[go: up one dir, main page]

JPH06199567A - Microwave dielectric porcelain composition - Google Patents

Microwave dielectric porcelain composition

Info

Publication number
JPH06199567A
JPH06199567A JP4360058A JP36005892A JPH06199567A JP H06199567 A JPH06199567 A JP H06199567A JP 4360058 A JP4360058 A JP 4360058A JP 36005892 A JP36005892 A JP 36005892A JP H06199567 A JPH06199567 A JP H06199567A
Authority
JP
Japan
Prior art keywords
added
amount
zero
porcelain composition
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4360058A
Other languages
Japanese (ja)
Inventor
Muneomi Katou
宗臣 加藤
Hirobumi Ozeki
博文 尾関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP4360058A priority Critical patent/JPH06199567A/en
Priority to US08/101,252 priority patent/US5340784A/en
Priority to EP93112424A priority patent/EP0582274B1/en
Priority to DE69311768T priority patent/DE69311768T2/en
Publication of JPH06199567A publication Critical patent/JPH06199567A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To provide a microwave dielectric porcelain compsn. capable of making the temp. coefft. of resonance frequency (tauf) close to zero or capable of arbitrarily and stably controlling it to a desired value on the plus or minus side of zero as a center while maintaining Qu (no-load Q) and epsilonr (relative dielectric constant) in a practical characteristic range each. CONSTITUTION:A compsn. represented by xMgTiO3.(1-x)CaTiO3 [where 0.93<=x<=0.95] is used as a base and Al2O3 is added to the base by 3-12 pts.wt. per 100 pts.wt. of the base to obtain the objective porcelain compsn. When the amt. of Al2O3 added is 3-9wt.% and firing temp. is 1,300-1,375 deg.C, 3,360-3,730 Qu (6GHz), 18.4-20.6 epsilonr, -2.2 to +2.6ppm/ deg.C tauf and 3.57-3.82g/cm<3> sintering density are attained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、マイクロ波誘電体磁器
組成物に関し、更に詳しく言えば、無負荷Q(以下、単
にQuという。)を高い値で維持しつつ、共振周波数の
温度係数(以下、単にτfという。)をゼロに近づける
ことができ、更にAl2 3 の添加量を加減することに
よって、τfをゼロを中心としてプラス側とマイナス側
に任意に制御し得ることができるマイクロ波誘電体磁器
組成物に関するものである。本発明は、マイクロ波領域
において誘電体共振器、マイクロ波集積回路基板、各種
マイクロ波回路のインピーダンス整合等に利用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microwave dielectric porcelain composition, and more specifically, to a high temperature of unloaded Q (hereinafter simply referred to as "Q") while maintaining a temperature coefficient of resonance frequency ( (Hereinafter, simply referred to as τf)) can be brought close to zero, and by further adjusting the amount of Al 2 O 3 added, τf can be arbitrarily controlled to the plus side and the minus side centering on zero. The present invention relates to a wave dielectric ceramic composition. INDUSTRIAL APPLICABILITY The present invention is utilized for impedance matching of dielectric resonators, microwave integrated circuit substrates, various microwave circuits, etc. in the microwave region.

【0002】[0002]

【従来の技術】マイクロ波誘電体磁器組成物(以下、単
に誘電体磁器組成物という。)は、使用周波数が高周波
となるに従って誘電損失が大きくなる傾向にあるので、
マイクロ周波数領域でQuの大きな誘電体磁器組成物が
望まれている。従来の誘電体磁器材料としては、結晶構
造がペロブスカイト相とイルメナイト相との2相を含む
誘電体磁器組成物(特開平2−129065号公報)、
MgTiO3 とTiO2 に所定量のCaTiO3 を含有
した誘電体磁器組成物(特開昭52−118599号公
報)等が知られている。
2. Description of the Related Art Microwave dielectric porcelain compositions (hereinafter simply referred to as dielectric porcelain compositions) tend to increase in dielectric loss as the operating frequency becomes higher.
A dielectric ceramic composition having a large Qu in the micro frequency range is desired. As a conventional dielectric porcelain material, a dielectric porcelain composition having a crystal structure containing two phases of a perovskite phase and an ilmenite phase (Japanese Patent Laid-Open No. 2-129065),
A dielectric ceramic composition (Japanese Patent Laid-Open No. 52-118599) in which MgTiO 3 and TiO 2 contain a predetermined amount of CaTiO 3 is known.

【0003】[0003]

【発明が解決しようとする課題】しかし、前者の誘電体
磁器組成物ではNd2 3 、La2 3 、PbO、Zn
O等の他成分が多く含まれる上、Quも必ずしも大きな
値とは言えない。後者の誘電体磁器組成物では、TiO
2 を必須成分として含み、CaTiO3 の混合量が3〜
10重量%の範囲においてはτfが+87〜−100と
大きく変化し、0付近の小さな値には調整が困難等の問
題があった。
However, in the former dielectric ceramic composition, Nd 2 O 3 , La 2 O 3 , PbO and Zn are used.
In addition to containing many other components such as O, Qu is not always a large value. In the latter dielectric ceramic composition, TiO 2
2 is included as an essential component, and the mixing amount of CaTiO 3 is 3 to
In the range of 10% by weight, τf greatly changes from +87 to -100, and there is a problem that it is difficult to adjust a small value near 0.

【0004】本発明は、上記問題点を解決するものであ
り、Al2 3 の添加量を加減することによって、Qu
及び比誘電率(以下、単にεr という。)を実用的な特
性範囲に維持しつつ、τfをゼロに近づける又はゼロを
中心としてプラス側とマイナス側の所望の値に任意に且
つ安定して制御し得ることができる誘電体磁器組成物を
提供することを目的とする。
The present invention solves the above-mentioned problems, and by adjusting the amount of Al 2 O 3 added, Qu
While maintaining the relative permittivity (hereinafter, simply referred to as ε r ) within a practical characteristic range, τf is brought close to zero or is arbitrarily and stably set to a desired value on the plus side and the minus side centered on zero. It is an object to provide a dielectric porcelain composition that can be controlled.

【0005】[0005]

【課題を解決するための手段】本発明者らは、誘電体磁
器組成物において、高いQu及びεr を維持しつつ、τ
fをゼロに近づけることができる組成について種々検討
した結果、Al2 3の添加量を加減することによりこ
れを達成できることを見出して、本発明を完成するに至
ったのである。即ち、本発明の誘電体磁器組成物は、x
MgTiO3 ・(1−x)CaTiO3 〔但し、0.9
3≦x≦0.95〕で示される組成を主成分とし、これ
に上記xMgTiO3 ・(1−x)CaTiO3 100
重量部に対して3〜12重量部のAl2 3 が添加含有
されたことを特徴とする。上記xが0.93より小さい
と、τfが大きな正の値をとるとともに、Quが小さく
なり、逆に0.95を越えるとτfが大きな負の値をと
り、好ましくないからである。
Means for Solving the Problems The present inventors have found that, in the dielectric ceramic composition, while maintaining high Qu and epsilon r, tau
As a result of various studies on the composition capable of making f close to zero, the inventors have found that this can be achieved by adjusting the amount of Al 2 O 3 added, and completed the present invention. That is, the dielectric ceramic composition of the present invention is x
MgTiO 3 · (1-x) CaTiO 3 [however, 0.9
3 ≦ x ≦ 0.95] as a main component, and the above xMgTiO 3 · (1-x) CaTiO 3 100
It is characterized in that 3 to 12 parts by weight of Al 2 O 3 is added and contained with respect to parts by weight. If x is smaller than 0.93, τf takes a large positive value, and Qu becomes small. Conversely, if it exceeds 0.95, τf takes a large negative value, which is not preferable.

【0006】Al2 3 の添加量が多くなるほど、Qu
は大きくなる傾向にあり(図1)、εr 、τf及び焼結
密度は下がる傾向にある(図2〜4)。特に、上記Al
2 3 の添加量が3〜9重量%であり、且つ焼成温度が
1300〜1375℃である場合は、表1及び図1〜4
に示すように、Quが3360〜3730、εr が1
8.4〜20.6、τfが−2.2〜+2.6ppm/
℃、焼結密度が3.57〜3.82g/cm3 であり、
広い温度範囲にて焼成しても高品質なものを安定して確
保できる。特に、τfは、その変動が極めて小さく(即
ち、−2〜+3ppm/℃に集中している。)、しか
も、いずれも0近辺の値を示す。以上より、Al2 3
の添加量(3〜9重量%)及び上記適正な温度範囲(1
300〜1375℃)において、これらの性能に優れ且
つそのバランスのとれたものとなるとともに、安定した
品質のものとなる。
As the amount of Al 2 O 3 added increases, Qu
Tends to increase (FIG. 1), and ε r , τ f and the sintered density tend to decrease (FIGS. 2-4). In particular, the above Al
When the addition amount of 2 O 3 is 3 to 9 wt% and the firing temperature is 1300 to 1375 ° C., Table 1 and FIGS.
, Qu is 3360 to 3730 and ε r is 1.
8.4 to 20.6, τf is -2.2 to +2.6 ppm /
℃, the sintered density is 3.57 ~ 3.82g / cm 3 ,
Even if it is fired in a wide temperature range, a high quality product can be stably secured. In particular, τf has a very small variation (that is, it is concentrated in the range of −2 to +3 ppm / ° C.), and each shows a value near 0. From the above, Al 2 O 3
(3 to 9% by weight) and the appropriate temperature range (1
At 300 to 1375 ° C.), these properties are excellent and well-balanced, and stable quality is obtained.

【0007】[0007]

【実施例】以下、実施例により本発明を具体的に説明す
る。MgO粉末(純度;99.4%)、CaO成分とし
てのCaCO3 粉末(純度;99%)、TiO2 粉末
(純度;99.98%)、Al2 3 粉末(純度;9
9.9%)を出発原料として、表1及び2に示すよう
に、組成式xMgTiO3・(1−x)CaTiO3
y重量%Al2 3 〔xMgTiO3 ・(1−x)Ca
TiO3 100重量部に対してAl2 3 y重量部を意
味する。〕の各xとyが変化した組成になるように、所
定量(全量として約500g)を秤量、混合した。尚、
表1はCaTiO3 (1−x)の添加量(構成量)を変
化させたもの、表2はAl2 3 の添加量を変化させた
ものである。
EXAMPLES The present invention will be specifically described below with reference to examples. MgO powder (purity; 99.4%), CaCO 3 powder as a CaO component (purity; 99%), TiO 2 powder (purity; 99.98%), Al 2 O 3 powder (purity; 9)
9.9%) as the starting material, as shown in Tables 1 and 2, the composition formula xMgTiO 3. (1-x) CaTiO 3 +
y wt% Al 2 O 3 [xMgTiO 3 · (1-x) Ca
It means Al 2 O 3 y parts by weight with respect to 100 parts by weight of TiO 3 . ] A predetermined amount (about 500 g as a total amount) was weighed and mixed so that each x and y in the above] had a changed composition. still,
Table 1 shows the amount of CaTiO 3 (1-x) added (constituent amount), and Table 2 shows the amount of Al 2 O 3 added.

【0008】[0008]

【表1】 [Table 1]

【0009】[0009]

【表2】 [Table 2]

【0010】その後、ミキサーで乾式による混合(20
〜30分)及び一次粉砕を施した後、大気雰囲気中にて
1100℃の温度で2時間仮焼した。次いで、この仮焼
粉末に適量の有機バインダー(29g)と水(300〜
400g)を加え、20mmφのアルミナボールで、9
0rpm、23時間粉砕した。その後、真空凍結乾燥
(約0.4Torr、40〜50℃、約20時間)によ
り造粒し、この造粒された原料を用いて1トン/cm2
のプレス圧で19mmφ×11mmt(厚さ)の円柱状
に成形した。
Then, dry mixing (20
˜30 minutes) and primary pulverization, and then calcination for 2 hours at a temperature of 1100 ° C. in an air atmosphere. Next, an appropriate amount of organic binder (29 g) and water (300-
400 g), and with an alumina ball of 20 mmφ,
It was crushed at 0 rpm for 23 hours. Then, it is granulated by vacuum freeze-drying (about 0.4 Torr, 40 to 50 ° C., about 20 hours), and 1 ton / cm 2 is used by using this granulated raw material.
It was molded into a cylindrical shape of 19 mmφ × 11 mmt (thickness) by the pressing pressure of.

【0011】次に、この成形体を大気中、500℃、3
時間にて脱脂し、その後、1250〜1425℃の範囲
の所定温度で、4時間焼成し、最後に両端面を約16
mφ×mmt(厚さ)の円柱状に研磨して、誘電体試
料(表1のNo.1〜12及び表2のNo.1〜24)
とした。そして、各試料につき、平行導体板型誘電体円
柱共振器法(TE011 MODE)等により、Qu、εr
及びτf、更に、焼結密度をアルキメデス法により測定
した。尚、このτf は20℃〜80℃の温度領域で測定
し、τf =〔(f(80 ℃)−f(20 ℃)〕/〔f(20
℃) ×ΔT〕で算出した。このΔTは80℃−20℃=
60℃である。これらの結果を表1、表2及び図1〜8
に示す。尚、Qu測定に供した共振周波数は5.7〜
6.3GHzである。表1及び表2中のQu値は、6G
Hzに換算した値である。また、Al2 3 添加量と焼
結体平均粒径との関係を図9に、焼成温度と焼結体平均
粒径との関係を図10に示す。更に、一例として、0.
94MgTiO3 ・0.06CaTiO3 ・3〜12重
量%Al2 3 の場合のX線回折の結果を図13(13
50℃で4時間焼成)に示す。
Next, the molded body was placed in the atmosphere at 500 ° C. for 3 days.
After degreasing for a period of time, after that, it is baked at a predetermined temperature in the range of 1250 to 1425 ° C. for 4 hours, and finally both end surfaces are about 16 m
Dielectric samples (Nos. 1 to 12 in Table 1 and Nos. 1 to 24 in Table 2) were polished into a cylindrical shape of mφ × 8 mmt (thickness).
And Then, for each sample, Qu, ε r was measured by a parallel conductor plate type dielectric cylinder resonator method (TE 011 MODE) or the like.
And τf, and the sintered density was measured by the Archimedes method. This τ f is measured in the temperature range of 20 ° C. to 80 ° C., and τ f = [(f (80 ° C.) − F (20 ° C.)] / [F (20
C) × ΔT]. This ΔT is 80 ° C-20 ° C =
It is 60 ° C. These results are shown in Table 1, Table 2 and FIGS.
Shown in. The resonance frequency used for the Qu measurement is 5.7 to
It is 6.3 GHz. The Qu value in Tables 1 and 2 is 6G.
It is a value converted to Hz. 9 shows the relationship between the added amount of Al 2 O 3 and the average particle size of the sintered body, and FIG. 10 shows the relationship between the firing temperature and the average particle size of the sintered body. Furthermore, as an example, 0.
FIG. 13 (13) shows the results of X-ray diffraction in the case of 94MgTiO 3 .0.06CaTiO 3 .3 to 12 wt% Al 2 O 3 .
Calcination at 50 ° C. for 4 hours).

【0012】これらの結果によれば、xMgTiO3
(1−x)CaTiO3 の(1−x)が大きいとQu値
は小さくなる傾向にあるが、逆にτfとεr はプラス側
に大きくなる傾向がある。尚、焼結密度は、焼成温度が
高いほど大きくなる傾向にある。Al2 3 の添加量が
多くなるほど、Quは大きくなる傾向にあり、εr 、τ
f及び焼結密度は下がる傾向にある。そして、焼成温度
が1275℃の場合には、Qu、εr 及び焼結密度が小
さい傾向にあるとともに、そのバラツキが大きいが、1
300〜1375℃では、大変安定した性能を示す。ま
た、Al2 3 添加量が3〜9重量%で且つ焼成温度が
1300〜1375℃の場合では、前述のように、Qu
が3360〜3730、εr が18.4〜20.6、τ
fが−2.2〜+2.6ppm/℃、焼結密度が3.5
68〜3.816g/cm3 となり、大変バランスのと
れた性能、物性を示す。以上より、Al2 3 の適度な
添加は、εr を維持しつつ、Quの性能を向上させ、更
にτfの調整に適する。特に、τfに関して言えば、A
2 3 の添加量及び焼成温度に対する変化率が低いた
め0ppm/℃付近の小さな値を調節し易い。
According to these results, xMgTiO 3 ·
If (1-x) of (1-x) CaTiO 3 is large, the Qu value tends to be small, but conversely, τf and ε r tend to be large on the plus side. The sintering density tends to increase as the firing temperature increases. Qu tends to increase as the amount of Al 2 O 3 added increases, and ε r , τ
f and the sintered density tend to decrease. When the firing temperature is 1275 ° C., Qu, ε r, and sintered density tend to be small, and the variation is large, but 1
At 300 to 1375 ° C, very stable performance is exhibited. Further, in the case where the added amount of Al 2 O 3 is 3 to 9 wt% and the firing temperature is 1300 to 1375 ° C., as described above, Qu
Is 3360-3730, ε r is 18.4-20.6, τ
f is -2.2 to +2.6 ppm / ° C, and the sintered density is 3.5.
It was 68 to 3.816 g / cm 3 , showing very well balanced performance and physical properties. From the above, proper addition of Al 2 O 3 improves Qu performance while maintaining ε r, and is suitable for adjusting τ f. Especially, regarding τf, A
Since the rate of change with respect to the amount of l 2 O 3 added and the firing temperature is low, it is easy to adjust a small value near 0 ppm / ° C.

【0013】また、図10に示すように、焼成温度の上
昇とともに焼結体中の結晶粒子の粒子径が大きくなり
(1300℃;1.61μm、1350℃;2.19μ
m、1400℃;4.46μm、いずれもIntercept 法
により測定)、一方、図9に示すように、Al2 3
加量の増加とともに同粒子径は小さくなった(3重量
%;3.97、6重量%;3.76、12重量%;2.
19)。更に、図11に6重量%Al2 3 を添加した
組成物(1350℃、4時間焼成)の電子顕微鏡写真
(1000倍)を白黒複写して結晶の構造を説明した図
を、図12に12重量%Al2 3 を添加した組成物
(1350℃、4時間焼成)の電子顕微鏡写真(100
0倍)を白黒複写して結晶の構造を説明した図を示し、
これらの図によれば、いずれも、ほぼ均一な粒径分布を
示している。また、破断面組織は3〜12重量%のAl
2 3 添加系でいずれも粒内破壊を示した。
Further, as shown in FIG. 10, the grain size of the crystal grains in the sintered body increased as the firing temperature increased (1300 ° C .; 1.61 μm, 1350 ° C .; 2.19 μ
m, 1400 ° C .; 4.46 μm, both measured by Intercept method), on the other hand, as shown in FIG. 9, the particle size decreased with increasing Al 2 O 3 addition amount (3% by weight; 3.97). , 6% by weight; 3.76, 12% by weight;
19). Further, FIG. 12 is a diagram illustrating a crystal structure by black-and-white copying an electron micrograph (1000 times) of a composition (1350 ° C., calcined for 4 hours) to which 6 wt% Al 2 O 3 was added in FIG. An electron micrograph of a composition (1350 ° C., baked for 4 hours) to which 12% by weight of Al 2 O 3 was added (100
(0 times) is shown in black and white to explain the crystal structure.
According to these figures, all show a substantially uniform particle size distribution. The fracture surface structure is 3 to 12% by weight of Al.
All of the systems containing 2 O 3 showed intragranular fracture.

【0014】更に、図13に示すX線回折ピークの有無
による分析方法によれば、本発明品の構造は、MgTi
3 (○)とCaTiO3 (●)を含み、他のピークと
してはMgTi2 5 (△)があり、Al2 3 との反
応生成物を含んでいないことを示している。
Further, according to the analysis method based on the presence / absence of X-ray diffraction peaks shown in FIG. 13, the structure of the product of the present invention is MgTi.
It contains O 3 (◯) and CaTiO 3 (), and the other peak is MgTi 2 O 5 (Δ), indicating that it does not contain the reaction product with Al 2 O 3 .

【0015】尚、本発明においては、前記具体的実施例
に示すものに限られず、目的、用途に応じて本発明の範
囲内で種々変更した実施例とすることができる。即ち、
前記仮焼温度等の仮焼条件、焼成温度等の焼成条件等は
種々選択できる。また、CaOとなる原料も上記CaC
3 以外にも、過酸化物、水酸化物、硝酸塩等を用いる
こともできる。他の酸化物についても同様に、加熱によ
り酸化物となる他種化合物を用いることができる。
The present invention is not limited to the specific examples described above, and various modifications may be made within the scope of the present invention depending on the purpose and application. That is,
Various calcination conditions such as the calcination temperature and the calcination conditions such as the calcination temperature can be selected. Also, the raw material that becomes CaO is the above-mentioned CaC.
Besides O 3 , peroxides, hydroxides, nitrates and the like can be used. Similarly, for other oxides, other kinds of compounds which become oxides by heating can be used.

【0016】[0016]

【発明の効果】以上のように、本発明の誘電体磁器組成
物は、Qu及びεr を実用的な(高い)特性範囲に維持
しつつ、Al2 3 の添加量を加減することによって、
τfをゼロに近づける、又はゼロを中心としてプラス側
とマイナス側の所望の値に任意に制御し得ることができ
るとともに、τfを0付近に安定して調節できる。
INDUSTRIAL APPLICABILITY As described above, the dielectric porcelain composition of the present invention maintains the Qu and ε r in a practical (high) characteristic range while controlling the addition amount of Al 2 O 3 . ,
τf can be brought close to zero, or can be arbitrarily controlled to a desired value on the plus side and the minus side centering on zero, and τf can be stably adjusted to near zero.

【図面の簡単な説明】[Brief description of drawings]

【図1】各焼成温度により焼成されて製造された〔0.
94MgTiO3 ・0.06CaTiO3 +(0〜1
2)Al2 3 重量%〕磁器組成物において、Al2
3量とQuとの関係を示すグラフである。
FIG. 1 is manufactured by firing at various firing temperatures [0.
94MgTiO 3 · 0.06CaTiO 3 + (0-1
2) Al 2 O 3 wt%] In the porcelain composition, Al 2 O
It is a graph which shows the relationship between 3 quantity and Qu.

【図2】図1にて示す磁器組成物において、(0〜12
重量%)Al2 3 量とεr との関係を示すグラフであ
る。
2] In the porcelain composition shown in FIG.
3 is a graph showing the relationship between the weight% Al 2 O 3 amount and ε r .

【図3】図1にて示す磁器組成物において、(0〜12
重量%)Al2 3 量とτfとの関係を示すグラフであ
る。
3] In the porcelain composition shown in FIG.
3 is a graph showing the relationship between (wt%) Al 2 O 3 amount and τf.

【図4】図1にて示す磁器組成物において、(3〜12
重量%)Al2 3 量と焼結密度との関係を示すグラフ
である。
4] In the porcelain composition shown in FIG.
3 is a graph showing the relationship between the amount of (% by weight) Al 2 O 3 and the sintered density.

【図5】〔0.94MgTiO3 ・0.06CaTiO
3 +(3〜12)重量%Al2 3 〕磁器組成物におい
て、焼成温度とQuとの関係を示すグラフである。
FIG. 5 [0.94MgTiO 3 .0.06CaTiO 3
3 + (3 to 12) wt% Al 2 O 3 ] A ceramic composition showing a relationship between firing temperature and Qu.

【図6】図5にて示す磁器組成物において、焼成温度と
εr との関係を示すグラフである。
FIG. 6 is a graph showing the relationship between the firing temperature and ε r in the porcelain composition shown in FIG.

【図7】図5にて示す磁器組成物において、焼成温度と
τfとの関係を示すグラフである。
FIG. 7 is a graph showing the relationship between firing temperature and τf in the porcelain composition shown in FIG.

【図8】図5にて示す磁器組成物において、焼成温度と
焼結密度との関係を示すグラフである。
FIG. 8 is a graph showing the relationship between firing temperature and sintered density in the porcelain composition shown in FIG.

【図9】1350℃で焼成されて製造された〔0.94
MgTiO3 ・0.06CaTiO3 +(3〜12)A
2 3 重量%〕磁器組成物において、Al2 3 量と
焼結体の平均粒径との関係を示すグラフである。
FIG. 9: manufactured by firing at 1350 ° C. [0.94
MgTiO 3 · 0.06CaTiO 3 + (3~12 ) A
In l 2 O 3 wt%] porcelain composition is a graph showing the relationship between the average particle size of the Al 2 O 3 amount and the sintered body.

【図10】〔0.94MgTiO3 ・0.06CaTi
3 +12重量%Al2 3 〕磁器組成物において、焼
成温度と焼結体の平均粒径との関係を示すグラフであ
る。
FIG. 10 [0.94MgTiO 3 .0.06CaTi
In O 3 +12 wt% Al 2 O 3] ceramic composition is a graph showing the relationship between the average particle diameter of the sintering temperature and the sintered body.

【図11】〔0.94MgTiO3 ・0.06CaTi
3 +6重量%Al2 3 〕磁器組成物の結晶の構造を
示す電子顕微鏡写真図(1000倍)である。
FIG. 11 [0.94MgTiO 3 .0.06CaTi
O 3 +6 wt% Al 2 O 3] an electron micrograph showing the structure of the crystal of the ceramic composition (1000 times).

【図12】〔0.94MgTiO3 ・0.06CaTi
3 +12重量%Al2 3 〕磁器組成物のの結晶の構
造を示す電子顕微鏡写真図(1000倍)である。
FIG. 12 [0.94MgTiO 3 .0.06CaTi
O 3 is a +12 wt% Al 2 O 3] an electron micrograph showing the structure of the crystals of the ceramic composition (1000 times).

【図13】〔0.94MgTiO3 ・0.06CaTi
3 +3、6、9又は12重量%Al2 3 〕磁器組成
物のX線回折結果を示すグラフである。
FIG. 13 [0.94MgTiO 3 · 0.06CaTi
[Fig. 3 ] Fig. 3 is a graph showing the X-ray diffraction results of O 3 +3, 6, 9 or 12 wt% Al 2 O 3 ] porcelain composition.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 xMgTiO3 ・(1−x)CaTiO
3 〔但し、0.93≦x≦0.95〕で示される組成を
主成分とし、これに上記xMgTiO3 ・(1−x)C
aTiO3 100重量部に対して3〜12重量部のAl
2 3 が添加含有されたことを特徴とするマイクロ波誘
電体磁器組成物。
1. xMgTiO 3. (1-x) CaTiO
3 [however, 0.93 ≤ x ≤ 0.95] as the main component, and the above xMgTiO 3 · (1-x) C
3 to 12 parts by weight of Al based on 100 parts by weight of aTiO 3.
A microwave dielectric ceramic composition containing 2 O 3 as an additive.
JP4360058A 1992-08-03 1992-12-30 Microwave dielectric porcelain composition Pending JPH06199567A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP4360058A JPH06199567A (en) 1992-12-30 1992-12-30 Microwave dielectric porcelain composition
US08/101,252 US5340784A (en) 1992-08-03 1993-08-02 Microwave dielectric ceramic composition
EP93112424A EP0582274B1 (en) 1992-08-03 1993-08-03 Microwave dielectric ceramic composition
DE69311768T DE69311768T2 (en) 1992-08-03 1993-08-03 Dielectric ceramic composition for microwaves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4360058A JPH06199567A (en) 1992-12-30 1992-12-30 Microwave dielectric porcelain composition

Publications (1)

Publication Number Publication Date
JPH06199567A true JPH06199567A (en) 1994-07-19

Family

ID=18467694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4360058A Pending JPH06199567A (en) 1992-08-03 1992-12-30 Microwave dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JPH06199567A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100349006B1 (en) * 2000-06-22 2002-08-17 주식회사 어드밴택 A dielectric material for microwave

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100349006B1 (en) * 2000-06-22 2002-08-17 주식회사 어드밴택 A dielectric material for microwave

Similar Documents

Publication Publication Date Title
US4330631A (en) Dielectric ceramics
EP0412440B1 (en) Dielectric ceramic for microwave applications
JPH0687367B2 (en) Dielectric porcelain composition
JPH09118562A (en) Ceramic dielectric for high-frequency wave
JP2001114553A (en) Microwave dielectric substance ceramic composition
JP2974829B2 (en) Microwave dielectric porcelain composition
EP0533162B1 (en) BaO-xTiO2 dielectric ceramic composition
JP3179916B2 (en) Microwave dielectric porcelain composition
JP3027031B2 (en) Microwave dielectric porcelain composition and method for producing the same
JPH06199567A (en) Microwave dielectric porcelain composition
JP3162208B2 (en) Microwave dielectric porcelain composition
US4442220A (en) Dielectric ceramics
JPH07201223A (en) Microwave dielectric porcelain composite, and its manufacture
JPH06215626A (en) Microwave dielectric porcelain composition and manufacture thereof
JPH0377146B2 (en)
JP2974823B2 (en) Microwave dielectric porcelain composition
JP3179901B2 (en) Microwave dielectric porcelain composition
JP2000143336A (en) Dielectric ceramic composition, its production and dielectric resonator and dielectric filter produced by using the composition
JPH06239663A (en) Microwave dielectric material porcelain composition and its production
JP3212704B2 (en) Microwave dielectric porcelain composition
JP5134819B2 (en) High frequency dielectric ceramics
JPH0692727A (en) Microwave dielectric porcelain composition
JP3301651B2 (en) Microwave dielectric porcelain composition
JP3242243B2 (en) Microwave dielectric porcelain composition
JP3120191B2 (en) High frequency dielectric ceramic composition