JPH0425338B2 - - Google Patents
Info
- Publication number
- JPH0425338B2 JPH0425338B2 JP62180837A JP18083787A JPH0425338B2 JP H0425338 B2 JPH0425338 B2 JP H0425338B2 JP 62180837 A JP62180837 A JP 62180837A JP 18083787 A JP18083787 A JP 18083787A JP H0425338 B2 JPH0425338 B2 JP H0425338B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- content
- strength
- alloy
- alloys
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002245 particle Substances 0.000 claims description 13
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 12
- 229910052759 nickel Inorganic materials 0.000 claims description 11
- 239000002244 precipitate Substances 0.000 claims description 11
- 239000010949 copper Substances 0.000 claims description 8
- 239000012535 impurity Substances 0.000 claims description 8
- 229910052710 silicon Inorganic materials 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 229910052738 indium Inorganic materials 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 3
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 229910052727 yttrium Inorganic materials 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 description 38
- 239000000956 alloy Substances 0.000 description 38
- 238000007747 plating Methods 0.000 description 15
- 230000007797 corrosion Effects 0.000 description 11
- 238000005260 corrosion Methods 0.000 description 11
- 229910000679 solder Inorganic materials 0.000 description 10
- 238000005336 cracking Methods 0.000 description 9
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 7
- 229910000906 Bronze Inorganic materials 0.000 description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 6
- 238000005452 bending Methods 0.000 description 6
- 239000010974 bronze Substances 0.000 description 6
- 229910052804 chromium Inorganic materials 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000035882 stress Effects 0.000 description 6
- 229910052718 tin Inorganic materials 0.000 description 6
- 229910020816 Sn Pb Inorganic materials 0.000 description 5
- 229910020922 Sn-Pb Inorganic materials 0.000 description 5
- 229910008783 Sn—Pb Inorganic materials 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 230000032683 aging Effects 0.000 description 3
- 229910052790 beryllium Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 238000005482 strain hardening Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 229910017532 Cu-Be Inorganic materials 0.000 description 1
- 229910017755 Cu-Sn Inorganic materials 0.000 description 1
- 229910017827 Cu—Fe Inorganic materials 0.000 description 1
- 229910017870 Cu—Ni—Al Inorganic materials 0.000 description 1
- 229910017876 Cu—Ni—Si Inorganic materials 0.000 description 1
- 229910017927 Cu—Sn Inorganic materials 0.000 description 1
- 229910017945 Cu—Ti Inorganic materials 0.000 description 1
- 229910008355 Si-Sn Inorganic materials 0.000 description 1
- 229910006453 Si—Sn Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
Landscapes
- Conductive Materials (AREA)
Description
〔産業上の利用分野〕
本発明は改善された電子機器用銅合金に関し、
特に強度、加工性、導電性(熱伝導性)、耐食性、
耐熱性等が優れ、小型化された精密部品の製造に
適したものである。
〔従来の技術〕
電子機器、特に半導体(IC、トランジスター)
のリード、コネクター、スイツチ、接点ばね等に
は強度、加工性、耐食性及び導電性に優れた銅合
金が要求されている。このような合金として強度
が優れたCu−Be系合金やCu−Ti系合金が知られ
ているが、これ等は高価であり、またCu−Ni−
Sn系スピノーダル合金は導電率が10%IACS以下
と低く、加工性も乏しく、Cu−Ni−Al合金にお
いても同様である。
またCu−Ni−Siを代表するコルソン系合金は
強度と導電性を兼ね備えた合金であるが、この特
性を得るためには溶体化処理と時効の組み合せが
不可欠であり、高価となりやすい。更にこの合金
は半田(Sn及びSn−Pb合金)との接合性におい
て経時劣化を招き、信頼性を損ねるという電子機
器用銅合金としては重大な欠点を持つている。
コルソン系合金にMgを添加し、Cu−Ni−Si−
Mg系として諸特性の向上をはかることが米国特
許第4594221号明細書に開示されているが、Mg
は易酸化性元素であり、雰囲気溶解鋳造が不可欠
のためコストアツプの要因となる。更にコルソン
系合金にSnを添加したCu−Ni−Si−Sn系合金
が、端子、コネクター、リード材に適すること
が、特公昭58−124254号公報及び特公昭60−
43448号公報に開示されているが、これ等の用途
に望まれる要求特性に対して十分でなく、更に優
れた強度と加工性及び半田付け性やメツキ密着性
の向上が必要である。
現在多く用いられているばね用リン青銅は、60
〜80Kg/mm2程度の強度を有するも、導電率が10〜
15%IACSと低く、更に半田接合強度の経時劣化
や腐食割れ感受性の面から実用上大きな欠陥とな
つている。このためCu−Fe系合金、例えばC194
合金やC195合金が一部で利用されているが、強
度が45〜65Kg/mm2程度で加工性が劣るため用途が
限定されている。
〔発明が解決しようとする問題点〕
近年電子機器は小型化、高集積化の傾向にあ
り、これ等に使用するCu合金として強度と導電
性の向上が強く望まれている。また多量に使用す
るためには安価であり、面実装化の動向に応える
ためには、半田接合強度やSn,Sn−Pb合金メツ
キの密着信頼性も要求される。このような要求に
応えて従来合金に替えるには、より高性能で低コ
ストなパフオーマンスの合金が必要である。即ち
(1) 強度と導電率のより高度なバランスの取れた
合金、例えば強度50〜100Kg/mm2、導電率10〜
30%IACSの特性を有すること。
(2) コスト的に安いこと、例えば合金成分が安価
であると同時に、製造プロセスが単純化されて
いること。
(3) 加工性、耐食性、耐応力腐食割れ性に優れて
いること。
(4) 半田接合強度やSn,Sn−Pb合金メツキの密
着性が長期にわたり安定していること。
(5) 電子機器用途ではSn,Sn−Pb合金の外に
Au,Ag,Ni等のメツキが多用されており、こ
れ等のメツキ性にも優れていること。
等が要求されている。
〔問題点を解決するための手段〕
本発明はこれに鑑み種々検討の結果、特に強
度、加工性、導電性(熱伝導性)、耐食性、耐熱
性等が優れ、小型化された精密部品、特に半導体
(IC、トランジスター等)のリードフレームやコ
ネクター等に適した電子機器用銅合金を開発した
ものである。
即ち本発明の一つは、Sn4.0wt%(以下wt%を
%と略記)を超え7.0%以下と、Ni,Co,Crの何
れか1種又は2種以上を合計1.0〜6.0%(但しNi
は1.0%以上3.5%未満)と、Si0.2%を超え2.0%以
下とを含み、不可避的不純物の中にO2含有量を
50ppm以下、S含有量を20ppm以下、平均析出物
粒径を10μm以下とする、残部Cuと不可避的不純
物からなることを特徴とするもので、望ましくは
Ni1.0%以上3.5%未満、Co1.5%以下、Cr0.05〜
0.8%の範囲内で何れか1種又は2種以上を合計
1.0〜6.0%で(Ni+Co+Cr)/Si=2〜8とな
るように含み、O2含有量を30ppm以下、S含有
量を10ppm以下、平均析出物粒径を3μm以下と
する。
本発明の他の一つはSn4.0%を超え7.0%以下
と、Ni,Co,Crの何れか1種又は2種以上の合
計1.0〜6.0%(但しNiは1.0%以上3.5%未満)と、
Si0.2%を超え2.0%以下とを含み、更にZn5.0%以
下、Mn5.0%以下、Al2.0%以下、Fe2.0%以下、
Ti0.8%以下、Zr0.8%以下、Ag0.3%以下、
Mg0.3%以下、Be0.3%以下、In0.3%以下、
Ca0.3%以下、P0.3%以下、B0.3%以下、Y0.3%
以下、La0.3%以下、Te0.3%以下、Ce0.3%以下
の範囲内で何れか1種又は2種以上を合計5.0%
以下含み、不可避的不純物中のO2含有量を
50ppm以下、S含有量を20ppm以下、平均析出物
粒径を10μm以下とする、残部Cuと不可避的不純
物からなることを特徴とするもので、望ましくは
Ni1.0%以上3.5%未満、Co1.5%以下、Cr0.05〜
0.8%の範囲内で何れか1種又は2種以上を合計
1.0〜6.0%で(Ni+Co+Cr)/Si=2〜8とな
るように含み、O2含有量を30ppm以下、S含有
量を10ppm以下、平均析出物粒径を3μm以下と
する。
上記本発明合金は上記の組成に配合して溶解鋳
造した鋳塊に熱間加工と冷間加工を施して造られ
る。例えば鋳塊を700〜1000℃に加熱して熱間圧
延又は熱間押出を行ない、650℃以上で加工を終
了し、直ちに水冷し、望ましくは10℃/sec以上
の速度で400℃以下まで冷却する。これをミーリ
ング、シエービング又は酸洗により表面を清浄化
してから冷間圧延、引抜等の加工を施してから
350〜700℃で少なくとも5分以上の加熱処理と、
冷間加工を組み合せて仕上げられる。また最終の
冷間加工後に200〜550℃の調質焼鈍、テンシヨン
レベラー、テンシヨンアニーリング等と組み合せ
ることにより、より高い特性を得ることが可能で
ある。更に本発明合金は鋳塊を直接冷間加工して
から熱処理することも可能である。
〔作用〕
本発明銅合金は組成にもよるが、強度50〜100
Kg/mm2、伸び3〜20%、導電率10〜40%IACSの
特性を示す。このような本発明銅合金はCu−Sn
均一固溶合金マトリツクスにNi,Co,Crの硅素
化合物、即ちNixSiy,CoxSiy,CrxSiyが分散析出
し、強度の向上と導電率の向上を可能にする。特
にCrは一部メタリツクCr単体として析出する。
しかして本発明銅合金の組成を上記の如く限定し
たのは下記の理由によるものである。
Sn含有量を上記の如く限定したのは、含有量
が下限未満では強度が不十分であり、上限を越え
るとより大きな強度が得られず、不経済であるば
かりか、過剰なSnのために熱間加工性が低下し、
生産性に重大な障害となる。
Ni,Co,Cr群とSiは化学量論比で化合析出す
るので、両者の比(重量)は約2〜8:1の範囲
とすることが望ましく、遊離した未化合のSiや
Ni,Coは導電率を低下したり、半田接合強度に
有害である。Crはこの点において有利であるが、
強度向上の効果はNiより少ない。しかしてSi含
有量とNi,Co,Crの何れか1種又は2種以上の
合計含有量を上記の如く限定したのは、それぞれ
下限未満では十分な効果が得られず、上限を越え
ると高温度での加工性を阻害して不都合となるば
かりか、半田濡れ性等が低下するためである。特
にNi含有量を1.0%以上3.5%未満、Co含有量を
1.5%以下、Cr含有量を0.05〜0.8%とすることが
望ましく、NiはSiとの共添による強化が大きく、
下限未満ではその効果がなく、上限を越えると熱
間加工性や半田付け性を低下する。CrはNi程で
はないが強化すると共に、熱間圧延性や耐熱性を
向上するも、下限未満ではその効果がなく、上限
を越えると鋳造性を著しく悪化し、生産性を害
し、コスト高となり易い。CoはNi程ではないが
強化するも高価なコストを加味するとコストパフ
オーマンスに劣る。しかし耐熱性特に高温におけ
る結晶粗大化を防止するのに極めて有効で、実用
上1.5%以下の範囲で添加することが望ましい。
次にO2含有量を5ppm以下としたのは、CrやSi
等の酸化物発生によるメツキ密着性や強度劣化を
抑制するためで、望ましくは30ppm以下が良い。
S含有量を20ppm以下としたのは、Sは結晶粒界
に濃化することにより、熱間加工性を著しく低下
させるためで、望ましくは10ppm以下が良い。
また平均析出物粒径を10μm以下としたのは、
化合物析出物の粒径は小さい程強度向上に有効で
あり、粒径が10μmを越えると加工性やメツキ密
着性を低下するためで、望ましくは3μm以下が
良い。
次にZn,Mn,Al,Fe,Ti,Zr,Ag,Mg,
Be,In,Ca,P,B,Y,La,Te,Ce(以下第
3元素と略記)の添加は何れも脱酸剤として作用
し、合金の加工性を初め諸特性を改善する。更に
Zn,Mn,Ag,Mg,Caは熱間加工性を良好にす
ると共に、半田接合強度やSn,Sn−Pb合金メツ
キの密着性の長期安定性を向上する。またAl,
Fe,Ti,Zr,Be,In,P,B,Y,La,Te,
Ceは、結晶の粗大成長を抑制し、曲げ加工性を
向上する。しかしてこれ等第3元素の含有量を上
記の如く限定したのは、これを越えて含有せしせ
ると導電率や熱間加工を含む加工性の低下を招く
と共に健全な鋳塊を得ることが困難となり、更に
はメツキ密着性や応力腐食割れ感受性を悪化させ
るためである。
尚半導体素子用のリード材では半導体素子が小
型化されるに従い、リード材も薄肉化されるた
め、それに伴う強度の向上が望まれているが、他
方良好な放熱性も信頼性の面から要求されてお
り、その両者は満足するためにはSn含有量を2.0
〜5.0%と限定することが望ましい。一方電子・
電気機器のコネクター、ケツト、スプリング、端
子等では実装密度の向上や小型化が強く望まれ、
薄肉化が進むものと考えられ、その場合高い強度
を持つことが不可欠の要素であり、そのためには
Sn含有量を2.5〜7.0%と限定することが望まし
い。
〔実施例〕
以下本発明を実施例について詳細に説明する。
実施例 (1)
第1表に示す合金組成に配合して溶解し、水冷
金型に鋳造して厚さ40mm、幅80mm、長さ250mmの
鋳塊とした。これを約850℃に加熱して厚さ6mm
まで熱間圧延し、直ちに水冷した。尚熱間圧延上
り温度は約680℃であつた。これを酸洗してから
厚さ1.2mmまで冷間圧延し、次に600℃で2時間加
熱処理した後、厚さ0.4mmまで冷間圧延し、更に
550℃で2時間加熱処理後、厚さ0.25mmまで冷間
圧延した。
これ等について平均粒径、引張強さ、伸び、導
電率、曲げ率、半田接合強度、応力腐食割れ性、
Agメツキ性を調べた。その結果を従来合金であ
るリン青銅(Sn8.0%、P0.1%、Cu残部)及び
C195(Fe1.5%、Sn0.6%、Co0.8%、P0.09%、Cu
残部)と比較して第2表に示す。
尚曲げ性は各種曲げ半径(R)の90゜ダイスに
より折り曲げ、40倍の検鏡により割れの有無を判
定し、割れない最少のR/t(tは板厚)を求め
た。曲げ軸は圧延方向と垂直方向とした。半田接
合強度は直径9mmの面積にリード線を半田付けし
た後150℃の温度で300時間エージングした後、プ
ルテストを行なつて接合強度を求めた。応力腐食
割れはJIS C 8306に基づき、アンモニア3vol%
の雰囲気中にて30Kg/mm2の引張荷重をかけた定荷
重試験を行ない、割れが発生するまでの時間を測
定した。
Agメツキ性は表面の約1μmの厚さをエツチン
グ後、下記浴を用いてAgストライクメツキと厚
さ5μmのAgメツキを施し、これを475℃に5分間
大気加熱処理した後脹れの有無を調べた。
Agストライクメツキ
AgCH 30g/
KCN 60g/
電流密度 5A/dm2
時間 15sec
Agメツキ
AgCH 37g/
KCN 58g/
K2CO3 25g/
電流密度 1A/dm2
[Industrial Application Field] The present invention relates to an improved copper alloy for electronic devices,
In particular, strength, workability, electrical conductivity (thermal conductivity), corrosion resistance,
It has excellent heat resistance and is suitable for manufacturing miniaturized precision parts. [Conventional technology] Electronic equipment, especially semiconductors (IC, transistors)
Copper alloys with excellent strength, workability, corrosion resistance, and conductivity are required for leads, connectors, switches, contact springs, etc. Cu-Be alloys and Cu-Ti alloys with excellent strength are known as such alloys, but these are expensive and Cu-Ni-
Sn-based spinodal alloys have low electrical conductivity of less than 10% IACS and poor workability, and the same is true for Cu-Ni-Al alloys. In addition, Corson alloys, such as Cu-Ni-Si, are alloys that have both strength and conductivity, but in order to obtain these properties, a combination of solution treatment and aging is essential, and they tend to be expensive. Furthermore, this alloy has a serious drawback as a copper alloy for electronic devices in that its bondability with solder (Sn and Sn-Pb alloys) deteriorates over time, impairing reliability. By adding Mg to Corson alloy, Cu-Ni-Si-
Although it is disclosed in US Pat. No. 4,594,221 that various properties are improved as a Mg-based
is an easily oxidizable element and requires atmospheric melting and casting, which increases costs. Furthermore, it was reported in Japanese Patent Publication No. 124254/1983 and Japanese Patent Publication No. 60/1989 that Cu-Ni-Si-Sn alloy, which is a Corson alloy with Sn added, is suitable for terminals, connectors, and lead materials.
Although it is disclosed in Japanese Patent No. 43448, it is not sufficient to meet the required properties desired for these uses, and it is necessary to improve strength, workability, solderability, and plating adhesion. The phosphor bronze for springs that is currently widely used is 60
Although it has a strength of ~80Kg/ mm2 , its electrical conductivity is ~10~
It has a low IACS of 15%, and it is a major practical drawback in terms of aging deterioration of solder joint strength and susceptibility to corrosion cracking. Therefore, Cu-Fe alloys such as C194
Alloys and C195 alloys are used in some cases, but their use is limited because their strength is around 45 to 65 kg/mm 2 and their workability is poor. [Problems to be Solved by the Invention] In recent years, electronic devices have become smaller and more highly integrated, and it is strongly desired that Cu alloys used in these devices have improved strength and conductivity. In addition, it is inexpensive for large quantities, and in order to meet the trend toward surface mounting, solder joint strength and adhesion reliability of Sn and Sn-Pb alloy plating are also required. In order to meet these demands and replace conventional alloys, alloys with higher performance and lower cost are required. (1) Alloys with a higher balance of strength and electrical conductivity, for example, strength 50-100 Kg/mm 2 and electrical conductivity 10-
Having the characteristics of 30% IACS. (2) It is cheap in terms of cost, for example, the alloy components are cheap and the manufacturing process is simple. (3) Excellent workability, corrosion resistance, and stress corrosion cracking resistance. (4) The solder joint strength and the adhesion of Sn and Sn-Pb alloy plating are stable over a long period of time. (5) In addition to Sn and Sn-Pb alloys for electronic equipment applications,
Plating materials such as Au, Ag, and Ni are often used, and the plating properties of these materials are also excellent. etc. are required. [Means for Solving the Problems] In view of this, the present invention has been developed as a result of various studies, and has been developed to provide a miniaturized precision component that has particularly excellent strength, workability, electrical conductivity (thermal conductivity), corrosion resistance, heat resistance, etc. We have developed a copper alloy for electronic devices that is especially suitable for semiconductor (IC, transistor, etc.) lead frames and connectors. That is, one of the aspects of the present invention is that Sn exceeds 4.0 wt% (hereinafter wt% is abbreviated as %) and 7.0% or less, and any one or more of Ni, Co, and Cr is contained in a total of 1.0 to 6.0% (however, Ni
1.0% or more and less than 3.5%) and more than 0.2% and less than 2.0% Si, and O 2 content is included in the unavoidable impurities.
50ppm or less, the S content is 20ppm or less, and the average precipitate particle size is 10μm or less, with the balance consisting of Cu and unavoidable impurities, preferably
Ni1.0% or more and less than 3.5%, Co1.5% or less, Cr0.05~
Total of one or more types within a range of 0.8%
It is contained so that (Ni+Co+Cr)/Si=2 to 8 at 1.0 to 6.0%, the O 2 content is 30 ppm or less, the S content is 10 ppm or less, and the average precipitate particle size is 3 μm or less. Another aspect of the present invention is Sn more than 4.0% and less than 7.0%, and a total of 1.0 to 6.0% of any one or more of Ni, Co, and Cr (however, Ni is 1.0% to less than 3.5%) and,
Contains more than 0.2% Si and 2.0% or less, and further Zn 5.0% or less, Mn 5.0% or less, Al 2.0% or less, Fe 2.0% or less,
Ti0.8% or less, Zr0.8% or less, Ag0.3% or less,
Mg 0.3% or less, Be 0.3% or less, In 0.3% or less,
Ca0.3% or less, P0.3% or less, B0.3% or less, Y0.3%
Below, any one or two or more types within the range of La 0.3% or less, Te 0.3% or less, Ce 0.3% or less for a total of 5.0%
The O 2 content in unavoidable impurities, including:
50ppm or less, the S content is 20ppm or less, and the average precipitate particle size is 10μm or less, with the balance consisting of Cu and unavoidable impurities, preferably
Ni1.0% or more and less than 3.5%, Co1.5% or less, Cr0.05~
Total of one or more types within a range of 0.8%
It is contained so that (Ni+Co+Cr)/Si=2 to 8 at 1.0 to 6.0%, the O 2 content is 30 ppm or less, the S content is 10 ppm or less, and the average precipitate particle size is 3 μm or less. The alloy of the present invention is produced by hot working and cold working an ingot that has been melted and cast with the above composition. For example, the ingot is heated to 700 to 1000℃, hot rolled or hot extruded, finished at 650℃ or higher, immediately cooled with water, and preferably cooled to 400℃ or lower at a rate of 10℃/sec or higher. do. The surface is cleaned by milling, shaving, or pickling, and then processed by cold rolling, drawing, etc.
Heat treatment at 350-700℃ for at least 5 minutes,
Finished using a combination of cold working. Furthermore, higher properties can be obtained by combining heat annealing at 200 to 550°C, tension leveler, tension annealing, etc. after the final cold working. Furthermore, the alloy of the present invention can be directly cold worked into an ingot and then heat treated. [Function] The copper alloy of the present invention has a strength of 50 to 100, depending on the composition.
Kg/mm 2 , elongation 3-20%, electrical conductivity 10-40% IACS properties. Such a copper alloy of the present invention is Cu-Sn.
Silicon compounds of Ni, Co, and Cr, namely Ni x Si y , Co x Si y , and Cr x Si y , are dispersed and precipitated in the uniform solid solution alloy matrix, making it possible to improve strength and conductivity. Particularly, Cr is partially precipitated as metallic Cr alone.
However, the reason why the composition of the copper alloy of the present invention is limited as described above is as follows. The reason for limiting the Sn content as above is that if the content is less than the lower limit, the strength is insufficient, and if it exceeds the upper limit, greater strength cannot be obtained, which is not only uneconomical, but also due to excessive Sn. Hot workability decreases,
Serious impediment to productivity. Since Ni, Co, Cr groups and Si are combined and precipitated in a stoichiometric ratio, it is desirable that the ratio (weight) of the two is in the range of about 2 to 8:1, and free uncombined Si and
Ni and Co reduce conductivity and are harmful to solder joint strength. Cr has an advantage in this respect, but
The strength improvement effect is less than that of Ni. However, the reason why the Si content and the total content of one or more of Ni, Co, and Cr are limited as above is that sufficient effects cannot be obtained when each is below the lower limit, and when the upper limit is exceeded, the content is high. This is because not only is this inconvenient because it impedes workability at high temperatures, but also solder wettability and the like are reduced. In particular, the Ni content should be 1.0% or more and less than 3.5%, and the Co content should be reduced.
It is desirable that the Cr content be 1.5% or less and the Cr content be 0.05 to 0.8%.
If it is less than the lower limit, there is no effect, and if it exceeds the upper limit, hot workability and solderability will be reduced. Although Cr strengthens the steel and improves hot rolling properties and heat resistance, although it is not as strong as Ni, it has no effect below the lower limit, and when it exceeds the upper limit, it significantly deteriorates castability, impairs productivity, and increases costs. easy. Although Co is not as strong as Ni, it is inferior in cost performance when the high cost is taken into consideration. However, it is extremely effective for heat resistance, especially for preventing crystal coarsening at high temperatures, and for practical purposes, it is desirable to add it within a range of 1.5% or less. Next, the O 2 content was set to 5 ppm or less because of Cr and Si.
This is to suppress deterioration of plating adhesion and strength due to the generation of oxides such as oxides, and it is preferably 30 ppm or less.
The reason why the S content is set to 20 ppm or less is that S condenses at grain boundaries and significantly reduces hot workability, and is preferably 10 ppm or less. In addition, the average precipitate particle size was set to 10 μm or less because
The smaller the particle size of the compound precipitate, the more effective it is in improving strength, and if the particle size exceeds 10 μm, workability and plating adhesion will deteriorate, so it is preferably 3 μm or less. Next, Zn, Mn, Al, Fe, Ti, Zr, Ag, Mg,
The addition of Be, In, Ca, P, B, Y, La, Te, and Ce (hereinafter abbreviated as the third element) all act as deoxidizers and improve the workability and other properties of the alloy. Furthermore
Zn, Mn, Ag, Mg, and Ca improve hot workability and improve long-term stability of solder joint strength and adhesion of Sn and Sn-Pb alloy plating. Also, Al,
Fe, Ti, Zr, Be, In, P, B, Y, La, Te,
Ce suppresses coarse crystal growth and improves bending workability. However, the reason for limiting the content of these third elements as mentioned above is that if the content exceeds this limit, it will lead to a decrease in the conductivity and workability including hot working, and at the same time, it is difficult to obtain a sound ingot. This is because it becomes difficult to maintain the plating and further deteriorates plating adhesion and stress corrosion cracking susceptibility. As semiconductor elements become smaller, lead materials for semiconductor devices also become thinner, so improvements in strength are desired, but good heat dissipation is also required from a reliability perspective. In order to satisfy both of these conditions, the Sn content must be reduced to 2.0.
It is desirable to limit it to ~5.0%. On the other hand, electronic
There is a strong desire for higher packaging density and smaller size for electrical equipment connectors, sockets, springs, terminals, etc.
It is thought that walls will continue to become thinner, and in that case, having high strength is an essential element.
It is desirable to limit the Sn content to 2.5-7.0%. [Examples] The present invention will be described in detail below with reference to Examples. Example (1) The alloy composition shown in Table 1 was blended and melted, and cast into a water-cooled mold to form an ingot with a thickness of 40 mm, width of 80 mm, and length of 250 mm. Heat this to about 850℃ and make it 6mm thick.
It was hot-rolled to 100% and immediately cooled in water. The temperature at the end of hot rolling was approximately 680°C. This was pickled, cold rolled to a thickness of 1.2mm, then heat treated at 600℃ for 2 hours, cold rolled to a thickness of 0.4mm, and further
After heat treatment at 550°C for 2 hours, it was cold rolled to a thickness of 0.25mm. Regarding these, average particle size, tensile strength, elongation, electrical conductivity, bending ratio, solder joint strength, stress corrosion cracking resistance,
Ag plating property was investigated. The results were compared to the conventional alloy phosphor bronze (Sn8.0%, P0.1%, remainder Cu) and
C195 (Fe1.5%, Sn0.6%, Co0.8%, P0.09%, Cu
Table 2 shows a comparison with the remainder). The bendability was determined by bending using a 90° die with various bending radii (R), determining the presence or absence of cracks using a 40x magnification microscope, and determining the minimum R/t without cracking (t is the plate thickness). The bending axis was perpendicular to the rolling direction. The solder joint strength was determined by soldering a lead wire to an area of 9 mm in diameter, aging it at a temperature of 150°C for 300 hours, and then performing a pull test. Stress corrosion cracking is based on JIS C 8306, ammonia 3vol%
A constant load test was conducted under a tensile load of 30 kg/mm 2 in an atmosphere of 30 kg/mm 2 , and the time until cracking occurred was measured. Ag plating properties were determined by etching the surface to a thickness of about 1 μm, then applying Ag strike plating and 5 μm thick Ag plating using the following bath, and then heating it at 475°C for 5 minutes in the air, and then checking for swelling. Examined. Ag Strike Metsuki AgCH 30g/ KCN 60g/ Current Density 5A/dm 2 hours 15sec Ag Strike Metsuki AgCH 37g/ KCN 58g/ K 2 CO 3 25g/ Current Density 1A/dm 2
【表】【table】
【表】【table】
【表】
第1表及び第2表から明らかなように本発明合
金No.1〜3は何れも従来合金であるC195(No.9)
及びリン青銅(No.10)と比較し、全ての特性にお
いて満足できることが判る。
これに対しSn含有量の少ない比較合金No.4で
は引張強さが不足し、Sn含有量の多い比較合金
No.5では加工性が悪く、圧延加工を中止した。ま
たSi含有量とNi含有量が少ない比較合金No.6で
は引張強さが不十分なばかりか、応力腐食割れ感
受性が高く、Si含有量とNi含有量の多い比較合
金No.7では加工性が悪く、圧延加工を中止した。
またO2含有量の多い比較合金No.8では強度の低
下やメツキ密着性、曲げ性も低下しており、析出
粒径も大きくなつている。
実施例 (2)
第3表に示す合金組成に配合し、実施例(1)と同
様にして厚さ0.25mmとし、これ等について実施例
(1)と同様にして平均粒径、引張強さ、伸び、導電
率、曲げ率、半田接合強度、応力腐食割れ、Ag
メツキ性を調べた。その結果を従来合金であるリ
ン青銅(Sn8%、P0.1%、Cu残部)及びC195
(Fe1.5%、Sn0.6%、Co0.8%、P0.09%、Cu残
部)と比較して第4表に示す。[Table] As is clear from Tables 1 and 2, alloys Nos. 1 to 3 of the present invention are all C195 (No. 9), which is a conventional alloy.
It is found that all properties are satisfactory when compared with phosphor bronze (No. 10) and phosphor bronze (No. 10). On the other hand, comparative alloy No. 4 with a low Sn content lacks tensile strength, and comparative alloy No. 4 with a high Sn content lacks tensile strength.
No. 5 had poor workability, and rolling was discontinued. Comparative alloy No. 6, which has low Si and Ni contents, not only has insufficient tensile strength but also has high stress corrosion cracking susceptibility, while comparative alloy No. 7, which has high Si and Ni contents, has poor workability. The rolling process was discontinued due to poor performance.
Comparative alloy No. 8, which has a high O 2 content, had a decrease in strength, plating adhesion, and bendability, and the precipitate grain size was also large. Example (2) The alloy composition shown in Table 3 was blended, and the thickness was 0.25 mm in the same manner as in Example (1).
Same as (1), average particle size, tensile strength, elongation, electrical conductivity, bending ratio, solder joint strength, stress corrosion cracking, Ag
We investigated the stickability. The results were compared to conventional alloys of phosphor bronze (Sn8%, P0.1%, remainder Cu) and C195.
(1.5% Fe, 0.6% Sn, 0.8% Co, 0.09% P, remainder of Cu) is shown in Table 4.
【表】【table】
このように本発明によれば、従来のリン青銅の
特性を大幅に上回る高性能を有するもので、電子
機器の小型化、高密度化、高信頼性化を可能にす
る等工業上顕著な効果を奏するものである。
As described above, the present invention has high performance that greatly exceeds the characteristics of conventional phosphor bronze, and has remarkable industrial effects such as making it possible to miniaturize, increase density, and improve reliability of electronic equipment. It is something that plays.
Claims (1)
Crの何れか1種又は2種以上を合計1.0〜6.0wt%
(但しNiは1.0wt%以上3.5wt%未満)と、
Si0.2wt%を超え2.0wt%以下とを含み、不可避的
不純物中のO2含有量を50ppm以下、S含有量を
20ppm以下、平均析出物粒径を10μm以下とす
る、残部Cuと不可避的不純物からなる電子機器
用銅合金。 2 Ni1.0wt%以上3.5wt%未満、Co1.5wt%以
下、Cr0.05〜0.8wt%の範囲内で何れか1種又は
2種以上を合計1.0〜6.0wt%で(Ni+Co+
Cr)/Si=2〜8となるように含み、O2含有量
を30ppm以下、S含有量を10ppm以下、平均析出
物粒径を3μm以下とする特許請求の範囲第1項
記載の電子機器用銅合金。 3 Sn4.0wt%を超え7.0wt%以下と、Ni,Co,
Crの何れか1種又は2種以上を合計1.0〜6.0wt%
(但しNiは1.0wt%以上3.5wt%未満)と、
Si0.2wt%を超え2.0wt%以下とを含み、更に
Zn5.0wt%以下、Mn5.0wt%以下、Al2.0wt%以
下、Fe2.0wt%以下、Ti0.8wt%以下、Zr0.8wt%
以下、Ag0.3wt%以下、Mg0.3wt%以下、
Be0.3wt%以下、In0.3wt%以下、Ca0.3wt%以
下、P0.3wt%以下、B0.3wt%以下、Y0.3wt%以
下、La0.3wt%以下、Te0.3wt%以下、Ce0.3wt
%以下の範囲内で何れか1種又は2種以上を合計
5.0wt%以下含み、不可避的不純物中のO2含有量
を50ppm以下、S含有量を20ppm以下、平均析出
物粒径を10μm以下とする、残部Cuと不可避的不
純物からなる電子機器用銅合金。 4 Ni1.0wt%以上3.5wt%未満、Co1.5wt%以
下、Cr0.05〜0.8wt%の範囲内で何れか1種又は
2種以上を合計1.0〜6.0wt%で(Ni+Co+
Cr)/Si=2〜8となるように含み、O2含有量
を30ppm以下、S含有量を10ppm以下、平均析出
物粒径を3μm以下とする特許請求の範囲第3項
記載の電子機器用銅合金。[Claims] 1 Sn more than 4.0wt% and 7.0wt% or less, Ni, Co,
A total of 1.0 to 6.0 wt% of one or more of Cr
(However, Ni is 1.0wt% or more and less than 3.5wt%)
Contains more than 0.2wt% Si and less than 2.0wt%, O 2 content in unavoidable impurities less than 50ppm, and S content less than 50ppm.
A copper alloy for electronic devices consisting of Cu and unavoidable impurities, with an average precipitate particle size of 20ppm or less and 10μm or less. 2 Ni 1.0 wt% or more and less than 3.5 wt%, Co 1.5 wt% or less, and Cr 0.05 to 0.8 wt%, with a total of 1.0 to 6.0 wt% (Ni+Co+
Cr)/Si=2 to 8, O 2 content is 30 ppm or less, S content is 10 ppm or less, and the average precipitate particle size is 3 μm or less. Copper alloy for use. 3 Sn over 4.0wt% and 7.0wt% or less, Ni, Co,
A total of 1.0 to 6.0 wt% of one or more of Cr
(However, Ni is 1.0wt% or more and less than 3.5wt%)
Contains more than 0.2wt% Si and less than 2.0wt%, and further
Zn5.0wt% or less, Mn5.0wt% or less, Al2.0wt% or less, Fe2.0wt% or less, Ti0.8wt% or less, Zr0.8wt%
Below, Ag0.3wt% or less, Mg0.3wt% or less,
Be 0.3wt% or less, In 0.3wt% or less, Ca 0.3wt% or less, P 0.3wt% or less, B 0.3wt% or less, Y 0.3wt% or less, La 0.3wt% or less, Te 0.3wt% or less, Ce0. 3wt
Total of any one type or two or more types within the range of % or less
A copper alloy for electronic devices, containing 5.0wt% or less, O 2 content in inevitable impurities of 50ppm or less, S content of 20ppm or less, and average precipitate particle size of 10μm or less, the balance being Cu and inevitable impurities. . 4 Any one or more of Ni 1.0 wt% or more and less than 3.5 wt%, Co 1.5 wt% or less, and Cr 0.05 to 0.8 wt% in a total of 1.0 to 6.0 wt% (Ni + Co +
Cr)/Si=2 to 8, the electronic device has an O 2 content of 30 ppm or less, a S content of 10 ppm or less, and an average precipitate particle size of 3 μm or less. Copper alloy for use.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18083787A JPS6425929A (en) | 1987-07-20 | 1987-07-20 | Copper alloy for electronic equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18083787A JPS6425929A (en) | 1987-07-20 | 1987-07-20 | Copper alloy for electronic equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6425929A JPS6425929A (en) | 1989-01-27 |
JPH0425338B2 true JPH0425338B2 (en) | 1992-04-30 |
Family
ID=16090224
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18083787A Granted JPS6425929A (en) | 1987-07-20 | 1987-07-20 | Copper alloy for electronic equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6425929A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10704822B2 (en) | 2015-09-11 | 2020-07-07 | The Sure Chill Company Limited | Portable refrigeration apparatus |
US10767916B2 (en) | 2012-01-27 | 2020-09-08 | The Sure Chill Company Limited | Fluid reservoir refrigeration apparatus |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03115538A (en) * | 1989-09-29 | 1991-05-16 | Tsuneaki Mikawa | Oxide dispersion strengthened special copper alloy |
US6074499A (en) * | 1998-01-09 | 2000-06-13 | South Dakoga School Of Mines And Technology | Boron-copper-magnesium-tin alloy and method for making same |
CN1063801C (en) * | 1998-01-14 | 2001-03-28 | 浙江大学 | High-strength high softening temp. copper based elastic material |
US6379478B1 (en) * | 1998-08-21 | 2002-04-30 | The Miller Company | Copper based alloy featuring precipitation hardening and solid-solution hardening |
FR2838454B1 (en) * | 2002-04-10 | 2005-04-15 | Clal Msx | CURABLE COPPER ALLOYS WITHOUT BERYLLIUM WITH HIGH MECHANICAL CHARACTERISTICS FOR DECOLLETING |
CN1327017C (en) * | 2004-07-22 | 2007-07-18 | 同济大学 | Novel elastic conductive alloy and its preparing method |
US20070253858A1 (en) * | 2006-04-28 | 2007-11-01 | Maher Ababneh | Copper multicomponent alloy and its use |
US20110048526A1 (en) * | 2008-04-25 | 2011-03-03 | Mitsubishi Materials Corporation | Interconnector for a solar battery and material of the same |
CN107858551B (en) * | 2017-11-06 | 2020-03-31 | 江苏科技大学 | High-strength high-conductivity wear-resistant nontoxic copper alloy for resistance welding electrode and preparation method thereof |
CN111519061A (en) * | 2019-02-01 | 2020-08-11 | 内蒙金属材料研究所 | Rare earth doped Cu-Cr-Zr alloy material and preparation method and application thereof |
CN110527860B (en) * | 2019-09-23 | 2021-09-07 | 四川博鑫铜业有限公司 | A kind of waste purple miscellaneous copper refining agent and its preparation method and application |
CN111471888B (en) * | 2020-05-09 | 2021-04-23 | 南京工程学院 | Manufacturing method and application of nano-intermetallic compound dispersion-strengthened copper alloy |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6362833A (en) * | 1986-09-02 | 1988-03-19 | Furukawa Electric Co Ltd:The | Copper alloy for lead for semiconductor |
JPS6369933A (en) * | 1986-09-11 | 1988-03-30 | Furukawa Electric Co Ltd:The | Copper alloy for electronic and electrical equipment and its production |
JPS6386838A (en) * | 1986-09-30 | 1988-04-18 | Furukawa Electric Co Ltd:The | Copper alloy for semiconductor lead |
JPS63130739A (en) * | 1986-11-20 | 1988-06-02 | Nippon Mining Co Ltd | High strength and high conductivity copper alloy for semiconductor device lead material or conductive spring material |
JPS63274729A (en) * | 1987-04-30 | 1988-11-11 | Furukawa Electric Co Ltd:The | Copper alloy for electronic and electrical appliance |
-
1987
- 1987-07-20 JP JP18083787A patent/JPS6425929A/en active Granted
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6362833A (en) * | 1986-09-02 | 1988-03-19 | Furukawa Electric Co Ltd:The | Copper alloy for lead for semiconductor |
JPS6369933A (en) * | 1986-09-11 | 1988-03-30 | Furukawa Electric Co Ltd:The | Copper alloy for electronic and electrical equipment and its production |
JPS6386838A (en) * | 1986-09-30 | 1988-04-18 | Furukawa Electric Co Ltd:The | Copper alloy for semiconductor lead |
JPS63130739A (en) * | 1986-11-20 | 1988-06-02 | Nippon Mining Co Ltd | High strength and high conductivity copper alloy for semiconductor device lead material or conductive spring material |
JPS63274729A (en) * | 1987-04-30 | 1988-11-11 | Furukawa Electric Co Ltd:The | Copper alloy for electronic and electrical appliance |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10767916B2 (en) | 2012-01-27 | 2020-09-08 | The Sure Chill Company Limited | Fluid reservoir refrigeration apparatus |
US10704822B2 (en) | 2015-09-11 | 2020-07-07 | The Sure Chill Company Limited | Portable refrigeration apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPS6425929A (en) | 1989-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR950004935B1 (en) | Copper alloy for electronic instruments | |
US4822560A (en) | Copper alloy and method of manufacturing the same | |
JPH0425338B2 (en) | ||
JPS63130739A (en) | High strength and high conductivity copper alloy for semiconductor device lead material or conductive spring material | |
JP2542370B2 (en) | Copper alloy for semiconductor leads | |
JPH0830234B2 (en) | High strength and high conductivity copper alloy | |
JPS6365039A (en) | Copper alloy for electronic and electrical equipment | |
JPS62182240A (en) | Conductive high-tensile copper alloy | |
JPH0440417B2 (en) | ||
JPH09157775A (en) | Copper alloy for electronic equipment | |
JPS60152646A (en) | Material for lead frame for semiconductor | |
JPS6365748B2 (en) | ||
JPH0830233B2 (en) | High strength and high conductivity copper alloy | |
JPH0575812B2 (en) | ||
JP2514926B2 (en) | Copper alloy for electronic equipment with excellent solder joint strength and its manufacturing method | |
JPH0816255B2 (en) | Copper alloy for electronic devices | |
JPH034612B2 (en) | ||
JPH0219433A (en) | Copper alloy for electronic equipment | |
JP2662209B2 (en) | Copper alloy for electronic equipment with excellent plating adhesion and solder bondability and its manufacturing method | |
JPS6311418B2 (en) | ||
JP2576853B2 (en) | Copper alloy for electronic equipment with excellent solder joint strength and its manufacturing method | |
JPH10298679A (en) | High strength and high conductivity copper alloy | |
JPH0356294B2 (en) | ||
JP3391492B2 (en) | High-strength, high-conductivity copper alloy for lead materials of semiconductor equipment and conductive spring materials | |
JPH06184666A (en) | High strength and high electric conductivity copper alloy |