JPS63109132A - High-strength conductive copper alloy and its production - Google Patents
High-strength conductive copper alloy and its productionInfo
- Publication number
- JPS63109132A JPS63109132A JP25622786A JP25622786A JPS63109132A JP S63109132 A JPS63109132 A JP S63109132A JP 25622786 A JP25622786 A JP 25622786A JP 25622786 A JP25622786 A JP 25622786A JP S63109132 A JPS63109132 A JP S63109132A
- Authority
- JP
- Japan
- Prior art keywords
- less
- copper alloy
- strength
- conductive copper
- heat treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000881 Cu alloy Inorganic materials 0.000 title claims abstract description 30
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 238000010438 heat treatment Methods 0.000 claims abstract description 18
- 239000010949 copper Substances 0.000 claims abstract description 8
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 6
- 229910052785 arsenic Inorganic materials 0.000 claims abstract description 5
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 5
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 5
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 5
- 229910052732 germanium Inorganic materials 0.000 claims abstract description 4
- 229910052738 indium Inorganic materials 0.000 claims abstract description 4
- 229910052742 iron Inorganic materials 0.000 claims abstract description 4
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 4
- 229910052714 tellurium Inorganic materials 0.000 claims abstract description 3
- 229910052782 aluminium Inorganic materials 0.000 claims abstract 3
- 229910052787 antimony Inorganic materials 0.000 claims abstract 3
- 229910052745 lead Inorganic materials 0.000 claims abstract 3
- 229910052748 manganese Inorganic materials 0.000 claims abstract 3
- 229910052733 gallium Inorganic materials 0.000 claims abstract 2
- 229910052710 silicon Inorganic materials 0.000 claims abstract 2
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 229910052761 rare earth metal Inorganic materials 0.000 claims 1
- 238000007747 plating Methods 0.000 abstract description 18
- 230000003647 oxidation Effects 0.000 abstract description 17
- 238000007254 oxidation reaction Methods 0.000 abstract description 17
- 229910052758 niobium Inorganic materials 0.000 abstract description 4
- 229910052709 silver Inorganic materials 0.000 abstract description 4
- 238000005482 strain hardening Methods 0.000 abstract description 4
- 229910052804 chromium Inorganic materials 0.000 abstract description 3
- 239000000203 mixture Substances 0.000 abstract description 3
- 229910052759 nickel Inorganic materials 0.000 abstract description 3
- 229910052716 thallium Inorganic materials 0.000 abstract description 3
- 229910052720 vanadium Inorganic materials 0.000 abstract description 3
- 229910052725 zinc Inorganic materials 0.000 abstract description 3
- 229910052793 cadmium Inorganic materials 0.000 abstract description 2
- 229910052791 calcium Inorganic materials 0.000 abstract description 2
- 239000000654 additive Substances 0.000 abstract 1
- 230000000996 additive effect Effects 0.000 abstract 1
- 229910052698 phosphorus Inorganic materials 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 18
- 229910045601 alloy Inorganic materials 0.000 description 12
- 239000000956 alloy Substances 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- 229910001297 Zn alloy Inorganic materials 0.000 description 8
- 229910000679 solder Inorganic materials 0.000 description 8
- 238000005452 bending Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- 229910017813 Cu—Cr Inorganic materials 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 238000006477 desulfuration reaction Methods 0.000 description 5
- 230000023556 desulfurization Effects 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 230000003014 reinforcing effect Effects 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- -1 +Al5In Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000009931 harmful effect Effects 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910001020 Au alloy Inorganic materials 0.000 description 1
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 229910002480 Cu-O Inorganic materials 0.000 description 1
- 235000009852 Cucurbita pepo Nutrition 0.000 description 1
- 241000219104 Cucurbitaceae Species 0.000 description 1
- 229910017945 Cu—Ti Inorganic materials 0.000 description 1
- 229910020816 Sn Pb Inorganic materials 0.000 description 1
- 229910020922 Sn-Pb Inorganic materials 0.000 description 1
- 229910008783 Sn—Pb Inorganic materials 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000002079 cooperative effect Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 230000003009 desulfurizing effect Effects 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000003353 gold alloy Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 231100000701 toxic element Toxicity 0.000 description 1
Landscapes
- Conductive Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は機械的強度と共に、電気及び熱伝導性に優れた
銅合金及びその製造方法に関するものであって、特に半
導体リードフレーム等の電子電気機器部品に使用する際
に必要な諸特性を兼有する高力導電性銅合金及びその製
造方法に関するものである。Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a copper alloy that has excellent electrical and thermal conductivity as well as mechanical strength, and a method for producing the same, and particularly relates to a copper alloy that has excellent electrical and thermal conductivity as well as mechanical strength. The present invention relates to a high-strength conductive copper alloy that has various properties necessary for use in equipment parts, and a method for producing the same.
半導体リードフレーム、コネクター、端子等の電子電気
機器部品用材料として、機械的強度と共に電気及び熱伝
導性に優れた銅合金が広く使用されている。近年機器の
小型化、高集積化に伴ない、純銅に近い導電率を有し、
常温及び高温での機械的強度が高い合金に対する要求が
増大しており、特に半導体リードフレーム材においてそ
の傾向が著しい。BACKGROUND OF THE INVENTION Copper alloys, which have excellent mechanical strength and electrical and thermal conductivity, are widely used as materials for electronic and electrical equipment parts such as semiconductor lead frames, connectors, and terminals. In recent years, as devices have become smaller and more highly integrated, copper has a conductivity close to that of pure copper.
There is an increasing demand for alloys with high mechanical strength at room and high temperatures, and this trend is particularly noticeable in semiconductor lead frame materials.
この様な高力導電性銅合金としては、Cu −Cr −
Zr系合金及びCu −Ti系合金が従来から知られて
いるが、酸素との親和力が強いZr或いはTiを使用し
ているため、製造工程が複雑であってコスト高となり、
大量には利用されていない。Such high-strength conductive copper alloys include Cu - Cr -
Zr-based alloys and Cu-Ti-based alloys have been known for a long time, but because they use Zr or Ti, which has a strong affinity for oxygen, the manufacturing process is complicated and costs are high.
Not used in large quantities.
これに対してCu−Cr系合金は、比較的低コストで製
造できる高力導電性合金であって、例えばCu−0,8
%Or合金をリードフレーム材として利用することが日
本電子材料技術協会会報vo1.7 、 N[L5、P
、22に開示されている。On the other hand, Cu-Cr alloys are high-strength conductive alloys that can be manufactured at relatively low cost, such as Cu-0,8
The use of %Or alloy as a lead frame material was reported in Japan Electronic Materials Technology Association Bulletin vol. 1.7, N[L5, P
, 22.
リードフレーム材には機械的強度、電気及び熱伝導性の
他に半田付性、メッキ性、耐酸化性、成型加工性等の諸
特性が要求されているが、下記(a)−(e)に詳述す
る様に前記Cu −Cr合金はこれらの諸特性について
問題点が多く、より特性の優れた合金の開発が要望され
ている。即ち、
(a) リードフレームはプリント基板に半田接合さ
れておシ、半田接合部の接合強度が長期に亘って保持さ
れなければならないが、前記Cu−Cr合金、は接合強
度の経時劣化が激しく、特に近年急増している面実装型
リードフレームにおいて致命的な問題とされている。In addition to mechanical strength, electrical and thermal conductivity, lead frame materials are required to have various properties such as solderability, plating properties, oxidation resistance, and moldability, but the following (a) to (e) As described in detail in 2003, the Cu-Cr alloy has many problems with respect to these properties, and there is a demand for the development of an alloy with even more excellent properties. That is, (a) the lead frame is soldered to the printed circuit board, and the bonding strength of the soldered joint must be maintained over a long period of time, but the bonding strength of the Cu-Cr alloy deteriorates significantly over time. This is considered to be a critical problem especially in surface mount type lead frames, which have been rapidly increasing in recent years.
(b) リードフレームはプリント基板との接合部に
Sn又はSn −Pbの予備メッキが、半導体チップと
のワイヤーボンディング部にはAg又はAuメッキが施
されているが、前記Cu−Cr合金はこれらメッキ膜の
密着性が余り良好でない。(b) The lead frame is pre-plated with Sn or Sn-Pb at the joint part with the printed circuit board, and Ag or Au plating is applied at the wire bonding part with the semiconductor chip. The adhesion of the plating film is not very good.
(C) 半導体のパッケージにおいては、P0.〜1
450℃の大気中でボンディング等が行なわれ、この様
な高温大気条件下で酸化しにくいこと、又酸化した場合
酸化膜が剥離しにくいことが必要であり、半導体部品の
信頼性を向上させるためには前記Cu −Cr合金の耐
酸化性を更に改善する必要がある。(C) In semiconductor packages, P0. ~1
Bonding etc. are performed in the atmosphere at 450°C, and it is necessary that the oxide film is difficult to oxidize under such high temperature atmospheric conditions, and that the oxide film is difficult to peel off when oxidized, and in order to improve the reliability of semiconductor parts. Therefore, it is necessary to further improve the oxidation resistance of the Cu-Cr alloy.
(d) リードフレーム材にはプレス時の成型加工性
、特に曲げ加工部にミクロクラックが発生しないことが
要求されるが、前記Cu−Cr合金はこれらの成型加工
性が余シ良好でない。(d) The lead frame material is required to have moldability during pressing, especially without microcracks occurring in the bent portion, but the Cu-Cr alloy does not have very good moldability.
(8) !J−ドフレームの高密度化に伴ない、リー
ド部の巾と厚さは益々縮少される傾向にあり、前記Cu
−Cr合金よりも更に高強度な材料が要求されている
。(8)! With the increasing density of J-frames, the width and thickness of the lead portions tend to become smaller and smaller.
-A material with even higher strength than the Cr alloy is required.
本発明は上記の点に鑑みなされたものであり、その目的
とするところは半田付性、メッキ性、耐酸化性、成型加
工性等の諸特性に優れた高力導電性銅合金及びその製造
方法を提供することである。The present invention has been made in view of the above points, and its purpose is to provide a high-strength conductive copper alloy with excellent properties such as solderability, plating performance, oxidation resistance, moldability, etc., and its production. The purpose is to provide a method.
即ち、本発明による高力導電性銅合金は、Oro。That is, the high strength conductive copper alloy according to the present invention is Oro.
01〜5%、Zn0.01〜5%、o20.oogs以
下、5(1002%以下を含有し、更にAg0.2%以
下、Beα2%以下、Mg0.2%以下、Caα5%以
下、cdo、3%以下、Bα5%以下、AA5%以下、
In 0.1係以下、Y0.5%以下、R,E、 0.
2係以下、Pb 0.03%以下、Ge0.5%以下、
Gaα1チ以下、Si 0.3%以下、Ti 0.3%
以下、Zr 0.2%以下、V 0.03%以下、Nb
Q、03%以下、Ta0.03%以下、sbα3%以下
、As0.5%以下、Te 0.1チ以下、Mn0.3
%以下、Fe3%以下、Ni 5%以下、Co5%以下
、po、i%以下の内少く共1種を合計で0.01〜3
%含有し、残部がCuからなることを特徴とするもので
ある。01-5%, Zn0.01-5%, o20. oogs or less, 5 (contains 1002% or less, and further includes Ag0.2% or less, Beα2% or less, Mg0.2% or less, Caα5% or less, cdo, 3% or less, Bα5% or less, AA5% or less,
In: 0.1 or less, Y: 0.5% or less, R, E, 0.
2 or less, Pb 0.03% or less, Ge 0.5% or less,
Gaα1 or less, Si 0.3% or less, Ti 0.3%
Below, Zr 0.2% or less, V 0.03% or less, Nb
Q, 03% or less, Ta 0.03% or less, sbα 3% or less, As 0.5% or less, Te 0.1 or less, Mn 0.3
% or less, Fe 3% or less, Ni 5% or less, Co 5% or less, po, i% or less for a total of 0.01 to 3
%, with the remainder being Cu.
又本発明による高力導電性銅合金の製造方法は、前記高
力導電性銅合金を850〜1000℃で熱間加工又は加
熱処理後、少く共1100℃迄5℃/sea以上の速度
で冷却し、次に30%以上の冷間加工を行なった後1F
00〜550℃で加熱処理することを特徴とするもので
ある。The method for producing a high-strength conductive copper alloy according to the present invention includes hot working or heat treatment of the high-strength conductive copper alloy at 850 to 1000°C, and then cooling the high-strength conductive copper alloy at a rate of 5°C/sea or more to at least 1100°C. Then, after 30% or more cold working, 1F
It is characterized by heat treatment at 00 to 550°C.
本発明による高力導電性銅合金は、 Orの微細な析出
物を均一に分散させたCu −Cr −Zn系合金であ
り、析出Orと固溶Znとの共同作用により本発明の目
的を実現したものである。即ち析出Orは導電率の低下
はわずかであって、強化作用を有しており、一方ZnF
iOrを微細かつ均一に析出分散させるのに有効である
と共に、前記Cu−0r合金における問題点即ち半田付
性、メッキ性、耐酸化性、成型加工性等を改善する。更
に析出OrはCu −Zn合金の有する応力腐食割れ感
受性を激減させる。本発明の目的を実現するためには、
上述の様にOrを微細かつ均一に分散析出させることが
必要であり、析出Orが粗大化すると強化作用を有しな
くなるばかりでなく、半田付性、メッキ性、成型加工性
等に有害な作用を及ぼす。 ゛
本発明による高力導電性銅合金において、Or。The high-strength conductive copper alloy according to the present invention is a Cu-Cr-Zn alloy in which fine precipitates of Or are uniformly dispersed, and the object of the present invention is achieved through the cooperative action of precipitated Or and solid solution Zn. This is what I did. That is, precipitated Or has a reinforcing effect with a slight decrease in conductivity, whereas ZnF
It is effective in finely and uniformly precipitating and dispersing iOr, and also improves problems in the Cu-0r alloy, such as solderability, plating performance, oxidation resistance, moldability, etc. Furthermore, the precipitated Or drastically reduces the stress corrosion cracking susceptibility of the Cu--Zn alloy. In order to realize the purpose of the present invention,
As mentioned above, it is necessary to disperse and precipitate Or finely and uniformly; if the precipitated Or becomes coarse, it not only loses its reinforcing effect, but also has harmful effects on solderability, plating properties, moldability, etc. effect.゛In the high strength conductive copper alloy according to the present invention, Or.
Zn、 Os、Sの含有量の範囲を限定したのは夫々下
記の理由による。即ちCr量を0.01〜5%としたの
は、α01=j未満では強化作用が不充分であり、5%
を超えると析出Orが粗大化し、半田付性、メッキ性、
加工性等に有害な作用を及ぼすためであって、01〜0
3%の範囲内が好ましい。Zn量を0.01〜5%とし
たのは、α05%未満では前述のCu −Or金合金諸
特性を改善する効果が不充分であり、5%を超えると導
電率が低下するだめであって、α1〜5%の範囲内が好
ましい。Olをα00キチ以下にしたのは、o、ooI
&%を超えると、伸び及び成型加工性等を低下させるた
めである。The reason why the content ranges of Zn, Os, and S are limited is as follows. That is, the reason why the amount of Cr is set to 0.01 to 5% is that the reinforcing effect is insufficient when α01=j is less than 5%.
If the
This is because it has a harmful effect on processability, etc., and 01-0
It is preferably within the range of 3%. The reason for setting the Zn content to 0.01 to 5% is that if α is less than 05%, the effect of improving the various properties of the Cu-Or gold alloy described above is insufficient, and if it exceeds 5%, the electrical conductivity will decrease. Therefore, α is preferably within the range of 1 to 5%. The ones who made Ol less than α00kichi were o, ooI
This is because if it exceeds &%, elongation, moldability, etc. will be reduced.
Sをα002%以下にしたのは、0.OO2%を超える
と析出Orが粗大化するためである。The reason why S is set to α002% or less is 0. This is because if the OO exceeds 2%, the precipitated Or becomes coarse.
本発明によるCu−Cr−Zn系合金は、更にAg、B
e、Mg、 Ca、 Cd、 B、 +Al5In
、 Y、 Tl、R,Eo、Pb 1Co 。The Cu-Cr-Zn alloy according to the present invention further contains Ag, B
e, Mg, Ca, Cd, B, +Al5In
, Y, Tl, R, Eo, Pb 1Co.
Ga、 Sx、Ti 、Zr%V、Nb 、 Tall
Sb、As 、Te 、Mn 。Ga, Sx, Ti, Zr%V, Nb, Tall
Sb, As, Te, Mn.
Fe1Ni、Co1%以下、P0. 、 Pの内少く共
1種を、合計でα01〜3%の範囲内で含有しており、
これらの追加成分を添加することによって上記Cu−0
r−Zn系合金の諸特性が更に向上する。これらの追加
成分の効果並びに含有量の範囲の限定理由について以下
に説明する。Fe1Ni, Co1% or less, P0. , contains at least one type of P within the range of α01 to 3% in total,
By adding these additional components, the above Cu-0
Various properties of the r-Zn alloy are further improved. The effects of these additional components and the reason for limiting the content range will be explained below.
Agti固溶成分で導電率の低下がほとんどなく、Zn
と類似した作用を有していると共に耐食性を向上させる
。Beは結晶粒微細化の効果並びに強化作用があり、更
に高温酸化を抑制する。Mg 、 (aは脱硫、脱酸作
用があり、又導電率の低下がほとんどなく、Znの作用
を助長出来るが、過剰に含有されると材料の製造が困難
となる。cdは有毒元素であるが、導電率の低下がほと
んどなく、強度、耐熱性、半田付性等を向上させ°る。There is almost no decrease in conductivity due to the Agti solid solution component, and Zn
It has a similar effect and improves corrosion resistance. Be has the effect of grain refinement and strengthening, and further suppresses high-temperature oxidation. Mg (a) has a desulfurization and deoxidizing effect, and has almost no decrease in electrical conductivity, and can promote the effect of Zn, but if it is contained in excess, it becomes difficult to manufacture the material. CD is a toxic element. However, there is almost no decrease in electrical conductivity, and it improves strength, heat resistance, solderability, etc.
Bは脱酸剤として作用する。Mは脱酸剤であり、又高温
酸化防止に有効であるが、過剰に含有されると導電率を
低下させる。In、 Y%Tl、 R,E、は脱硫、
脱酸作用があると共に、組織の微細化、均質化に効果が
あり、強度、耐熱性、耐酸化性等を向上させる。Pbは
脱硫作用があり、耐熱性を向上させると共に快削性や高
速プレス性に大きく貢献する。Geは析出Crの粗大化
抑制に有効な元素である。Slは鋳造性の改善や耐酸化
性の向上に有益である。Ti、Zrは耐熱性を向上させ
、かつ脱硫、脱酸作用を有している。B acts as a deoxidizing agent. M is a deoxidizing agent and is effective in preventing high-temperature oxidation, but if it is contained in excess, it lowers the electrical conductivity. In, Y%Tl, R, E, desulfurization,
It has a deoxidizing effect, is effective in making the structure finer and more homogeneous, and improves strength, heat resistance, oxidation resistance, etc. Pb has a desulfurization effect, improves heat resistance, and greatly contributes to free machinability and high-speed pressability. Ge is an element effective in suppressing coarsening of precipitated Cr. Sl is useful for improving castability and oxidation resistance. Ti and Zr improve heat resistance and have desulfurization and deoxidizing effects.
5%Nb 、 Taは結晶粒微細化や組織の均一化の効
果並びに強化作用があり、更に脱硫作用も有している。5% Nb and Ta have the effect of refining grains and making the structure uniform, and have a reinforcing effect, and also have a desulfurizing effect.
sbは、特に半田接合部やSnメッキ部の信頼性向上に
有効である。As 、To 、 Gaは結晶粒微細化や
耐熱性向上の効果があると共に、快削性や高速プレス性
に大きく貢献する。Mnは脱硫、脱酸作用があり、耐酸
化性を向上させると共に、半田付性の改善等Znの作用
を増強する。Fe、 Ni 、Co1%以下、P0.は
結晶粒微細化の効果並びに強化作用があり、これらは微
量のPが共存する場合特に有効な成分である。Pは脱酸
作用や湯流れ性向上の効果がある。しかし過剰に含有さ
れると導電率の低下は元より析出Crが粗大化するので
05%以下にする必要があり、0、 OO01〜0.0
5%の範囲内が好ましい。sb is particularly effective in improving the reliability of solder joints and Sn-plated parts. As, To, and Ga have the effect of refining grains and improving heat resistance, and also greatly contribute to free machinability and high-speed pressability. Mn has desulfurization and deoxidizing effects, improves oxidation resistance, and enhances the effects of Zn, such as improving solderability. Fe, Ni, Co1% or less, P0. has the effect of grain refinement and reinforcing action, and these are particularly effective components when a trace amount of P coexists. P has the effect of deoxidizing and improving hot water flow. However, if it is contained excessively, not only will the electrical conductivity decrease, but the precipitated Cr will become coarser, so it must be kept at 0.05% or less.
It is preferably within the range of 5%.
以上の追加成分は、合計量が005%未満ではCu −
Or −Zn系合金の諸特性を更に向上させる効果が不
充分であり、夫々が過剰に含有されるか或いは合計量が
3%を超えると、導電率の低下、析出Crの粗大化、加
工性の低下等の不都合を生じ、又不経済でもあるので、
前記含有量の範囲内に限定する必要がある。If the total amount of the above additional components is less than 0.005%, Cu −
The effect of further improving various properties of the Or-Zn alloy is insufficient, and if each is contained in excess or the total amount exceeds 3%, the electrical conductivity will decrease, the precipitated Cr will become coarser, and the workability will deteriorate. This causes inconveniences such as a decrease in
It is necessary to limit the content within the above range.
前記Cu −Or −Zn系合金におけるOrの析出は
、該Cu −Cr −Zn系合金の型造方法にも影響さ
れ、本発明においては、850〜1000℃で熱間加工
又は加熱処理することによってOrを均質に固溶させ、
その後少く共400℃迄5℃/ sec以上の速度で冷
却することによって前記Crを固溶した状態に保持し、
次に30%以上の冷間加工を行なった後400〜550
℃で加熱処理することにより前記Orを微細かつ均一に
析出させている。本発明において前記熱間加工又は加熱
処理温度を850〜1000℃の範囲内に限定したのは
、8500未満ではCrが充分均質に固溶しなく、又1
000℃を超えると材料の一部溶融等の危険があるため
である。The precipitation of Or in the Cu-Or-Zn alloy is also influenced by the molding method of the Cu-Cr-Zn alloy, and in the present invention, precipitation of Or is carried out by hot working or heat treatment at 850 to 1000°C. Or is homogeneously dissolved in solid solution,
Thereafter, the Cr is maintained in a solid solution state by cooling to at least 400°C at a rate of 5°C/sec or more,
400-550 after cold working of 30% or more
The Or is finely and uniformly precipitated by heat treatment at .degree. In the present invention, the hot working or heat treatment temperature is limited to a range of 850 to 1000°C because if the temperature is less than 8500°C, Cr will not dissolve sufficiently homogeneously.
This is because if the temperature exceeds 000°C, there is a danger that part of the material will melt.
又少く共400℃迄の冷却速度を5℃/ sec以上に
限定したのは、5℃/ sec未満では冷却過程におい
てCrが一部析出を起こすためであり、出来れば25℃
/SθC以上の速度で冷却することが望ましい。更に1
I00〜550℃での加熱処理の前に30%以上の冷間
加工を行なうのは、加工歪を与えることによってOrの
微細かつ均一な析出を促進させるためであり、50%未
満の加工では前記析出が充分に促進されない。又前記加
熱処理温度をqoo〜550℃の範囲内に限定したのは
、1I00℃未満では実用的な時間内で充分な析出が得
られず、導電率も充分に回復しなく、又550℃を超え
ると析出物が粗大化するだめである。本発明においては
、必要に応じて加工と熱処理を繰返すことが出来、又熱
処理後加工して仕上げることも出来る。更にテンション
レペラー、テンシコンアニーラ−1低温焼鈍等を付加す
ることも有効であって、これらによって前記Cu −O
r −Zn系合金における残留応力の除去、成型加工性
の向上等を図ることが出来る。Also, the reason why the cooling rate up to 400°C was limited to at least 5°C/sec is because if it is less than 5°C/sec, some Cr will precipitate during the cooling process.
It is desirable to cool at a rate of /SθC or higher. 1 more
The reason for performing cold working of 30% or more before heat treatment at I00 to 550°C is to promote fine and uniform precipitation of Or by applying working strain, and for working of less than 50%, the above-mentioned Precipitation is not promoted sufficiently. The reason why the heat treatment temperature is limited to the range of qoo to 550°C is because if it is less than 1I00°C, sufficient precipitation will not be obtained within a practical time, and the conductivity will not be sufficiently recovered. If it is exceeded, the precipitate will become coarse. In the present invention, processing and heat treatment can be repeated as necessary, and finishing can also be achieved by processing after heat treatment. Furthermore, it is also effective to add a tension repeller, tensicon annealer-1 low-temperature annealing, etc., and by these, the Cu-O
It is possible to remove residual stress in the r-Zn alloy, improve moldability, etc.
〔実施例1〕 以下に実施例により本発明を更に具体的に説明する。[Example 1] The present invention will be explained in more detail below using Examples.
第1表に示す組成の各種銅合金鋳塊(55x100x3
00m)を920℃に加熱してから厚さ5瓢迄熱間圧延
後水冷した。尚熱延上り温度は約700℃であり、l1
00℃迄冷却するのに約10〜15 secを要した。Various copper alloy ingots with compositions shown in Table 1 (55x100x3
00m) was heated to 920°C, hot-rolled to a thickness of 5 gourds, and then cooled with water. The hot rolling temperature is approximately 700°C, and l1
It took about 10-15 seconds to cool down to 00°C.
上記熱延板をミーリングしてから厚さα’+5+m迄冷
間圧延し、1450℃で25分間加熱処理を行なった。The hot-rolled sheet was milled, then cold-rolled to a thickness of α'+5+m, and heat-treated at 1450° C. for 25 minutes.
次にα25瓢迄冷間圧延し、280℃で30分加熱処理
して仕上げた。Next, it was cold rolled to α25 and finished by heat treatment at 280° C. for 30 minutes.
第1表
以上の様にして得られた各種銅合金のサンプルについて
、引張強さ、伸び、導電率、曲げ加工性、半田接合部の
接合強度、メッキ膜の密着性、酸化膜の耐剥離性、耐酸
化性等を下記の方法により評価し、これらの結果をまと
めて第2表に示した。The tensile strength, elongation, electrical conductivity, bending workability, bonding strength of solder joints, adhesion of plating films, and peeling resistance of oxide films for the various copper alloy samples obtained as shown in Table 1 and above. , oxidation resistance, etc. were evaluated by the following methods, and the results are summarized in Table 2.
曲げ加工性は、JISZ22II&の各種先端Rを有す
るVブロックを用いてサンプルの90°曲げを行ない、
割れが発生しない最小のR/l(t:板厚)を求めた。The bending workability was determined by bending the sample 90° using a V block with various tip radii according to JIS Z22II&.
The minimum R/l (t: plate thickness) at which no cracking occurs was determined.
半田接合部の接合強度は、サンプルにOu線を半田付け
してから150℃に300hr保持した後引張試験する
ことによって求めた。The joint strength of the solder joint was determined by soldering an O wire to a sample, holding the sample at 150° C. for 300 hours, and then performing a tensile test.
メッキ膜の密着性はサンプルを電解脱脂、酸洗いしてか
らAgを5μmメッキし、これを1175℃のホットプ
レート上で5 min加熱してふくれ発生の有無を調べ
た。The adhesion of the plating film was determined by electrolytically degreasing the sample, pickling it, plating it with 5 μm of Ag, and heating it on a hot plate at 1175° C. for 5 minutes to check for blistering.
酸化膜の耐剥離性は、サンプルを250− l+00℃
のホットプレート上で加熱して各橿原さの酸化膜を生成
させてから、粘着テープ法により剥離試験を行ない、剥
離しない最大模厚即ち密着スケール限界を求めた。又耐
酸化性は、300℃で3m1n加熱後の酸化膜厚をカン
ード還元法により求めて酸化速度を比較した。尚酸化膜
厚はCuO換算値とした。The peeling resistance of the oxide film was determined by testing the sample at 250-1+00°C.
After heating on a hot plate to form an oxide film of each Kashihara size, a peel test was conducted using the adhesive tape method to determine the maximum thickness without peeling, that is, the adhesion scale limit. In addition, oxidation resistance was determined by determining the oxide film thickness after heating for 3 ml at 300° C. by the Cand reduction method, and comparing the oxidation rate. Note that the oxide film thickness was a CuO equivalent value.
第2表から明らかな様に、本発明例随1〜15は強度、
伸び、導電率は元より、曲げ加工性、半田接合強度、メ
ッキ性、耐酸化性、酸化膜の耐剥離性等にも満足な値を
与えている。As is clear from Table 2, Examples 1 to 15 of the present invention have strength,
It provides satisfactory values not only for elongation and conductivity, but also for bending workability, solder joint strength, plating properties, oxidation resistance, and oxide film peeling resistance.
一方Znを含有しない従来例蝿1っは強度が劣っており
、かつ曲げ加工性、半田接合強度、メッキ性、耐酸化性
等多くの実用特性において不満足な値しか得られていな
い。又Zn量が不充分な比較例随21は半田接合強度、
耐酸化性等が劣っており、他方Zn量が過剰な随22は
導電率が低い。Or量が不充分な比較例随23は強度が
劣っており、他方Or量が過剰な比較例N1124は製
造中に割れを生じて歩留りが悪く、伸び、曲げ加工性の
他、半田接合強度、メッキ性等も劣っている。Os量が
過剰な比較例NIL25も随2ヰと同様な結果であり、
他方S量が過剰な随26は一部製造中に割れが見られる
と共ビ、メッキ性等が劣っている。追加成分としてのF
e量が過剰な比較例N1127は導電率が低くて、曲げ
加工性、半田接合強度、メッキ性等が劣っており、N1
量が過剰な比較例m28は導電率が低くて、半田接合強
度が劣っている。Pb量が過剰な比較例Nl129は曲
げ加工性が劣っている。追加成分の含有量が少ない比較
例N1130.51は強度等が不充分である。On the other hand, the conventional example FLY 1 which does not contain Zn has poor strength and has unsatisfactory values in many practical properties such as bending workability, solder joint strength, plating properties, and oxidation resistance. In addition, Comparative Example No. 21 with insufficient Zn content has poor solder joint strength,
The oxidation resistance etc. are poor, and on the other hand, No. 22 with an excessive amount of Zn has a low electrical conductivity. Comparative Example No. 23, which had an insufficient amount of Or, had poor strength, while Comparative Example No. 1124, which had an excessive amount of Or, cracked during manufacturing and had a poor yield. Plating properties are also poor. Comparative example NIL25, which has an excessive amount of Os, has the same results as No. 2,
On the other hand, part 26 with an excessive amount of S shows cracks during manufacturing and has poor plating properties and poor plating properties. F as an additional component
Comparative example N1127 with an excessive amount of e has low conductivity and is inferior in bending workability, solder joint strength, plating properties, etc.
Comparative Example m28, in which the amount was excessive, had low conductivity and inferior solder joint strength. Comparative Example No. 1129, which has an excessive amount of Pb, has poor bending workability. Comparative Example N1130.51, which has a small content of additional components, has insufficient strength etc.
〔実施例2〕
第1表におけるNalの組成を有する銅合金鋳塊を82
0℃に加熱してから厚さ5IIIII迄熱間圧延後水冷
し、以後実施例1で示したのと同様な方法で冷間圧延及
び加熱処理を行なった。得られた材料をを比較例N[L
Illとしてその特性を第2表に併記した。[Example 2] A copper alloy ingot having the Nal composition shown in Table 1 was
After heating to 0° C., the material was hot rolled to a thickness of 5III and then cooled with water. Thereafter, cold rolling and heat treatment were performed in the same manner as in Example 1. The obtained material was used as a comparative example N[L
The characteristics are also listed in Table 2 as Ill.
又同じ銅合金鋳塊を900℃に加熱してから厚さ5簡迄
熱間圧延した。熱延上り温度は約700℃であり、40
0℃迄5分間で、即ちL7℃/secの冷却速度で空冷
した。上記熱延板について、以後実施例1で示したのと
同様な方法で冷間圧延及び加熱処理を行ない、得られた
材料を比較例随51としてその特性を第2表に併記した
。The same copper alloy ingot was heated to 900°C and then hot rolled to a thickness of 5mm. The hot rolling temperature is approximately 700°C, and 40°C
It was air cooled to 0°C in 5 minutes, ie, at a cooling rate of L7°C/sec. The above-mentioned hot-rolled sheet was thereafter cold-rolled and heat-treated in the same manner as shown in Example 1, and the resulting material was designated as Comparative Example No. 51 and its properties are also listed in Table 2.
第2表から明らかな様に、前記比較例m41.51はい
ずれも強度が不充分であ、9、N[L41はメッキ性等
も劣っている。As is clear from Table 2, all of the Comparative Examples m41.51 have insufficient strength, and 9,N[L41 has poor plating properties.
〔発明の効果〕
以上に述べた様に、本発明による銅合金は強度及び導電
性に優れていると共に、半田付性、メッキ性、耐酸化性
、成型加工性等広範な実用上不可欠な諸特性にも優れた
高力導電性銅合金であり、特に電子電気機器部品用材料
として、例えば半導体リードフレームは元より、各種コ
ネクター、端子、スプリング、導体、ヒートシンク等と
して有用である。[Effects of the Invention] As described above, the copper alloy according to the present invention has excellent strength and conductivity, and has a wide range of practically essential properties such as solderability, plating performance, oxidation resistance, and moldability. It is a high-strength conductive copper alloy with excellent properties, and is particularly useful as a material for parts of electronic and electrical equipment, such as semiconductor lead frames, as well as various connectors, terminals, springs, conductors, heat sinks, etc.
Claims (3)
20.004%以下、S0.002%以下を含有し、更
にAg0.2%以下、Be0.2%以下、Mg0.2%
以下、Ca0.1%以下、Cd0.5%以下、B0.1
%以下、Al1%以下、In0.1%以下、Y0.1%
以下、Tl0.1%以下、R.E.(希土類元素)0.
2%以下、Pb0.05%以下、Ge0.1%以下、G
a0.1%以下、Si0.5%以下、Ti0.5%以下
、Zr0.2%以下、V0.05%以下、Nb0.05
%以下、Ta0.05%以下、Sb0.5%以下、As
0.1%以下、Te0.1%以下、Mn0.5%以下、
Fe3%以下、Ni1%以下、Co1%以下、P0.1
%以下の内少く共1種を合計で0.01〜5%含有し、
残部がCuからなることを特徴とする高力導電性銅合金
。(1) Cr0.01-1%, Zn0.01-1%, O_
Contains 20.004% or less, S 0.002% or less, and further contains Ag 0.2% or less, Be 0.2% or less, Mg 0.2%.
Below, Ca0.1% or less, Cd0.5% or less, B0.1
% or less, Al 1% or less, In 0.1% or less, Y 0.1%
Below, Tl is 0.1% or less, R. E. (Rare earth elements) 0.
2% or less, Pb 0.05% or less, Ge 0.1% or less, G
a0.1% or less, Si0.5% or less, Ti0.5% or less, Zr0.2% or less, V0.05% or less, Nb0.05
% or less, Ta 0.05% or less, Sb 0.5% or less, As
0.1% or less, Te 0.1% or less, Mn 0.5% or less,
Fe3% or less, Ni1% or less, Co1% or less, P0.1
% or less, the total content is 0.01 to 5%,
A high-strength conductive copper alloy characterized in that the remainder consists of Cu.
r、Znの含有量を夫々Cr0.1〜0.5%、Zn0
.1〜1%としたことを特徴とする高力導電性銅合金。(2) In the copper alloy according to claim 1, C
The contents of r and Zn are respectively Cr0.1~0.5% and Zn0.
.. A high-strength conductive copper alloy characterized by having a content of 1 to 1%.
20.004%以下、S0.002%以下を含有し、更
にAg0.2%以下、Be0.2%以下、Mg0.2%
以下、Ca0.1%以下、Cd0.5%以下、B0.1
%以下、Al1%以下、In0.1%以下、Y0.1%
以下、Tl0.1%以下、R.E.0.2%以下、Pb
0.05%以下、Ge0.1%以下、Ga0.1%以下
、Si0.5%以下、Ti0.5%以下、Zr0.2%
以下、V0.05%以下、Nb0.05%以下、Ta0
.05%以下、Sb0.5%以下、As0.1%以下、
Te0.1%以下、Mn0.5%以下、Fe3%以下、
Ni1%以下、Co1%以下、P0.1%以下の内少く
共1種を合計で0.01〜5%含有し、残部がCuから
なる銅合金を、850〜1000℃で熱間加工又は加熱
処理後、少く共400℃迄5℃/sec以上の速度で冷
却し、次に30%以上の冷間加工を行なった後400〜
550℃で加熱処理することを特徴とする高力導電性銅
合金の製造方法。(3) Cr0.01-1%, Zn0.01-1%, O_
Contains 20.004% or less, S 0.002% or less, and further contains Ag 0.2% or less, Be 0.2% or less, Mg 0.2%.
Below, Ca0.1% or less, Cd0.5% or less, B0.1
% or less, Al 1% or less, In 0.1% or less, Y 0.1%
Below, Tl is 0.1% or less, R. E. 0.2% or less, Pb
0.05% or less, Ge 0.1% or less, Ga 0.1% or less, Si 0.5% or less, Ti 0.5% or less, Zr 0.2%
Below, V0.05% or less, Nb0.05% or less, Ta0
.. 0.05% or less, Sb 0.5% or less, As 0.1% or less,
Te 0.1% or less, Mn 0.5% or less, Fe 3% or less,
A copper alloy containing a total of 0.01 to 5% of at least one of Ni 1% or less, Co 1% or less, and P 0.1% or less, and the balance consisting of Cu, is hot worked or heated at 850 to 1000°C. After treatment, cool at a rate of 5°C/sec or more to at least 400°C, then cold work by 30% or more, and then cool to 400°C.
A method for producing a high-strength conductive copper alloy, comprising heat treatment at 550°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25622786A JPS63109132A (en) | 1986-10-28 | 1986-10-28 | High-strength conductive copper alloy and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25622786A JPS63109132A (en) | 1986-10-28 | 1986-10-28 | High-strength conductive copper alloy and its production |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63109132A true JPS63109132A (en) | 1988-05-13 |
JPH0575812B2 JPH0575812B2 (en) | 1993-10-21 |
Family
ID=17289701
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25622786A Granted JPS63109132A (en) | 1986-10-28 | 1986-10-28 | High-strength conductive copper alloy and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63109132A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01212738A (en) * | 1988-02-18 | 1989-08-25 | Kobe Steel Ltd | Manufacture of high conductivity copper alloy excellent in migration resistance |
JPH02107732A (en) * | 1988-10-17 | 1990-04-19 | Dowa Mining Co Ltd | High strength and high conductivity copper base alloy |
JPH02145737A (en) * | 1988-11-24 | 1990-06-05 | Dowa Mining Co Ltd | High strength and high conductivity copper-base alloy |
JP2009153851A (en) * | 2007-12-27 | 2009-07-16 | Konica Minolta Medical & Graphic Inc | Ultrasonic diagnostic apparatus and manufacturing method of wire used therefor |
CN114507793A (en) * | 2022-01-24 | 2022-05-17 | 中南大学 | A kind of high-strength and high-conductivity Cu-Zn-Cr-Zr copper alloy and preparation method and application |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63105941A (en) * | 1986-10-21 | 1988-05-11 | Furukawa Electric Co Ltd:The | High strength conductive copper alloy and its production |
JPS63109130A (en) * | 1986-10-23 | 1988-05-13 | Furukawa Electric Co Ltd:The | Copper alloy for electronic equipment |
-
1986
- 1986-10-28 JP JP25622786A patent/JPS63109132A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63105941A (en) * | 1986-10-21 | 1988-05-11 | Furukawa Electric Co Ltd:The | High strength conductive copper alloy and its production |
JPS63109130A (en) * | 1986-10-23 | 1988-05-13 | Furukawa Electric Co Ltd:The | Copper alloy for electronic equipment |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01212738A (en) * | 1988-02-18 | 1989-08-25 | Kobe Steel Ltd | Manufacture of high conductivity copper alloy excellent in migration resistance |
JPH02107732A (en) * | 1988-10-17 | 1990-04-19 | Dowa Mining Co Ltd | High strength and high conductivity copper base alloy |
JPH02145737A (en) * | 1988-11-24 | 1990-06-05 | Dowa Mining Co Ltd | High strength and high conductivity copper-base alloy |
JPH0478704B2 (en) * | 1988-11-24 | 1992-12-11 | Dowa Kogyo Kk | |
JP2009153851A (en) * | 2007-12-27 | 2009-07-16 | Konica Minolta Medical & Graphic Inc | Ultrasonic diagnostic apparatus and manufacturing method of wire used therefor |
CN114507793A (en) * | 2022-01-24 | 2022-05-17 | 中南大学 | A kind of high-strength and high-conductivity Cu-Zn-Cr-Zr copper alloy and preparation method and application |
CN114507793B (en) * | 2022-01-24 | 2022-12-09 | 中南大学 | High-strength high-conductivity Cu-Zn-Cr-Zr copper alloy, and preparation method and application thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH0575812B2 (en) | 1993-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3550233B2 (en) | Manufacturing method of high strength and high conductivity copper base alloy | |
KR950004935B1 (en) | Copper alloy for electronic instruments | |
JPS63130739A (en) | High strength and high conductivity copper alloy for semiconductor device lead material or conductive spring material | |
JP3383615B2 (en) | Copper alloy for electronic materials and manufacturing method thereof | |
JPS61183426A (en) | High strength, highly conductive heat resisting copper alloy | |
JP2521880B2 (en) | Copper alloy for electronic and electrical equipment and its manufacturing method | |
JP3049137B2 (en) | High strength copper alloy excellent in bending workability and method for producing the same | |
JPS63149345A (en) | High strength copper alloy having high electrical conductivity and improved heat resistance | |
JPS62182240A (en) | Conductive high-tensile copper alloy | |
JPS63109132A (en) | High-strength conductive copper alloy and its production | |
JPH0788549B2 (en) | Copper alloy for semiconductor equipment and its manufacturing method | |
JPH0440417B2 (en) | ||
JPS6338547A (en) | High strength conductive copper alloy | |
JPS6250428A (en) | Copper alloy for electronic appliance | |
JPS63105941A (en) | High strength conductive copper alloy and its production | |
JPH0356294B2 (en) | ||
JPH0219432A (en) | High-strength and high-conductivity copper alloy for semiconductor equipment lead material or conductive spring material | |
JPS62133033A (en) | Cu alloy lead material for semiconductor devices | |
JP2576853B2 (en) | Copper alloy for electronic equipment with excellent solder joint strength and its manufacturing method | |
JPH0230727A (en) | Copper alloy having high-strength and high-conductivity for semiconductor equipment lead material or conductive spring material | |
JPH0830233B2 (en) | High strength and high conductivity copper alloy | |
JPH0816255B2 (en) | Copper alloy for electronic devices | |
JPS63192835A (en) | Lead material for ceramic package | |
JP3391492B2 (en) | High-strength, high-conductivity copper alloy for lead materials of semiconductor equipment and conductive spring materials | |
JPH0788546B2 (en) | Copper alloy for electronic equipment and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |