[go: up one dir, main page]

JPH0425338B2 - - Google Patents

Info

Publication number
JPH0425338B2
JPH0425338B2 JP62180837A JP18083787A JPH0425338B2 JP H0425338 B2 JPH0425338 B2 JP H0425338B2 JP 62180837 A JP62180837 A JP 62180837A JP 18083787 A JP18083787 A JP 18083787A JP H0425338 B2 JPH0425338 B2 JP H0425338B2
Authority
JP
Japan
Prior art keywords
less
content
strength
alloy
alloys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62180837A
Other languages
Japanese (ja)
Other versions
JPS6425929A (en
Inventor
Masato Asai
Shoji Shiga
Yoshimasa Ooyama
Shigeo Shinozaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP18083787A priority Critical patent/JPS6425929A/en
Publication of JPS6425929A publication Critical patent/JPS6425929A/en
Publication of JPH0425338B2 publication Critical patent/JPH0425338B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は改善された電子機器用銅合金に関し、
特に強度、加工性、導電性(熱伝導性)、耐食性、
耐熱性等が優れ、小型化された精密部品の製造に
適したものである。 〔従来の技術〕 電子機器、特に半導体(IC、トランジスター)
のリード、コネクター、スイツチ、接点ばね等に
は強度、加工性、耐食性及び導電性に優れた銅合
金が要求されている。このような合金として強度
が優れたCu−Be系合金やCu−Ti系合金が知られ
ているが、これ等は高価であり、またCu−Ni−
Sn系スピノーダル合金は導電率が10%IACS以下
と低く、加工性も乏しく、Cu−Ni−Al合金にお
いても同様である。 またCu−Ni−Siを代表するコルソン系合金は
強度と導電性を兼ね備えた合金であるが、この特
性を得るためには溶体化処理と時効の組み合せが
不可欠であり、高価となりやすい。更にこの合金
は半田(Sn及びSn−Pb合金)との接合性におい
て経時劣化を招き、信頼性を損ねるという電子機
器用銅合金としては重大な欠点を持つている。 コルソン系合金にMgを添加し、Cu−Ni−Si−
Mg系として諸特性の向上をはかることが米国特
許第4594221号明細書に開示されているが、Mg
は易酸化性元素であり、雰囲気溶解鋳造が不可欠
のためコストアツプの要因となる。更にコルソン
系合金にSnを添加したCu−Ni−Si−Sn系合金
が、端子、コネクター、リード材に適すること
が、特公昭58−124254号公報及び特公昭60−
43448号公報に開示されているが、これ等の用途
に望まれる要求特性に対して十分でなく、更に優
れた強度と加工性及び半田付け性やメツキ密着性
の向上が必要である。 現在多く用いられているばね用リン青銅は、60
〜80Kg/mm2程度の強度を有するも、導電率が10〜
15%IACSと低く、更に半田接合強度の経時劣化
や腐食割れ感受性の面から実用上大きな欠陥とな
つている。このためCu−Fe系合金、例えばC194
合金やC195合金が一部で利用されているが、強
度が45〜65Kg/mm2程度で加工性が劣るため用途が
限定されている。 〔発明が解決しようとする問題点〕 近年電子機器は小型化、高集積化の傾向にあ
り、これ等に使用するCu合金として強度と導電
性の向上が強く望まれている。また多量に使用す
るためには安価であり、面実装化の動向に応える
ためには、半田接合強度やSn,Sn−Pb合金メツ
キの密着信頼性も要求される。このような要求に
応えて従来合金に替えるには、より高性能で低コ
ストなパフオーマンスの合金が必要である。即ち (1) 強度と導電率のより高度なバランスの取れた
合金、例えば強度50〜100Kg/mm2、導電率10〜
30%IACSの特性を有すること。 (2) コスト的に安いこと、例えば合金成分が安価
であると同時に、製造プロセスが単純化されて
いること。 (3) 加工性、耐食性、耐応力腐食割れ性に優れて
いること。 (4) 半田接合強度やSn,Sn−Pb合金メツキの密
着性が長期にわたり安定していること。 (5) 電子機器用途ではSn,Sn−Pb合金の外に
Au,Ag,Ni等のメツキが多用されており、こ
れ等のメツキ性にも優れていること。 等が要求されている。 〔問題点を解決するための手段〕 本発明はこれに鑑み種々検討の結果、特に強
度、加工性、導電性(熱伝導性)、耐食性、耐熱
性等が優れ、小型化された精密部品、特に半導体
(IC、トランジスター等)のリードフレームやコ
ネクター等に適した電子機器用銅合金を開発した
ものである。 即ち本発明の一つは、Sn4.0wt%(以下wt%を
%と略記)を超え7.0%以下と、Ni,Co,Crの何
れか1種又は2種以上を合計1.0〜6.0%(但しNi
は1.0%以上3.5%未満)と、Si0.2%を超え2.0%以
下とを含み、不可避的不純物の中にO2含有量を
50ppm以下、S含有量を20ppm以下、平均析出物
粒径を10μm以下とする、残部Cuと不可避的不純
物からなることを特徴とするもので、望ましくは
Ni1.0%以上3.5%未満、Co1.5%以下、Cr0.05〜
0.8%の範囲内で何れか1種又は2種以上を合計
1.0〜6.0%で(Ni+Co+Cr)/Si=2〜8とな
るように含み、O2含有量を30ppm以下、S含有
量を10ppm以下、平均析出物粒径を3μm以下と
する。 本発明の他の一つはSn4.0%を超え7.0%以下
と、Ni,Co,Crの何れか1種又は2種以上の合
計1.0〜6.0%(但しNiは1.0%以上3.5%未満)と、
Si0.2%を超え2.0%以下とを含み、更にZn5.0%以
下、Mn5.0%以下、Al2.0%以下、Fe2.0%以下、
Ti0.8%以下、Zr0.8%以下、Ag0.3%以下、
Mg0.3%以下、Be0.3%以下、In0.3%以下、
Ca0.3%以下、P0.3%以下、B0.3%以下、Y0.3%
以下、La0.3%以下、Te0.3%以下、Ce0.3%以下
の範囲内で何れか1種又は2種以上を合計5.0%
以下含み、不可避的不純物中のO2含有量を
50ppm以下、S含有量を20ppm以下、平均析出物
粒径を10μm以下とする、残部Cuと不可避的不純
物からなることを特徴とするもので、望ましくは
Ni1.0%以上3.5%未満、Co1.5%以下、Cr0.05〜
0.8%の範囲内で何れか1種又は2種以上を合計
1.0〜6.0%で(Ni+Co+Cr)/Si=2〜8とな
るように含み、O2含有量を30ppm以下、S含有
量を10ppm以下、平均析出物粒径を3μm以下と
する。 上記本発明合金は上記の組成に配合して溶解鋳
造した鋳塊に熱間加工と冷間加工を施して造られ
る。例えば鋳塊を700〜1000℃に加熱して熱間圧
延又は熱間押出を行ない、650℃以上で加工を終
了し、直ちに水冷し、望ましくは10℃/sec以上
の速度で400℃以下まで冷却する。これをミーリ
ング、シエービング又は酸洗により表面を清浄化
してから冷間圧延、引抜等の加工を施してから
350〜700℃で少なくとも5分以上の加熱処理と、
冷間加工を組み合せて仕上げられる。また最終の
冷間加工後に200〜550℃の調質焼鈍、テンシヨン
レベラー、テンシヨンアニーリング等と組み合せ
ることにより、より高い特性を得ることが可能で
ある。更に本発明合金は鋳塊を直接冷間加工して
から熱処理することも可能である。 〔作用〕 本発明銅合金は組成にもよるが、強度50〜100
Kg/mm2、伸び3〜20%、導電率10〜40%IACSの
特性を示す。このような本発明銅合金はCu−Sn
均一固溶合金マトリツクスにNi,Co,Crの硅素
化合物、即ちNixSiy,CoxSiy,CrxSiyが分散析出
し、強度の向上と導電率の向上を可能にする。特
にCrは一部メタリツクCr単体として析出する。
しかして本発明銅合金の組成を上記の如く限定し
たのは下記の理由によるものである。 Sn含有量を上記の如く限定したのは、含有量
が下限未満では強度が不十分であり、上限を越え
るとより大きな強度が得られず、不経済であるば
かりか、過剰なSnのために熱間加工性が低下し、
生産性に重大な障害となる。 Ni,Co,Cr群とSiは化学量論比で化合析出す
るので、両者の比(重量)は約2〜8:1の範囲
とすることが望ましく、遊離した未化合のSiや
Ni,Coは導電率を低下したり、半田接合強度に
有害である。Crはこの点において有利であるが、
強度向上の効果はNiより少ない。しかしてSi含
有量とNi,Co,Crの何れか1種又は2種以上の
合計含有量を上記の如く限定したのは、それぞれ
下限未満では十分な効果が得られず、上限を越え
ると高温度での加工性を阻害して不都合となるば
かりか、半田濡れ性等が低下するためである。特
にNi含有量を1.0%以上3.5%未満、Co含有量を
1.5%以下、Cr含有量を0.05〜0.8%とすることが
望ましく、NiはSiとの共添による強化が大きく、
下限未満ではその効果がなく、上限を越えると熱
間加工性や半田付け性を低下する。CrはNi程で
はないが強化すると共に、熱間圧延性や耐熱性を
向上するも、下限未満ではその効果がなく、上限
を越えると鋳造性を著しく悪化し、生産性を害
し、コスト高となり易い。CoはNi程ではないが
強化するも高価なコストを加味するとコストパフ
オーマンスに劣る。しかし耐熱性特に高温におけ
る結晶粗大化を防止するのに極めて有効で、実用
上1.5%以下の範囲で添加することが望ましい。 次にO2含有量を5ppm以下としたのは、CrやSi
等の酸化物発生によるメツキ密着性や強度劣化を
抑制するためで、望ましくは30ppm以下が良い。
S含有量を20ppm以下としたのは、Sは結晶粒界
に濃化することにより、熱間加工性を著しく低下
させるためで、望ましくは10ppm以下が良い。 また平均析出物粒径を10μm以下としたのは、
化合物析出物の粒径は小さい程強度向上に有効で
あり、粒径が10μmを越えると加工性やメツキ密
着性を低下するためで、望ましくは3μm以下が
良い。 次にZn,Mn,Al,Fe,Ti,Zr,Ag,Mg,
Be,In,Ca,P,B,Y,La,Te,Ce(以下第
3元素と略記)の添加は何れも脱酸剤として作用
し、合金の加工性を初め諸特性を改善する。更に
Zn,Mn,Ag,Mg,Caは熱間加工性を良好にす
ると共に、半田接合強度やSn,Sn−Pb合金メツ
キの密着性の長期安定性を向上する。またAl,
Fe,Ti,Zr,Be,In,P,B,Y,La,Te,
Ceは、結晶の粗大成長を抑制し、曲げ加工性を
向上する。しかしてこれ等第3元素の含有量を上
記の如く限定したのは、これを越えて含有せしせ
ると導電率や熱間加工を含む加工性の低下を招く
と共に健全な鋳塊を得ることが困難となり、更に
はメツキ密着性や応力腐食割れ感受性を悪化させ
るためである。 尚半導体素子用のリード材では半導体素子が小
型化されるに従い、リード材も薄肉化されるた
め、それに伴う強度の向上が望まれているが、他
方良好な放熱性も信頼性の面から要求されてお
り、その両者は満足するためにはSn含有量を2.0
〜5.0%と限定することが望ましい。一方電子・
電気機器のコネクター、ケツト、スプリング、端
子等では実装密度の向上や小型化が強く望まれ、
薄肉化が進むものと考えられ、その場合高い強度
を持つことが不可欠の要素であり、そのためには
Sn含有量を2.5〜7.0%と限定することが望まし
い。 〔実施例〕 以下本発明を実施例について詳細に説明する。 実施例 (1) 第1表に示す合金組成に配合して溶解し、水冷
金型に鋳造して厚さ40mm、幅80mm、長さ250mmの
鋳塊とした。これを約850℃に加熱して厚さ6mm
まで熱間圧延し、直ちに水冷した。尚熱間圧延上
り温度は約680℃であつた。これを酸洗してから
厚さ1.2mmまで冷間圧延し、次に600℃で2時間加
熱処理した後、厚さ0.4mmまで冷間圧延し、更に
550℃で2時間加熱処理後、厚さ0.25mmまで冷間
圧延した。 これ等について平均粒径、引張強さ、伸び、導
電率、曲げ率、半田接合強度、応力腐食割れ性、
Agメツキ性を調べた。その結果を従来合金であ
るリン青銅(Sn8.0%、P0.1%、Cu残部)及び
C195(Fe1.5%、Sn0.6%、Co0.8%、P0.09%、Cu
残部)と比較して第2表に示す。 尚曲げ性は各種曲げ半径(R)の90゜ダイスに
より折り曲げ、40倍の検鏡により割れの有無を判
定し、割れない最少のR/t(tは板厚)を求め
た。曲げ軸は圧延方向と垂直方向とした。半田接
合強度は直径9mmの面積にリード線を半田付けし
た後150℃の温度で300時間エージングした後、プ
ルテストを行なつて接合強度を求めた。応力腐食
割れはJIS C 8306に基づき、アンモニア3vol%
の雰囲気中にて30Kg/mm2の引張荷重をかけた定荷
重試験を行ない、割れが発生するまでの時間を測
定した。 Agメツキ性は表面の約1μmの厚さをエツチン
グ後、下記浴を用いてAgストライクメツキと厚
さ5μmのAgメツキを施し、これを475℃に5分間
大気加熱処理した後脹れの有無を調べた。 Agストライクメツキ AgCH 30g/ KCN 60g/ 電流密度 5A/dm2 時間 15sec Agメツキ AgCH 37g/ KCN 58g/ K2CO3 25g/ 電流密度 1A/dm2
[Industrial Application Field] The present invention relates to an improved copper alloy for electronic devices,
In particular, strength, workability, electrical conductivity (thermal conductivity), corrosion resistance,
It has excellent heat resistance and is suitable for manufacturing miniaturized precision parts. [Conventional technology] Electronic equipment, especially semiconductors (IC, transistors)
Copper alloys with excellent strength, workability, corrosion resistance, and conductivity are required for leads, connectors, switches, contact springs, etc. Cu-Be alloys and Cu-Ti alloys with excellent strength are known as such alloys, but these are expensive and Cu-Ni-
Sn-based spinodal alloys have low electrical conductivity of less than 10% IACS and poor workability, and the same is true for Cu-Ni-Al alloys. In addition, Corson alloys, such as Cu-Ni-Si, are alloys that have both strength and conductivity, but in order to obtain these properties, a combination of solution treatment and aging is essential, and they tend to be expensive. Furthermore, this alloy has a serious drawback as a copper alloy for electronic devices in that its bondability with solder (Sn and Sn-Pb alloys) deteriorates over time, impairing reliability. By adding Mg to Corson alloy, Cu-Ni-Si-
Although it is disclosed in US Pat. No. 4,594,221 that various properties are improved as a Mg-based
is an easily oxidizable element and requires atmospheric melting and casting, which increases costs. Furthermore, it was reported in Japanese Patent Publication No. 124254/1983 and Japanese Patent Publication No. 60/1989 that Cu-Ni-Si-Sn alloy, which is a Corson alloy with Sn added, is suitable for terminals, connectors, and lead materials.
Although it is disclosed in Japanese Patent No. 43448, it is not sufficient to meet the required properties desired for these uses, and it is necessary to improve strength, workability, solderability, and plating adhesion. The phosphor bronze for springs that is currently widely used is 60
Although it has a strength of ~80Kg/ mm2 , its electrical conductivity is ~10~
It has a low IACS of 15%, and it is a major practical drawback in terms of aging deterioration of solder joint strength and susceptibility to corrosion cracking. Therefore, Cu-Fe alloys such as C194
Alloys and C195 alloys are used in some cases, but their use is limited because their strength is around 45 to 65 kg/mm 2 and their workability is poor. [Problems to be Solved by the Invention] In recent years, electronic devices have become smaller and more highly integrated, and it is strongly desired that Cu alloys used in these devices have improved strength and conductivity. In addition, it is inexpensive for large quantities, and in order to meet the trend toward surface mounting, solder joint strength and adhesion reliability of Sn and Sn-Pb alloy plating are also required. In order to meet these demands and replace conventional alloys, alloys with higher performance and lower cost are required. (1) Alloys with a higher balance of strength and electrical conductivity, for example, strength 50-100 Kg/mm 2 and electrical conductivity 10-
Having the characteristics of 30% IACS. (2) It is cheap in terms of cost, for example, the alloy components are cheap and the manufacturing process is simple. (3) Excellent workability, corrosion resistance, and stress corrosion cracking resistance. (4) The solder joint strength and the adhesion of Sn and Sn-Pb alloy plating are stable over a long period of time. (5) In addition to Sn and Sn-Pb alloys for electronic equipment applications,
Plating materials such as Au, Ag, and Ni are often used, and the plating properties of these materials are also excellent. etc. are required. [Means for Solving the Problems] In view of this, the present invention has been developed as a result of various studies, and has been developed to provide a miniaturized precision component that has particularly excellent strength, workability, electrical conductivity (thermal conductivity), corrosion resistance, heat resistance, etc. We have developed a copper alloy for electronic devices that is especially suitable for semiconductor (IC, transistor, etc.) lead frames and connectors. That is, one of the aspects of the present invention is that Sn exceeds 4.0 wt% (hereinafter wt% is abbreviated as %) and 7.0% or less, and any one or more of Ni, Co, and Cr is contained in a total of 1.0 to 6.0% (however, Ni
1.0% or more and less than 3.5%) and more than 0.2% and less than 2.0% Si, and O 2 content is included in the unavoidable impurities.
50ppm or less, the S content is 20ppm or less, and the average precipitate particle size is 10μm or less, with the balance consisting of Cu and unavoidable impurities, preferably
Ni1.0% or more and less than 3.5%, Co1.5% or less, Cr0.05~
Total of one or more types within a range of 0.8%
It is contained so that (Ni+Co+Cr)/Si=2 to 8 at 1.0 to 6.0%, the O 2 content is 30 ppm or less, the S content is 10 ppm or less, and the average precipitate particle size is 3 μm or less. Another aspect of the present invention is Sn more than 4.0% and less than 7.0%, and a total of 1.0 to 6.0% of any one or more of Ni, Co, and Cr (however, Ni is 1.0% to less than 3.5%) and,
Contains more than 0.2% Si and 2.0% or less, and further Zn 5.0% or less, Mn 5.0% or less, Al 2.0% or less, Fe 2.0% or less,
Ti0.8% or less, Zr0.8% or less, Ag0.3% or less,
Mg 0.3% or less, Be 0.3% or less, In 0.3% or less,
Ca0.3% or less, P0.3% or less, B0.3% or less, Y0.3%
Below, any one or two or more types within the range of La 0.3% or less, Te 0.3% or less, Ce 0.3% or less for a total of 5.0%
The O 2 content in unavoidable impurities, including:
50ppm or less, the S content is 20ppm or less, and the average precipitate particle size is 10μm or less, with the balance consisting of Cu and unavoidable impurities, preferably
Ni1.0% or more and less than 3.5%, Co1.5% or less, Cr0.05~
Total of one or more types within a range of 0.8%
It is contained so that (Ni+Co+Cr)/Si=2 to 8 at 1.0 to 6.0%, the O 2 content is 30 ppm or less, the S content is 10 ppm or less, and the average precipitate particle size is 3 μm or less. The alloy of the present invention is produced by hot working and cold working an ingot that has been melted and cast with the above composition. For example, the ingot is heated to 700 to 1000℃, hot rolled or hot extruded, finished at 650℃ or higher, immediately cooled with water, and preferably cooled to 400℃ or lower at a rate of 10℃/sec or higher. do. The surface is cleaned by milling, shaving, or pickling, and then processed by cold rolling, drawing, etc.
Heat treatment at 350-700℃ for at least 5 minutes,
Finished using a combination of cold working. Furthermore, higher properties can be obtained by combining heat annealing at 200 to 550°C, tension leveler, tension annealing, etc. after the final cold working. Furthermore, the alloy of the present invention can be directly cold worked into an ingot and then heat treated. [Function] The copper alloy of the present invention has a strength of 50 to 100, depending on the composition.
Kg/mm 2 , elongation 3-20%, electrical conductivity 10-40% IACS properties. Such a copper alloy of the present invention is Cu-Sn.
Silicon compounds of Ni, Co, and Cr, namely Ni x Si y , Co x Si y , and Cr x Si y , are dispersed and precipitated in the uniform solid solution alloy matrix, making it possible to improve strength and conductivity. Particularly, Cr is partially precipitated as metallic Cr alone.
However, the reason why the composition of the copper alloy of the present invention is limited as described above is as follows. The reason for limiting the Sn content as above is that if the content is less than the lower limit, the strength is insufficient, and if it exceeds the upper limit, greater strength cannot be obtained, which is not only uneconomical, but also due to excessive Sn. Hot workability decreases,
Serious impediment to productivity. Since Ni, Co, Cr groups and Si are combined and precipitated in a stoichiometric ratio, it is desirable that the ratio (weight) of the two is in the range of about 2 to 8:1, and free uncombined Si and
Ni and Co reduce conductivity and are harmful to solder joint strength. Cr has an advantage in this respect, but
The strength improvement effect is less than that of Ni. However, the reason why the Si content and the total content of one or more of Ni, Co, and Cr are limited as above is that sufficient effects cannot be obtained when each is below the lower limit, and when the upper limit is exceeded, the content is high. This is because not only is this inconvenient because it impedes workability at high temperatures, but also solder wettability and the like are reduced. In particular, the Ni content should be 1.0% or more and less than 3.5%, and the Co content should be reduced.
It is desirable that the Cr content be 1.5% or less and the Cr content be 0.05 to 0.8%.
If it is less than the lower limit, there is no effect, and if it exceeds the upper limit, hot workability and solderability will be reduced. Although Cr strengthens the steel and improves hot rolling properties and heat resistance, although it is not as strong as Ni, it has no effect below the lower limit, and when it exceeds the upper limit, it significantly deteriorates castability, impairs productivity, and increases costs. easy. Although Co is not as strong as Ni, it is inferior in cost performance when the high cost is taken into consideration. However, it is extremely effective for heat resistance, especially for preventing crystal coarsening at high temperatures, and for practical purposes, it is desirable to add it within a range of 1.5% or less. Next, the O 2 content was set to 5 ppm or less because of Cr and Si.
This is to suppress deterioration of plating adhesion and strength due to the generation of oxides such as oxides, and it is preferably 30 ppm or less.
The reason why the S content is set to 20 ppm or less is that S condenses at grain boundaries and significantly reduces hot workability, and is preferably 10 ppm or less. In addition, the average precipitate particle size was set to 10 μm or less because
The smaller the particle size of the compound precipitate, the more effective it is in improving strength, and if the particle size exceeds 10 μm, workability and plating adhesion will deteriorate, so it is preferably 3 μm or less. Next, Zn, Mn, Al, Fe, Ti, Zr, Ag, Mg,
The addition of Be, In, Ca, P, B, Y, La, Te, and Ce (hereinafter abbreviated as the third element) all act as deoxidizers and improve the workability and other properties of the alloy. Furthermore
Zn, Mn, Ag, Mg, and Ca improve hot workability and improve long-term stability of solder joint strength and adhesion of Sn and Sn-Pb alloy plating. Also, Al,
Fe, Ti, Zr, Be, In, P, B, Y, La, Te,
Ce suppresses coarse crystal growth and improves bending workability. However, the reason for limiting the content of these third elements as mentioned above is that if the content exceeds this limit, it will lead to a decrease in the conductivity and workability including hot working, and at the same time, it is difficult to obtain a sound ingot. This is because it becomes difficult to maintain the plating and further deteriorates plating adhesion and stress corrosion cracking susceptibility. As semiconductor elements become smaller, lead materials for semiconductor devices also become thinner, so improvements in strength are desired, but good heat dissipation is also required from a reliability perspective. In order to satisfy both of these conditions, the Sn content must be reduced to 2.0.
It is desirable to limit it to ~5.0%. On the other hand, electronic
There is a strong desire for higher packaging density and smaller size for electrical equipment connectors, sockets, springs, terminals, etc.
It is thought that walls will continue to become thinner, and in that case, having high strength is an essential element.
It is desirable to limit the Sn content to 2.5-7.0%. [Examples] The present invention will be described in detail below with reference to Examples. Example (1) The alloy composition shown in Table 1 was blended and melted, and cast into a water-cooled mold to form an ingot with a thickness of 40 mm, width of 80 mm, and length of 250 mm. Heat this to about 850℃ and make it 6mm thick.
It was hot-rolled to 100% and immediately cooled in water. The temperature at the end of hot rolling was approximately 680°C. This was pickled, cold rolled to a thickness of 1.2mm, then heat treated at 600℃ for 2 hours, cold rolled to a thickness of 0.4mm, and further
After heat treatment at 550°C for 2 hours, it was cold rolled to a thickness of 0.25mm. Regarding these, average particle size, tensile strength, elongation, electrical conductivity, bending ratio, solder joint strength, stress corrosion cracking resistance,
Ag plating property was investigated. The results were compared to the conventional alloy phosphor bronze (Sn8.0%, P0.1%, remainder Cu) and
C195 (Fe1.5%, Sn0.6%, Co0.8%, P0.09%, Cu
Table 2 shows a comparison with the remainder). The bendability was determined by bending using a 90° die with various bending radii (R), determining the presence or absence of cracks using a 40x magnification microscope, and determining the minimum R/t without cracking (t is the plate thickness). The bending axis was perpendicular to the rolling direction. The solder joint strength was determined by soldering a lead wire to an area of 9 mm in diameter, aging it at a temperature of 150°C for 300 hours, and then performing a pull test. Stress corrosion cracking is based on JIS C 8306, ammonia 3vol%
A constant load test was conducted under a tensile load of 30 kg/mm 2 in an atmosphere of 30 kg/mm 2 , and the time until cracking occurred was measured. Ag plating properties were determined by etching the surface to a thickness of about 1 μm, then applying Ag strike plating and 5 μm thick Ag plating using the following bath, and then heating it at 475°C for 5 minutes in the air, and then checking for swelling. Examined. Ag Strike Metsuki AgCH 30g/ KCN 60g/ Current Density 5A/dm 2 hours 15sec Ag Strike Metsuki AgCH 37g/ KCN 58g/ K 2 CO 3 25g/ Current Density 1A/dm 2

【表】【table】

【表】【table】

【表】 第1表及び第2表から明らかなように本発明合
金No.1〜3は何れも従来合金であるC195(No.9)
及びリン青銅(No.10)と比較し、全ての特性にお
いて満足できることが判る。 これに対しSn含有量の少ない比較合金No.4で
は引張強さが不足し、Sn含有量の多い比較合金
No.5では加工性が悪く、圧延加工を中止した。ま
たSi含有量とNi含有量が少ない比較合金No.6で
は引張強さが不十分なばかりか、応力腐食割れ感
受性が高く、Si含有量とNi含有量の多い比較合
金No.7では加工性が悪く、圧延加工を中止した。
またO2含有量の多い比較合金No.8では強度の低
下やメツキ密着性、曲げ性も低下しており、析出
粒径も大きくなつている。 実施例 (2) 第3表に示す合金組成に配合し、実施例(1)と同
様にして厚さ0.25mmとし、これ等について実施例
(1)と同様にして平均粒径、引張強さ、伸び、導電
率、曲げ率、半田接合強度、応力腐食割れ、Ag
メツキ性を調べた。その結果を従来合金であるリ
ン青銅(Sn8%、P0.1%、Cu残部)及びC195
(Fe1.5%、Sn0.6%、Co0.8%、P0.09%、Cu残
部)と比較して第4表に示す。
[Table] As is clear from Tables 1 and 2, alloys Nos. 1 to 3 of the present invention are all C195 (No. 9), which is a conventional alloy.
It is found that all properties are satisfactory when compared with phosphor bronze (No. 10) and phosphor bronze (No. 10). On the other hand, comparative alloy No. 4 with a low Sn content lacks tensile strength, and comparative alloy No. 4 with a high Sn content lacks tensile strength.
No. 5 had poor workability, and rolling was discontinued. Comparative alloy No. 6, which has low Si and Ni contents, not only has insufficient tensile strength but also has high stress corrosion cracking susceptibility, while comparative alloy No. 7, which has high Si and Ni contents, has poor workability. The rolling process was discontinued due to poor performance.
Comparative alloy No. 8, which has a high O 2 content, had a decrease in strength, plating adhesion, and bendability, and the precipitate grain size was also large. Example (2) The alloy composition shown in Table 3 was blended, and the thickness was 0.25 mm in the same manner as in Example (1).
Same as (1), average particle size, tensile strength, elongation, electrical conductivity, bending ratio, solder joint strength, stress corrosion cracking, Ag
We investigated the stickability. The results were compared to conventional alloys of phosphor bronze (Sn8%, P0.1%, remainder Cu) and C195.
(1.5% Fe, 0.6% Sn, 0.8% Co, 0.09% P, remainder of Cu) is shown in Table 4.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

このように本発明によれば、従来のリン青銅の
特性を大幅に上回る高性能を有するもので、電子
機器の小型化、高密度化、高信頼性化を可能にす
る等工業上顕著な効果を奏するものである。
As described above, the present invention has high performance that greatly exceeds the characteristics of conventional phosphor bronze, and has remarkable industrial effects such as making it possible to miniaturize, increase density, and improve reliability of electronic equipment. It is something that plays.

Claims (1)

【特許請求の範囲】 1 Sn4.0wt%を超え7.0wt%以下と、Ni,Co,
Crの何れか1種又は2種以上を合計1.0〜6.0wt%
(但しNiは1.0wt%以上3.5wt%未満)と、
Si0.2wt%を超え2.0wt%以下とを含み、不可避的
不純物中のO2含有量を50ppm以下、S含有量を
20ppm以下、平均析出物粒径を10μm以下とす
る、残部Cuと不可避的不純物からなる電子機器
用銅合金。 2 Ni1.0wt%以上3.5wt%未満、Co1.5wt%以
下、Cr0.05〜0.8wt%の範囲内で何れか1種又は
2種以上を合計1.0〜6.0wt%で(Ni+Co+
Cr)/Si=2〜8となるように含み、O2含有量
を30ppm以下、S含有量を10ppm以下、平均析出
物粒径を3μm以下とする特許請求の範囲第1項
記載の電子機器用銅合金。 3 Sn4.0wt%を超え7.0wt%以下と、Ni,Co,
Crの何れか1種又は2種以上を合計1.0〜6.0wt%
(但しNiは1.0wt%以上3.5wt%未満)と、
Si0.2wt%を超え2.0wt%以下とを含み、更に
Zn5.0wt%以下、Mn5.0wt%以下、Al2.0wt%以
下、Fe2.0wt%以下、Ti0.8wt%以下、Zr0.8wt%
以下、Ag0.3wt%以下、Mg0.3wt%以下、
Be0.3wt%以下、In0.3wt%以下、Ca0.3wt%以
下、P0.3wt%以下、B0.3wt%以下、Y0.3wt%以
下、La0.3wt%以下、Te0.3wt%以下、Ce0.3wt
%以下の範囲内で何れか1種又は2種以上を合計
5.0wt%以下含み、不可避的不純物中のO2含有量
を50ppm以下、S含有量を20ppm以下、平均析出
物粒径を10μm以下とする、残部Cuと不可避的不
純物からなる電子機器用銅合金。 4 Ni1.0wt%以上3.5wt%未満、Co1.5wt%以
下、Cr0.05〜0.8wt%の範囲内で何れか1種又は
2種以上を合計1.0〜6.0wt%で(Ni+Co+
Cr)/Si=2〜8となるように含み、O2含有量
を30ppm以下、S含有量を10ppm以下、平均析出
物粒径を3μm以下とする特許請求の範囲第3項
記載の電子機器用銅合金。
[Claims] 1 Sn more than 4.0wt% and 7.0wt% or less, Ni, Co,
A total of 1.0 to 6.0 wt% of one or more of Cr
(However, Ni is 1.0wt% or more and less than 3.5wt%)
Contains more than 0.2wt% Si and less than 2.0wt%, O 2 content in unavoidable impurities less than 50ppm, and S content less than 50ppm.
A copper alloy for electronic devices consisting of Cu and unavoidable impurities, with an average precipitate particle size of 20ppm or less and 10μm or less. 2 Ni 1.0 wt% or more and less than 3.5 wt%, Co 1.5 wt% or less, and Cr 0.05 to 0.8 wt%, with a total of 1.0 to 6.0 wt% (Ni+Co+
Cr)/Si=2 to 8, O 2 content is 30 ppm or less, S content is 10 ppm or less, and the average precipitate particle size is 3 μm or less. Copper alloy for use. 3 Sn over 4.0wt% and 7.0wt% or less, Ni, Co,
A total of 1.0 to 6.0 wt% of one or more of Cr
(However, Ni is 1.0wt% or more and less than 3.5wt%)
Contains more than 0.2wt% Si and less than 2.0wt%, and further
Zn5.0wt% or less, Mn5.0wt% or less, Al2.0wt% or less, Fe2.0wt% or less, Ti0.8wt% or less, Zr0.8wt%
Below, Ag0.3wt% or less, Mg0.3wt% or less,
Be 0.3wt% or less, In 0.3wt% or less, Ca 0.3wt% or less, P 0.3wt% or less, B 0.3wt% or less, Y 0.3wt% or less, La 0.3wt% or less, Te 0.3wt% or less, Ce0. 3wt
Total of any one type or two or more types within the range of % or less
A copper alloy for electronic devices, containing 5.0wt% or less, O 2 content in inevitable impurities of 50ppm or less, S content of 20ppm or less, and average precipitate particle size of 10μm or less, the balance being Cu and inevitable impurities. . 4 Any one or more of Ni 1.0 wt% or more and less than 3.5 wt%, Co 1.5 wt% or less, and Cr 0.05 to 0.8 wt% in a total of 1.0 to 6.0 wt% (Ni + Co +
Cr)/Si=2 to 8, the electronic device has an O 2 content of 30 ppm or less, a S content of 10 ppm or less, and an average precipitate particle size of 3 μm or less. Copper alloy for use.
JP18083787A 1987-07-20 1987-07-20 Copper alloy for electronic equipment Granted JPS6425929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18083787A JPS6425929A (en) 1987-07-20 1987-07-20 Copper alloy for electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18083787A JPS6425929A (en) 1987-07-20 1987-07-20 Copper alloy for electronic equipment

Publications (2)

Publication Number Publication Date
JPS6425929A JPS6425929A (en) 1989-01-27
JPH0425338B2 true JPH0425338B2 (en) 1992-04-30

Family

ID=16090224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18083787A Granted JPS6425929A (en) 1987-07-20 1987-07-20 Copper alloy for electronic equipment

Country Status (1)

Country Link
JP (1) JPS6425929A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10704822B2 (en) 2015-09-11 2020-07-07 The Sure Chill Company Limited Portable refrigeration apparatus
US10767916B2 (en) 2012-01-27 2020-09-08 The Sure Chill Company Limited Fluid reservoir refrigeration apparatus

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115538A (en) * 1989-09-29 1991-05-16 Tsuneaki Mikawa Oxide dispersion strengthened special copper alloy
US6074499A (en) * 1998-01-09 2000-06-13 South Dakoga School Of Mines And Technology Boron-copper-magnesium-tin alloy and method for making same
CN1063801C (en) * 1998-01-14 2001-03-28 浙江大学 High-strength high softening temp. copper based elastic material
US6379478B1 (en) * 1998-08-21 2002-04-30 The Miller Company Copper based alloy featuring precipitation hardening and solid-solution hardening
FR2838454B1 (en) * 2002-04-10 2005-04-15 Clal Msx CURABLE COPPER ALLOYS WITHOUT BERYLLIUM WITH HIGH MECHANICAL CHARACTERISTICS FOR DECOLLETING
CN1327017C (en) * 2004-07-22 2007-07-18 同济大学 Novel elastic conductive alloy and its preparing method
US20070253858A1 (en) * 2006-04-28 2007-11-01 Maher Ababneh Copper multicomponent alloy and its use
US20110048526A1 (en) * 2008-04-25 2011-03-03 Mitsubishi Materials Corporation Interconnector for a solar battery and material of the same
CN107858551B (en) * 2017-11-06 2020-03-31 江苏科技大学 High-strength high-conductivity wear-resistant nontoxic copper alloy for resistance welding electrode and preparation method thereof
CN111519061A (en) * 2019-02-01 2020-08-11 内蒙金属材料研究所 Rare earth doped Cu-Cr-Zr alloy material and preparation method and application thereof
CN110527860B (en) * 2019-09-23 2021-09-07 四川博鑫铜业有限公司 A kind of waste purple miscellaneous copper refining agent and its preparation method and application
CN111471888B (en) * 2020-05-09 2021-04-23 南京工程学院 Manufacturing method and application of nano-intermetallic compound dispersion-strengthened copper alloy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362833A (en) * 1986-09-02 1988-03-19 Furukawa Electric Co Ltd:The Copper alloy for lead for semiconductor
JPS6369933A (en) * 1986-09-11 1988-03-30 Furukawa Electric Co Ltd:The Copper alloy for electronic and electrical equipment and its production
JPS6386838A (en) * 1986-09-30 1988-04-18 Furukawa Electric Co Ltd:The Copper alloy for semiconductor lead
JPS63130739A (en) * 1986-11-20 1988-06-02 Nippon Mining Co Ltd High strength and high conductivity copper alloy for semiconductor device lead material or conductive spring material
JPS63274729A (en) * 1987-04-30 1988-11-11 Furukawa Electric Co Ltd:The Copper alloy for electronic and electrical appliance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6362833A (en) * 1986-09-02 1988-03-19 Furukawa Electric Co Ltd:The Copper alloy for lead for semiconductor
JPS6369933A (en) * 1986-09-11 1988-03-30 Furukawa Electric Co Ltd:The Copper alloy for electronic and electrical equipment and its production
JPS6386838A (en) * 1986-09-30 1988-04-18 Furukawa Electric Co Ltd:The Copper alloy for semiconductor lead
JPS63130739A (en) * 1986-11-20 1988-06-02 Nippon Mining Co Ltd High strength and high conductivity copper alloy for semiconductor device lead material or conductive spring material
JPS63274729A (en) * 1987-04-30 1988-11-11 Furukawa Electric Co Ltd:The Copper alloy for electronic and electrical appliance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10767916B2 (en) 2012-01-27 2020-09-08 The Sure Chill Company Limited Fluid reservoir refrigeration apparatus
US10704822B2 (en) 2015-09-11 2020-07-07 The Sure Chill Company Limited Portable refrigeration apparatus

Also Published As

Publication number Publication date
JPS6425929A (en) 1989-01-27

Similar Documents

Publication Publication Date Title
KR950004935B1 (en) Copper alloy for electronic instruments
US4822560A (en) Copper alloy and method of manufacturing the same
JPH0425338B2 (en)
JPS63130739A (en) High strength and high conductivity copper alloy for semiconductor device lead material or conductive spring material
JP2542370B2 (en) Copper alloy for semiconductor leads
JPH0830234B2 (en) High strength and high conductivity copper alloy
JPS6365039A (en) Copper alloy for electronic and electrical equipment
JPS62182240A (en) Conductive high-tensile copper alloy
JPH0440417B2 (en)
JPH09157775A (en) Copper alloy for electronic equipment
JPS60152646A (en) Material for lead frame for semiconductor
JPS6365748B2 (en)
JPH0830233B2 (en) High strength and high conductivity copper alloy
JPH0575812B2 (en)
JP2514926B2 (en) Copper alloy for electronic equipment with excellent solder joint strength and its manufacturing method
JPH0816255B2 (en) Copper alloy for electronic devices
JPH034612B2 (en)
JPH0219433A (en) Copper alloy for electronic equipment
JP2662209B2 (en) Copper alloy for electronic equipment with excellent plating adhesion and solder bondability and its manufacturing method
JPS6311418B2 (en)
JP2576853B2 (en) Copper alloy for electronic equipment with excellent solder joint strength and its manufacturing method
JPH10298679A (en) High strength and high conductivity copper alloy
JPH0356294B2 (en)
JP3391492B2 (en) High-strength, high-conductivity copper alloy for lead materials of semiconductor equipment and conductive spring materials
JPH06184666A (en) High strength and high electric conductivity copper alloy