickness of each magnetic film was as follows. The upper and lower shield layers 32 and 33 were 1.0 μm, the lower magnetic pole 35 and the upper magnetic pole 36 were 3.0 μm, and the gap material between the layers was Al 2 O 3 formed by sputtering. The thickness of the gap layer is 0.2μ between the shield layer and the magnetoresistive effect element.
m between recording magnetic poles and 0.4 μm. Further, the distance between the reproducing head and the recording head was set to about 4 μm, and this gap was also formed of Al 2 O 3 . The coil 44 has a Cu film thickness of 3 μm.
It was used.

【0032】以上述べた構造の磁気ヘッドで記録再生を
行ったところ、Ni−Fe単層膜を磁気抵抗効果素子に
用いた磁気ヘッドと比較して、3.5 倍高い再生出力を
得た。これは、本発明の磁気ヘッドに高磁気抵抗効果を
示す多層膜を用いたためと考えられる。
When recording / reproducing was performed with the magnetic head having the above-described structure, a reproducing output 3.5 times higher than that of a magnetic head using a Ni--Fe single layer film as a magnetoresistive effect element was obtained. It is considered that this is because the magnetic head of the present invention uses a multilayer film having a high magnetoresistive effect.

【0033】また、本発明の磁気抵抗効果素子は、磁気
ヘッド以外の磁界検出器にも用いることができる。
Further, the magnetoresistive effect element of the present invention can be used in a magnetic field detector other than the magnetic head.

【0034】また、さらに、磁気ヘッドを磁気記録再生
装置に用いることにより、高性能磁気記録再生装置が得
られる。
Further, by using the magnetic head in the magnetic recording / reproducing apparatus, a high performance magnetic recording / reproducing apparatus can be obtained.

【0035】<実施例6>実施例5で述べた本発明の磁
気ヘッドを用い、磁気ディスク装置を作製した。図9に
磁気ディスク装置の構造の概略図を示す。
<Embodiment 6> Using the magnetic head of the present invention described in Embodiment 5, a magnetic disk device was manufactured. FIG. 9 shows a schematic view of the structure of the magnetic disk device.

【0036】磁気記録媒体41には、残留磁束密度0.
75T のCo−Ni−Pt−Ta系合金からなる材料
を用いた。磁気ヘッド43の記録ヘッドのトラック幅は
3μm,再生ヘッドのトラック幅は2μmとした。
The magnetic recording medium 41 has a residual magnetic flux density of 0.1.
A material made of 75T Co-Ni-Pt-Ta alloy was used. The track width of the recording head of the magnetic head 43 was 3 μm, and the track width of the reproducing head was 2 μm.

【0037】ここで、同図において、42は磁気記録媒
体駆動部、44は磁気ヘッド駆動部、45は記録再生信
号処理系である。
In the figure, reference numeral 42 is a magnetic recording medium drive unit, 44 is a magnetic head drive unit, and 45 is a recording / reproducing signal processing system.

【0038】磁気ヘッド43における磁気抵抗効果素子
は、従来のパーマロイ単層膜を用いた磁気抵抗効果素子
の約3.5 倍の出力を示すため、さらにトラック幅が狭
く、記録密度の高い磁気ディスク装置を作製することが
できる。本発明の磁気ヘッドは、特に1Gb/in2 以上
の記録密度を有する磁気記録再生装置に有効である。ま
た、10Gb/in2 以上の記録密度を有する磁気記録再
生装置には、必須であると考えられる。
Since the magnetoresistive effect element in the magnetic head 43 exhibits an output about 3.5 times that of the conventional magnetoresistive effect element using the permalloy single layer film, the magnetic disk having a narrower track width and a higher recording density. The device can be made. The magnetic head of the present invention is particularly effective for a magnetic recording / reproducing device having a recording density of 1 Gb / in 2 or more. Further, it is considered to be essential for a magnetic recording / reproducing apparatus having a recording density of 10 Gb / in 2 or more.

【0039】[0039]

【発明の効果】二層の磁性層を非磁性層で分割し、一層
の磁性層に反強磁性層が接した多層磁気抵抗効果膜にお
いて、磁性層と非磁性層との界面にPt,Pd,Ir,
Rhから選ばれる貴金属とCoの合金層を形成すること
により、磁気抵抗変化率を大きく劣化させることなく、
高い耐熱性を有する多層膜が得られる。さらに、多層磁
気抵抗効果膜は、磁気抵抗効果素子,磁界センサ,磁気
ヘッドなどに好適である。また、磁気ヘッドを用いるこ
とにより、高性能磁気記録再生装置を得ることができ
る。
EFFECT OF THE INVENTION In a multilayer magnetoresistive film in which two magnetic layers are divided by a nonmagnetic layer and an antiferromagnetic layer is in contact with one magnetic layer, Pt and Pd are formed at the interface between the magnetic layer and the nonmagnetic layer. , Ir,
By forming an alloy layer of a noble metal selected from Rh and Co, the magnetoresistance change rate is not significantly deteriorated,
A multilayer film having high heat resistance can be obtained. Furthermore, the multilayer magnetoresistive effect film is suitable for a magnetoresistive effect element, a magnetic field sensor, a magnetic head, and the like. Further, by using the magnetic head, a high performance magnetic recording / reproducing device can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の多層磁気抵抗効果膜の構造を示す断面
図。
FIG. 1 is a sectional view showing the structure of a multilayer magnetoresistive effect film of the present invention.

【図2】Co−Pt層のPt濃度と磁気抵抗変化率との
関係を示すグラフ。
FIG. 2 is a graph showing the relationship between the Pt concentration of the Co—Pt layer and the magnetoresistance change rate.

【図3】Co−Pt層のPt濃度を変化させた時におけ
る、磁気抵抗変化率と熱処理温度との関係を示すグラ
フ。
FIG. 3 is a graph showing the relationship between the magnetoresistance change rate and the heat treatment temperature when the Pt concentration of the Co—Pt layer is changed.

【図4】Coに種々の貴金属を添加した時における、磁
気抵抗変化率と熱処理温度との関係を示すグラフ。
FIG. 4 is a graph showing a relationship between magnetoresistance change rate and heat treatment temperature when various noble metals are added to Co.

【図5】Coに種々の貴金属を添加した時における、磁
気抵抗変化率と熱処理温度との関係を示すグラフ。
FIG. 5 is a graph showing the relationship between the magnetoresistance change rate and the heat treatment temperature when various noble metals are added to Co.

【図6】Co−Pt層厚と磁気抵抗変化率,保磁力との
関係を示すグラフ。
FIG. 6 is a graph showing the relationship between the Co—Pt layer thickness, the magnetoresistance change rate, and the coercive force.

【図7】本発明の多層磁気抵抗効果膜を用いた磁気抵抗
効果素子の構造を示す斜視図。
FIG. 7 is a perspective view showing the structure of a magnetoresistive effect element using the multilayer magnetoresistive effect film of the present invention.

【図8】本発明の磁気ヘッドの構造を示す斜視図。FIG. 8 is a perspective view showing the structure of the magnetic head of the present invention.

【図9】本発明の磁気記録再生装置の構造の説明図。FIG. 9 is an explanatory diagram of a structure of a magnetic recording / reproducing apparatus of the present invention.

【符号の説明】[Explanation of symbols]

11…Si基板、12…Hfバッファ層、13…Ni−
Fe磁性層、14…Co−Pt磁性層、15…Cu非磁
性層、16…Co−Pt磁性層、17…Ni−Fe磁性
層、18…Fe−Mn反強磁性層、19…Hf保護層。
11 ... Si substrate, 12 ... Hf buffer layer, 13 ... Ni-
Fe magnetic layer, 14 ... Co-Pt magnetic layer, 15 ... Cu non-magnetic layer, 16 ... Co-Pt magnetic layer, 17 ... Ni-Fe magnetic layer, 18 ... Fe-Mn antiferromagnetic layer, 19 ... Hf protective layer .

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】複数層の磁性層を非磁性層で分割し、少な
くとも一層の磁性層に反強磁性層からの交換バイアス磁
界が印加されており、上記少なくとも一層の磁性層に上
記反強磁性層からの交換バイアス磁界は直接には印加さ
れていない多層膜を用いた磁気抵抗効果膜であり、非磁
性層を挟んだ磁性層の磁化の互いになす角度により磁気
抵抗効果が生じる磁気抵抗効果膜において、上記磁性層
と上記非磁性層との界面にCoと貴金属との合金層が形
成されていることを特徴とする多層磁気抵抗効果膜。
1. A plurality of magnetic layers are divided by non-magnetic layers, and an exchange bias magnetic field from an antiferromagnetic layer is applied to at least one magnetic layer, and the antiferromagnetic layer is applied to at least one magnetic layer. An exchange bias magnetic field from a layer is a magnetoresistive film using a multilayer film that is not directly applied, and a magnetoresistive film that produces a magnetoresistive effect depending on the angle between the magnetizations of the magnetic layers sandwiching the nonmagnetic layer. The multi-layered magnetoresistive film, wherein an alloy layer of Co and a noble metal is formed at the interface between the magnetic layer and the nonmagnetic layer.
【請求項2】請求項1において、上記反強磁性層からの
上記交換バイアス磁界が直接印加されていない上記磁性
層と上記非磁性層との界面に形成されたCoと貴金属と
の合金層の膜厚が2nm以下である多層磁気抵抗効果
膜。
2. The alloy layer of Co and a noble metal formed at the interface between the magnetic layer and the non-magnetic layer to which the exchange bias magnetic field from the antiferromagnetic layer is not directly applied according to claim 1. A multilayer magnetoresistive effect film having a film thickness of 2 nm or less.
【請求項3】請求項1または2において、上記Coと貴
金属との合金における貴金属の濃度が25at%以下で
ある多層磁気抵抗効果膜。
3. The multilayer magnetoresistive effect film according to claim 1, wherein the concentration of the noble metal in the alloy of Co and the noble metal is 25 at% or less.
【請求項4】請求項1,2または3において、上記Co
に添加する貴金属が、Pt,Pd,Ir,Rhから選ば
れる金属である磁気抵抗効果多層膜。
4. The Co according to claim 1, 2, or 3.
A magnetoresistive effect multilayer film in which the noble metal added to is a metal selected from Pt, Pd, Ir, and Rh.
【請求項5】請求項1,2,3または4において、上記
多層膜と基板との間に周期律表上のIVa族金属元素,V
a族金属元素、あるいはIVa族金属元素,Va族金属元
素を主成分とする非磁性合金からなるバッファ層が形成
されている多層磁気抵抗効果膜。
5. The IVa group metal element on the periodic table, V between the multilayer film and the substrate according to claim 1, 2, 3 or 4.
A multilayer magnetoresistive effect film in which a buffer layer made of a non-magnetic alloy containing a group a metal element, a group IVa metal element or a group Va metal element as a main component is formed.
【請求項6】請求項1,2,3,4または5において、
上記磁性層および非磁性層が面心立方構造を有し、(1
11)配向している多層磁気抵抗効果膜。
6. The method according to claim 1, 2, 3, 4 or 5.
The magnetic layer and the nonmagnetic layer have a face-centered cubic structure, and (1
11) Oriented multilayer magnetoresistive film.
【請求項7】請求項1,2,3,4,5または6におい
て、上記磁性層の少なくとも一部がNi−Fe系合金な
いしNi−Fe−Co系合金である多層磁気抵抗効果
膜。
7. A multilayer magnetoresistive film according to claim 1, 2, 3, 4, 5 or 6, wherein at least a part of said magnetic layer is a Ni—Fe based alloy or a Ni—Fe—Co based alloy.
【請求項8】請求項1,2,3,4,5,6または7に
おいて、上記多層磁気抵抗効果膜を含み印加磁界が零の
場合に、上記反強磁性層からの交換バイアス磁界が印加
された上記磁性層の磁化の向きが上記反強磁性層からの
交換バイアス磁界が直接印加されていない磁性層の磁化
の向きと直交した磁気抵抗効果素子であり、上記反強磁
性層からの上記交換バイアス磁界が直接印加されていな
い磁性層の磁化の向きが外部磁界により回転することに
よって生じる電気抵抗の変化を検知する手法を用いた磁
気抵抗効果素子。
8. The exchange bias magnetic field from the antiferromagnetic layer according to claim 1, 2, 3, 4, 5, 6 or 7, when the applied magnetic field including the multilayer magnetoresistive film is zero. Is a magnetoresistive element in which the direction of magnetization of the magnetic layer is orthogonal to the direction of magnetization of the magnetic layer to which the exchange bias magnetic field from the antiferromagnetic layer is not directly applied. A magnetoresistive effect element using a method of detecting a change in electric resistance caused by rotation of the magnetization direction of a magnetic layer to which an exchange bias magnetic field is not directly applied by an external magnetic field.
【請求項9】請求項8に記載の上記磁気抵抗効果素子を
含む磁気ヘッド。
9. A magnetic head including the magnetoresistive effect element according to claim 8.
【請求項10】請求項8に記載の上記磁気抵抗効果素子
と誘導型磁気ヘッドを組み合わせた複合型磁気ヘッド。
10. A composite magnetic head in which the magnetoresistive effect element according to claim 8 and an inductive magnetic head are combined.
【請求項11】請求項9または10に記載の上記磁気ヘ
ッドを用いた磁気記録再生装置。
11. A magnetic recording / reproducing apparatus using the magnetic head according to claim 9.
JP4382395A 1995-03-03 1995-03-03 Multilayer magnetoresistive film and magnetic head Pending JPH08241506A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4382395A JPH08241506A (en) 1995-03-03 1995-03-03 Multilayer magnetoresistive film and magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4382395A JPH08241506A (en) 1995-03-03 1995-03-03 Multilayer magnetoresistive film and magnetic head

Publications (1)

Publication Number Publication Date
JPH08241506A true JPH08241506A (en) 1996-09-17

Family

ID=12674478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4382395A Pending JPH08241506A (en) 1995-03-03 1995-03-03 Multilayer magnetoresistive film and magnetic head

Country Status (1)

Country Link
JP (1) JPH08241506A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0840334A1 (en) * 1996-11-01 1998-05-06 Read-Rite Corporation Antiferromagnetic exchange biasing using buffer layer
KR100321956B1 (en) * 1996-12-26 2002-03-08 가네꼬 히사시 Magnetoresistance effect film and method for making the same
WO2003092083A1 (en) * 2002-04-24 2003-11-06 Matsushita Electric Industrial Co., Ltd. Magnetoresistant element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0840334A1 (en) * 1996-11-01 1998-05-06 Read-Rite Corporation Antiferromagnetic exchange biasing using buffer layer
KR100321956B1 (en) * 1996-12-26 2002-03-08 가네꼬 히사시 Magnetoresistance effect film and method for making the same
WO2003092083A1 (en) * 2002-04-24 2003-11-06 Matsushita Electric Industrial Co., Ltd. Magnetoresistant element
US6861940B2 (en) 2002-04-24 2005-03-01 Matsushita Electric Industrial Co., Ltd. Magnetoresistive element

Similar Documents

Publication Publication Date Title
JPH05266436A (en) Magnetoresistive sensor
JP2000215414A (en) Magnetic sensor
JP4245318B2 (en) Magnetic detection element
JP3231313B2 (en) Magnetic head
JPH10143822A (en) Thin-film magnetic structure and thin-film magnetic head
JP4237991B2 (en) Magnetic detection element
JPH0969211A (en) Magnetoresistive film, magnetic head, and magnetic recording / reproducing device
JP3527786B2 (en) Multilayer magnetoresistive film and magnetic head
JPH0950612A (en) Magnetoresistive film, magnetoresistive element, magnetic head and magnetic recording / reproducing apparatus
JP3393963B2 (en) Exchange coupling film and magnetoresistive element
JPH08241506A (en) Multilayer magnetoresistive film and magnetic head
JPH076329A (en) Magnetoresistive element, magnetic head and magnetic recording / reproducing apparatus using the same
JP3083237B2 (en) Magnetoresistive element and magnetic head
JPH0936455A (en) Magnetoresistive effect element
JPH06310329A (en) Multilayer magnetoresistive film and magnetic head
JP3634997B2 (en) Manufacturing method of magnetic head
JPH0992904A (en) Giant magnetoresistance material film, its manufacture, and magnetic head using the same
JPH09161243A (en) Multilayer magnetoresistive film and magnetic head
JPH0774022A (en) Multilayer magnetoresistive film and magnetic head
JP2656449B2 (en) Magnetoresistive head
JP2907805B1 (en) Magnetoresistive element, magnetoresistive head and magnetic recording / reproducing device
JPH09245320A (en) Multilayer magnetoresistive effect film, magnetic head using the same, and magnetic recording / reproducing apparatus
JPH0766036A (en) Multilayer magnetoresistive effect film, magnetoresistive effect element and magnetic head using the same
JPH08111010A (en) Multilayer magnetoresistive film and magnetic head
JPH08153314A (en) Multilayer magnetoresistive film and magnetic head