JPH0830233B2 - High strength and high conductivity copper alloy - Google Patents
High strength and high conductivity copper alloyInfo
- Publication number
- JPH0830233B2 JPH0830233B2 JP62156048A JP15604887A JPH0830233B2 JP H0830233 B2 JPH0830233 B2 JP H0830233B2 JP 62156048 A JP62156048 A JP 62156048A JP 15604887 A JP15604887 A JP 15604887A JP H0830233 B2 JPH0830233 B2 JP H0830233B2
- Authority
- JP
- Japan
- Prior art keywords
- strength
- alloy
- conductivity
- copper alloy
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Conductive Materials (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は強度、加工性、導電性(熱伝導性)、耐食
性、耐熱性等が優れ、小型化された電子機器用精密部品
の製造に適した高力高導電性銅合金に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is excellent in strength, processability, electrical conductivity (thermal conductivity), corrosion resistance, heat resistance, etc., and is suitable for manufacturing precision parts for electronic devices. The present invention relates to a suitable high strength and high conductivity copper alloy.
電子機器、特に半導体(IC,トランジスター)のリー
ド、コネクター、スイッチ、接点ばね等には、強度、加
工性、耐食性及び導電性に優れたCu合金が要求されてい
る。このような合金として強度が優れたCu−Be系合金や
Cu−Ti系合金が知られているが、これ等の合金は高価で
あり、Cu−Ni−Sn系スピノーダル合金は導電率が10%IA
CS以下と低く、加工性も乏しく、またCu−Ni−Al合金も
同様である。このためCu−Sn系合金、即ちリン青銅、特
にSnを6〜8wt%(以下wt%を%と略記)含むばね用リ
ン青銅が多用されている。For electronic devices, especially for semiconductor (IC, transistor) leads, connectors, switches, contact springs, etc., Cu alloys excellent in strength, workability, corrosion resistance and conductivity are required. Such alloys have excellent strength such as Cu-Be alloys and
Cu-Ti alloys are known, but these alloys are expensive, and Cu-Ni-Sn spinodal alloys have a conductivity of 10% IA.
It is as low as CS or less, has poor workability, and the same applies to Cu-Ni-Al alloys. For this reason, Cu-Sn based alloys, that is, phosphor bronze, especially phosphor bronze for springs containing 6 to 8 wt% Sn (hereinafter wt% is abbreviated as%) are often used.
上記ばね用リン青銅は60〜80kg/mm2程度の強度を有す
るも、比較的高価なSnを多量に含むばかりか、導電率が
10〜15%IACSと低く、更に半田接合強度の経時劣化や腐
食割れ感受性の面から実用上大きな欠陥となっている。
このためCu−Fe系合金、例えばC194合金やC195合金が1
部で利用されているが、強度が45〜65kg/mm2程度で加工
性が劣るため、用途が限定されている。The above-mentioned phosphor bronze for spring has a strength of about 60 to 80 kg / mm 2 , but it not only contains a large amount of relatively expensive Sn, but also has an electrical conductivity.
It is as low as 10 to 15% IACS, and is a practically large defect in terms of deterioration of solder joint strength over time and susceptibility to corrosion cracking.
Therefore, Cu-Fe alloys such as C194 alloy and C195 alloy are
Although it is used in some parts, its use is limited because its strength is about 45 to 65 kg / mm 2 and its workability is poor.
近年電子機器は小型化、高集積化の傾向にあり、これ
等に使用するCu合金として強度と導電性の向上が強く望
まれている。また多量に使用するためには安価であり、
半導体等の面実装化の動向に答えるためには半田接合強
度やSnやSn−Pb合金メッキの密着信頼性も要求される。
このような要求に応えて従来合金に替るにはより高性能
で、低コストなパフォーマンスの合金が必要である。即
ち、 (1)強度と導電率のより高度なバランスの取れた合
金、例えば強度70〜100kg/mm2、導電率10〜15%IACSの
特性を有すること。In recent years, electronic devices have tended to be miniaturized and highly integrated, and there is a strong demand for improvement in strength and conductivity as a Cu alloy used for them. It is also cheap to use in large quantities,
In order to respond to the trend of surface mounting of semiconductors, solder joint strength and adhesion reliability of Sn and Sn-Pb alloy plating are required.
In order to meet such demands and replace conventional alloys, higher performance, lower cost performance alloys are required. That is, (1) an alloy having a higher balance between strength and conductivity, such as strength of 70 to 100 kg / mm 2 and conductivity of 10 to 15% IACS.
(2)コスト的に安いこと、例えば合金成分が安価であ
ると同時に、製造プロセスが単純化されていること。(2) The cost is low, for example, the alloy components are inexpensive and the manufacturing process is simplified.
(3)加工性、耐食性、耐応力腐食割れ性に優れている
こと。(3) Excellent workability, corrosion resistance, and stress corrosion cracking resistance.
(4)半田接合強度やSn,Sn−Pb合金メッキの密着性が
長期にわたり安定していること。(4) Solder joint strength and adhesion of Sn, Sn-Pb alloy plating are stable for a long time.
(5)電子機器用途ではSnやSn合金の外にAu,Ag,Ni等の
メッキが多用されており、これ等のメッキ性にも優れて
いること。(5) In electronic device applications, plating of Au, Ag, Ni, etc. is often used in addition to Sn and Sn alloys, and these plating properties are also excellent.
本発明はこれに鑑み種々検討の結果、特に強度、加工
性、導電性(熱伝導性)、耐食性、耐熱性が優れ、小型
化された電子機器用精密部品、例えば半導体のリードフ
レーム、コネクタ、ソケット等に適した高力高導電性銅
合金を開発したものである。The present invention is a result of various studies in view of this, particularly strength, workability, conductivity (thermal conductivity), corrosion resistance, excellent heat resistance, miniaturized precision components for electronic devices, such as semiconductor lead frames, connectors, We have developed a high-strength and high-conductivity copper alloy suitable for sockets.
即ち本発明銅合金は4.0%を越えて10%以下のNiと、
0.6〜5.0%のSiと、Zn0.05〜5.0%,Mn0.01〜5.0%,Mg0.
005〜0.8%,Ca0.005〜0.8%,Cd0.05〜1.0%,Ag0.001〜
0.5%の範囲内で何れか1種又は2種以上を合計0.01〜
5.0%含み、更にCr0.01〜0.4%,V0.005〜0.4%,Ti0.005
〜0.4%,Y0.005〜0.2%,Zr0.005〜0.2%,Co0.01〜0.4
%,Fe−P化合物(FeXPY)0.01〜0.4%,Cr−P化合物
(CrXPY)0.01〜0.4%,Co−P化合物(CoXPY)0.01〜0.
4%の範囲内で何れか1種又は2種以上を合計0.005〜0.
5%含み、残部Cuと不可避的不純物からなることを特徴
とするものである。That is, the present invention copper alloy is more than 4.0% and 10% or less of Ni,
0.6-5.0% Si, Zn0.05-5.0%, Mn0.01-5.0%, Mg0.
005 ~ 0.8%, Ca0.005 ~ 0.8%, Cd0.05 ~ 1.0%, Ag0.001 ~
Within the range of 0.5%, a total of 0.01 to 1 or 2 or more
5.0% included, Cr0.01-0.4%, V0.005-0.4%, Ti0.005
~ 0.4%, Y0.005-0.2%, Zr0.005-0.2%, Co0.01-0.4
%, Fe-P compound (Fe X P Y ) 0.01 to 0.4%, Cr-P compound (Cr X P Y ) 0.01 to 0.4%, Co-P compound (Co X P Y ) 0.01 to 0.
Within the range of 4%, one kind or two or more kinds in total is 0.005 to 0.
It is characterized by containing 5% and the balance Cu and unavoidable impurities.
本発明合金は上記組成に配合して溶解鋳造した鋳塊に
熱間加工と冷間加工を施して造られる。例えば700〜100
0℃に加熱して熱間圧延又は熱間押出を行ない、600℃以
上で加工を終了し、直ちに水冷し、望ましくは10℃/秒
以上の速度で400℃以下まで冷却する。これをミーリン
グ、シェービング又は酸洗により表面を清浄化してから
冷間圧延や引抜等の加工を施し、しかる後時効熱処理と
冷間加工又は溶体化処理と時効熱処理と冷間加工を組み
合せて造られる。また最終の冷間加工後に200〜600℃の
調質焼鈍、テンションレベラー、テンションアニーリン
グ等と組合せることにより、より高い特性を得ることが
可能である。また本発明合金の鋳塊を直接冷間加工して
から熱処理することも可能である。The alloy of the present invention is produced by hot working and cold working an ingot melt-cast by adding the above composition. For example 700-100
Hot rolling or hot extrusion is performed by heating to 0 ° C., processing is completed at 600 ° C. or higher, water cooling is immediately performed, and preferably 400 ° C. or lower at a rate of 10 ° C./sec or more. The surface is cleaned by milling, shaving, or pickling, and then subjected to processing such as cold rolling and drawing, and then is made by combining aging heat treatment and cold working or solution treatment, aging heat treatment and cold working. . Further, it is possible to obtain higher properties by combining with a temper annealing of 200 to 600 ° C., a tension leveler, a tension annealing after the final cold working. It is also possible to directly cold work the ingot of the alloy of the present invention and then heat-treat it.
本発明合金は上記製造方法により造られ、合金組成に
もよるが強度60〜120kg/mm2、伸び3〜20%、導電率10
〜40%IACSの特性を示す。このような本発明合金は銅マ
トリックスにNiとSiの化合物、即ちNiXSiYを有効に分散
析出させ、強度の向上と導電率及び耐熱性の向上を可能
にする。更にNiとSiは化学量論比で化合析出するので両
者の比(重量)は約2〜6:1程度の範囲とすることが望
ましく、この範囲内において高い強度と優れた導電性が
同時に得られるためである。しかして4.0%を越えて10
以下のNiと、0.6〜5.0%のSiと限定したのは、Ni含有量
とSi含有量の何れかが下限未満では十分な強度が得られ
ず、上限を越えると半田付け性を悪化させると共に加工
性、特に熱間加工性を悪くし、製造性を害するためであ
る。The alloy of the present invention is produced by the above manufacturing method and has a strength of 60 to 120 kg / mm 2 , an elongation of 3 to 20% and an electrical conductivity of 10 depending on the alloy composition.
Characteristic of ~ 40% IACS. Such an alloy of the present invention effectively disperses and deposits a compound of Ni and Si, that is, Ni X Si Y , in a copper matrix, and makes it possible to improve strength and conductivity and heat resistance. Furthermore, since Ni and Si are chemically compounded in a stoichiometric ratio, it is desirable that the ratio (weight) of both be within the range of about 2 to 6: 1. Within this range, high strength and excellent conductivity can be obtained at the same time. This is because Then over 4.0% 10
The following Ni and 0.6-5.0% of Si are limited to the reason that sufficient strength cannot be obtained if either the Ni content or the Si content is less than the lower limit, and the solderability deteriorates if the upper limit is exceeded. This is because workability, particularly hot workability, is deteriorated and manufacturability is impaired.
Zn,Mn,Mg,Ca,Cd,Ag(以下A元素群)からなる群は半
田付け後の信頼性の劣化を抑制すると共に、脱酸・脱硫
効果を示し、合金の鋳造性や熱間加工時の欠陥発生を抑
制する。しかしてZn0.05〜5.0%,Mn0.01〜5.0%,Mg0.00
5〜0.8%,Ca0.005〜0.8%,Cd0.05〜1.0%,Ag0.001〜0.5
の範囲内で何れか1種又は2種以上の合計を0.01〜5.0
%と限定したのは、何れも下限未満では十分な効果が得
られず、上限を越えると導電性を低下するばかりか、鋳
塊の健全性を損ねるためである。The group consisting of Zn, Mn, Mg, Ca, Cd, and Ag (hereinafter referred to as the A element group) suppresses deterioration of reliability after soldering, exhibits deoxidizing and desulfurizing effects, and castability and hot working of alloys. Suppress occurrence of defects. Then Zn0.05-5.0%, Mn0.01-5.0%, Mg0.00
5 to 0.8%, Ca0.005 to 0.8%, Cd0.05 to 1.0%, Ag0.001 to 0.5
Within the range of 1 to 2 or more total 0.01 ~ 5.0
The reason why the content is limited to% is that when the content is less than the lower limit, a sufficient effect cannot be obtained, and when the content exceeds the upper limit, not only the conductivity decreases but also the soundness of the ingot is impaired.
次にCr,V,Ti,Y,Co,FeXPY,CrXPY,CoXPY(以下B元素
群)からなる群は溶体化処理時の結晶粒の成長を抑制
し、微細組織として良好な延性を獲得し、曲げ成型性を
良好にするのに大きく寄与する。更に熱間加工性の向上
効果も示し、製造性の向上に大きく寄与する。しかして
Cr0.01〜0.4%,V0.005〜0.4%,Ti0.005〜0.4%,Y0.005
〜0.2%,FeXPY0.01〜0.4%,CrXPY0.01〜0.4%,CoXPY
0.01〜0.4%の範囲内で何れか1種又は2種以上を合計
0.005〜0.5%と限定したのは何れも上記範囲をはずれる
と鋳造性を低下したり、加工性を悪化する。Next, the group consisting of Cr, V, Ti, Y, Co, Fe X P Y , Cr X P Y , and Co X P Y (hereinafter B element group) suppresses the growth of crystal grains during solution treatment, It has a good ductility as a structure and greatly contributes to good bendability. Further, the effect of improving hot workability is also exhibited, which greatly contributes to the improvement of manufacturability. Then
Cr0.01 to 0.4%, V0.005 to 0.4%, Ti0.005 to 0.4%, Y0.005
~ 0.2%, Fe X P Y 0.01 ~ 0.4%, Cr X P Y 0.01 ~ 0.4%, Co X P Y
Within the range of 0.01 to 0.4%, total one or more kinds
Any of the above limits of 0.005 to 0.5% lowers the castability and deteriorates the workability when the amount is out of the above range.
本発明銅合金は上記組成からなるも、更にO2含有量を
50ppm以下とすることにより、前記Ni−Si化合物の微細
かつ均一な析出並びに半田付け性及びメッキ性の向上に
効果がある。しかして上限を越えると上記効果が見られ
なくなるばかりか、逆に低下するようになる。またS含
有量を10ppm以下とすることにより、O2と同様にNi−Si
化合物の微細かつ均一な析出並びに熱間加工性の向上に
効果がある。しかして上限を越えると熱間加工性を大き
く低下し、製造性を悪くする。尚化合物を形成しないP
量としても0.03wt%以下とすることが望ましい。又、本
発明銅合金中の析出物は、メッキ性や曲げ加工性や強度
等の劣化を抑制する意味で10μm以下が望ましい。The copper alloy of the present invention has the above composition, but further has an O 2 content.
When the content is 50 ppm or less, it is effective for fine and uniform precipitation of the Ni-Si compound and improvement of solderability and plating property. However, if the upper limit is exceeded, not only will the above effect not be seen, but on the contrary, it will decrease. Also by a 10ppm or less of S content, as with O 2 Ni-Si
It is effective for fine and uniform precipitation of the compound and improvement of hot workability. However, if it exceeds the upper limit, the hot workability is greatly reduced and the manufacturability is deteriorated. P that does not form a compound
It is desirable that the amount be 0.03 wt% or less. Further, the precipitate in the copper alloy of the present invention is preferably 10 μm or less in order to suppress deterioration of plating property, bending workability, strength and the like.
第1表に示す組成の銅合金を溶解・鋳造し、厚さ50m
m、巾120mm、長さ200mmの鋳塊を得た。これを面削し、8
50℃で3時間均質化処理した後、830℃で熱間圧延し、
これを水冷して厚さ10mmの板とした。A copper alloy with the composition shown in Table 1 was melted and cast to a thickness of 50 m.
An ingot of m, 120 mm in width and 200 mm in length was obtained. Chamfer this, 8
After homogenizing at 50 ℃ for 3 hours, hot rolling at 830 ℃,
This was water-cooled to form a plate having a thickness of 10 mm.
これ等の板について冷間圧延と中間焼鈍(620℃で1
時間)を繰返し、0.4mmの板厚で溶体化処理(870℃に5
分間保持後水冷)を施し、最終加工率40%で厚さ0.25mm
の板に仕上げ、360℃で30分間の調質焼鈍を施した後、
試験片を切り出して引張強さ、導電率、曲げ成型性、メ
ッキ密着性、半田接合強度及び応力腐食割れ性を調べ
た。これ等の結果を第2表に示す。Cold rolling and intermediate annealing (at 620 ℃ 1
Repeated time), solution heat treatment with a plate thickness of 0.4 mm (5 at 870 ℃)
0.25mm thickness at 40% final processing rate
After finishing the plate and subjecting it to temper annealing at 360 ° C for 30 minutes,
The test pieces were cut out and examined for tensile strength, conductivity, bendability, plating adhesion, solder joint strength and stress corrosion cracking resistance. The results are shown in Table 2.
引張強さはJIS Z2241に基づき、導電率はJIS−H0505
に基づき測定した。曲げ成型性(R/t)はJIS−Z2248の
ブロック法に基づいて試験を行ない、試験片の表面に割
れを生じさせる最少曲げ半径(R)を試験片の厚さ
(t)で割った値で示した。メッキ密着性は30×30mmの
試験片について、表面清浄後Agメッキを行ない、これを
大気中で加熱してその後のメッキ表面の脹れを観察し、
550℃で5分の加熱により脹れの見られないものを○
印、脹れの見られるものを×印で示した。半田接合強度
については20×25mmの試験片に直径9mmの無酸素銅のリ
ード線を60/40共晶半田により接合し、150℃で500時間
の加熱加速試験後に、引張試験を行ない、その強度が加
速試験前の80%以上を○印、50〜80%のものを△印、そ
れ以下のものを×印で表わした。応力腐食割れ性はJIS
−C8306に基づき、アンモニア3Vol%の雰囲気中で30kg/
mm2の引張荷重をかけた定荷重試験を行ない、割れが発
するまでの時間を測定した。Tensile strength is based on JIS Z2241 and conductivity is JIS-H0505.
It was measured based on. Bending formability (R / t) was tested based on the JIS-Z2248 block method, and the minimum bending radius (R) that causes cracks on the surface of the test piece divided by the thickness (t) of the test piece. Indicated by. Plating adhesion is about 30 x 30 mm test piece, Ag plating is performed after surface cleaning, this is heated in the atmosphere and the swelling of the plating surface after that is observed,
What does not appear to swell when heated at 550 ° C for 5 minutes
Marks and swelling are shown by x marks. Regarding the solder joint strength, a lead wire of oxygen-free copper with a diameter of 9 mm is joined to a 20 × 25 mm test piece with 60/40 eutectic solder, and a tensile test is performed after a heating acceleration test at 150 ° C for 500 hours. Is indicated by a circle, 80% or more before the accelerated test is indicated by a circle, 50-80% is indicated by a triangle, and less than that is indicated by a cross. JIS for stress corrosion cracking
-Based on C8306, 30kg / in an atmosphere of 3vol% ammonia
A constant load test in which a tensile load of mm 2 was applied was performed, and the time until cracking occurred was measured.
第1表及び第2表から明らかなように、本発明合金N
o.1〜9は何れも従来合金(8%リン青銅)No.15と比較
し、強度、導電性、半田接合強度、応力腐食割れ性に優
れていることが判る。 As is clear from Tables 1 and 2, the alloy N of the present invention
It can be seen that all of o.1 to 9 are superior to the conventional alloy (8% phosphor bronze) No.15 in strength, conductivity, solder joint strength, and stress corrosion cracking resistance.
これに対しNiやSi含有量が少なく、かつAB元素群を含
まない比較合金No.10では強度が不十分であり、逆にNi
やSi含有量の多い比較合金No.11及びAB両元素群の含有
量が多い比較合金No.12では健全な鋳塊が得られず、か
つ熱間圧延時に割れを生じてしまい供試材が得られなか
った。On the other hand, Comparative Alloy No. 10, which has a low Ni and Si content and does not contain the AB element group, has insufficient strength.
Comparative alloy No. 11 with a high content of Si and Si and comparative alloy No. 12 with a high content of both AB element groups did not produce a sound ingot, and cracked during hot rolling, resulting in the test material I couldn't get it.
更にO2含有量の多い比較合金No.13では曲げ成型性や
メッキ密着性が大きく劣り、半田接合性も劣化してい
る。S含有量の多い比較合金No.14では熱間圧延で甚し
い割れを生じてしまい、供試材が得られなかった。Further, in Comparative Alloy No. 13 having a large O 2 content, the bending formability and the plating adhesion were largely inferior, and the solder bondability was also deteriorated. In Comparative Alloy No. 14 having a high S content, severe cracking occurred during hot rolling, and the test material could not be obtained.
このように本発明によれば、強度、導電性(熱伝導
性)、成型加工性及び耐食性が優れ、半田付け性及びメ
ッキの信頼性が大巾に改善され、電子・電気機器として
例えば半導体リードフレーム、コネクター、スイッチ等
のばね材、端子、熱交換器、各種導体として有用であ
り、電子・電気機器の小型化、高集積化を可能にする
等、工業上顕著な効果を奏するものである。As described above, according to the present invention, strength, conductivity (heat conductivity), molding processability and corrosion resistance are excellent, solderability and plating reliability are greatly improved, and for example, as an electronic / electric device, for example, semiconductor leads. It is useful as a spring material for frames, connectors, switches, etc., terminals, heat exchangers, various conductors, and has remarkable industrial effects such as miniaturization and high integration of electronic and electrical equipment. .
───────────────────────────────────────────────────── フロントページの続き (72)発明者 谷川 徹 栃木県日光市清滝町500番地 古河電気工 業株式会社日光電気精銅所内 (56)参考文献 特公 昭60−45698(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Toru Tanigawa Toru Tanigawa 500 Kiyotaki Town, Nikko City, Tochigi Prefecture Furukawa Electric Co., Ltd. Nikko Denki Copper Works (56) References Japanese Patent Publication Sho 60-45698 (JP, B2)
Claims (2)
5.0wt%のSiと、Zn0.05〜5.0wt%,Mn0.01〜5.0wt%,Mg
0.005〜0.8wt%,Ca0.005〜0.8wt%,Cd0.05〜1.0wt%,Ag
0.001〜0.5wt%の範囲内で何れか1種又は2種以上を合
計0.01〜5.0wt%含み、更にCr0.01〜0.4wt%,V0.005〜
0.4wt%,Ti0.005〜0.4wt%,Y0.005〜0.2wt%,Zr0.005〜
0.2wt%,Co0.01〜0.4wt%,Fe−P化合物(FeXPY)0.01
〜0.4wt%,Cr−P化合物(CrXPY)0.01〜0.4wt%,Co−
P化合物(CoXPY)0.01〜0.4wt%の範囲内で何れか1種
又は2種以上を合計0.005〜0.5wt%含み、残部Cuと不可
避的不純物からなる高力高導電性銅合金。1. A nickel content of more than 4.0 wt.% And less than 10 wt.
5.0wt% Si, Zn0.05-5.0wt%, Mn0.01-5.0wt%, Mg
0.005-0.8wt%, Ca0.005-0.8wt%, Cd0.05-1.0wt%, Ag
Within the range of 0.001 to 0.5 wt%, it contains 0.01 to 5.0 wt% of one or more kinds in total, and further Cr 0.01 to 0.4 wt%, V0.005 to
0.4wt%, Ti0.005〜0.4wt%, Y0.005〜0.2wt%, Zr0.005〜
0.2wt%, Co 0.01-0.4wt%, Fe-P compound (Fe X P Y ) 0.01
~ 0.4wt%, Cr-P compound (Cr X P Y ) 0.01 ~ 0.4wt%, Co-
A high-strength and high-conductivity copper alloy containing 0.005 to 0.5 wt% of any one or more of P compounds (Co X P Y ) in the range of 0.01 to 0.4 wt% and a balance of Cu and inevitable impurities.
て、O2含有量を50ppm以下、S含有量を10ppm以下とする
高力高導電性銅合金。2. A copper alloy according to claim 1, wherein the O 2 content is 50 ppm or less and the S content is 10 ppm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62156048A JPH0830233B2 (en) | 1987-06-23 | 1987-06-23 | High strength and high conductivity copper alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62156048A JPH0830233B2 (en) | 1987-06-23 | 1987-06-23 | High strength and high conductivity copper alloy |
Publications (3)
Publication Number | Publication Date |
---|---|
JPS64240A JPS64240A (en) | 1989-01-05 |
JPH01240A JPH01240A (en) | 1989-01-05 |
JPH0830233B2 true JPH0830233B2 (en) | 1996-03-27 |
Family
ID=15619179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62156048A Expired - Fee Related JPH0830233B2 (en) | 1987-06-23 | 1987-06-23 | High strength and high conductivity copper alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0830233B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2594250B2 (en) * | 1992-05-13 | 1997-03-26 | 同和鉱業株式会社 | Copper base alloy for connector and method of manufacturing the same |
JP3362479B2 (en) * | 1993-11-05 | 2003-01-07 | 株式会社日立製作所 | Rotating electric machine rotor |
JP6154997B2 (en) * | 2012-07-13 | 2017-06-28 | 古河電気工業株式会社 | Copper alloy material excellent in strength and plating property and method for producing the same |
JP6154996B2 (en) * | 2012-07-13 | 2017-06-28 | 古河電気工業株式会社 | High-strength copper alloy material and manufacturing method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6045698B2 (en) * | 1982-01-20 | 1985-10-11 | 日本鉱業株式会社 | Lead material for semiconductor equipment |
JPS6045698A (en) * | 1983-08-19 | 1985-03-12 | 株式会社協立有機工業研究所 | Papermaking method for performing internal sizing of amphoteric starch |
JPS60158650A (en) * | 1984-01-28 | 1985-08-20 | Kobe Steel Ltd | Lead material for semiconductor apparatus |
US4594221A (en) * | 1985-04-26 | 1986-06-10 | Olin Corporation | Multipurpose copper alloys with moderate conductivity and high strength |
-
1987
- 1987-06-23 JP JP62156048A patent/JPH0830233B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPS64240A (en) | 1989-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3550233B2 (en) | Manufacturing method of high strength and high conductivity copper base alloy | |
KR950004935B1 (en) | Copper alloy for electronic instruments | |
JPS63130739A (en) | High strength and high conductivity copper alloy for semiconductor device lead material or conductive spring material | |
JPH0784631B2 (en) | Copper alloy for electronic devices | |
JPH0830234B2 (en) | High strength and high conductivity copper alloy | |
JPH0425338B2 (en) | ||
JP3418301B2 (en) | Copper alloy for electrical and electronic equipment with excellent punching workability | |
JP2521880B2 (en) | Copper alloy for electronic and electrical equipment and its manufacturing method | |
JPH1143731A (en) | High strength copper alloy excellent in stamping property and suitable for silver plating | |
JPH0440417B2 (en) | ||
JPS62182240A (en) | Conductive high-tensile copper alloy | |
JPS63149345A (en) | High strength copper alloy having high electrical conductivity and improved heat resistance | |
JPH0830233B2 (en) | High strength and high conductivity copper alloy | |
JPH02122039A (en) | High strength and high conductivity copper alloy having excellent adhesion of oxidized film | |
JP2514926B2 (en) | Copper alloy for electronic equipment with excellent solder joint strength and its manufacturing method | |
JP2576853B2 (en) | Copper alloy for electronic equipment with excellent solder joint strength and its manufacturing method | |
JPH01240A (en) | High strength and conductive copper alloy | |
JPH034612B2 (en) | ||
JPS63109132A (en) | High-strength conductive copper alloy and its production | |
JPH0816255B2 (en) | Copper alloy for electronic devices | |
JPH0356294B2 (en) | ||
JPH06172896A (en) | High-strength and high-conductivity copper alloy | |
JP3391492B2 (en) | High-strength, high-conductivity copper alloy for lead materials of semiconductor equipment and conductive spring materials | |
JPH0219432A (en) | High-strength and high-conductivity copper alloy for semiconductor equipment lead material or conductive spring material | |
JPS63192835A (en) | Lead material for ceramic package |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |