JPH06239663A - Microwave dielectric material porcelain composition and its production - Google Patents
Microwave dielectric material porcelain composition and its productionInfo
- Publication number
- JPH06239663A JPH06239663A JP5052971A JP5297193A JPH06239663A JP H06239663 A JPH06239663 A JP H06239663A JP 5052971 A JP5052971 A JP 5052971A JP 5297193 A JP5297193 A JP 5297193A JP H06239663 A JPH06239663 A JP H06239663A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- weight
- mno
- zno
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Inorganic Insulating Materials (AREA)
- Insulating Bodies (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、マイクロ波誘電体磁器
組成物に関し、更に詳しく言えば、無負荷Q(以下、単
にQuという。)を実用的な特性範囲で維持しつつ、3
6〜38という高い比誘電率(以下、単にεr とい
う。)を備え、共振周波数の温度係数(以下、単にτf
という。)をゼロ付近の小さな値とし、仮焼温度及び焼
成温度を変えても安定した性能を示すマイクロ波誘電体
磁器組成物及びその製造方法に関する。本発明は、マイ
クロ波領域において誘電体共振器、マイクロ波集積回路
基板、各種マイクロ波回路のインピーダンス整合等に利
用される。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microwave dielectric porcelain composition, and more specifically, it maintains an unloaded Q (hereinafter referred to simply as "Q") within a practical characteristic range.
It has a high relative dielectric constant of 6 to 38 (hereinafter, simply referred to as ε r ) and has a temperature coefficient of resonance frequency (hereinafter, simply referred to as τ f).
Say. ) Is a small value near zero, and shows stable performance even when the calcination temperature and the firing temperature are changed, and a method for producing the same. INDUSTRIAL APPLICABILITY The present invention is utilized for impedance matching of dielectric resonators, microwave integrated circuit substrates, various microwave circuits, etc. in the microwave region.
【0002】[0002]
【従来の技術】マイクロ波誘電体磁器組成物(以下、単
に誘電体磁器組成物という。)は、使用周波数が高周波
となるに従って誘電損失が大きくなる傾向にあるので、
マイクロ周波数領域でQuの大きな誘電体磁器組成物が
望まれている。従来の高εr を有する誘電体磁器材料と
しては、所定量のTiO2 、ZrO2及びSnO2 を主
成分とし、これに所定量のZnOを含有した誘電体磁器
組成物(特開昭54−35678号公報)、上記主成分
に所定量のZnO及びNiOを含有した誘電体磁器組成
物(特開昭55−34526号公報)、上記主成分に所
定量のZnO及びTa2 O5 を含有した誘電体磁器組成
物(特開昭61−13326号公報)、並びに上記主成
分に所定量のZnO、NiO及びMnO2 を含有した誘
電体磁器組成物(特開平3−28162号公報)等が知
られている。2. Description of the Related Art Microwave dielectric porcelain compositions (hereinafter simply referred to as dielectric porcelain compositions) tend to increase in dielectric loss as the operating frequency becomes higher.
A dielectric ceramic composition having a large Qu in the micro frequency range is desired. As a conventional dielectric porcelain material having a high ε r , a dielectric porcelain composition mainly containing a predetermined amount of TiO 2 , ZrO 2 and SnO 2 and containing a predetermined amount of ZnO (JP-A-54- No. 35678), a dielectric porcelain composition containing a predetermined amount of ZnO and NiO in the main component (JP-A-55-34526), and a predetermined amount of ZnO and Ta 2 O 5 in the main component. Known are dielectric ceramic compositions (Japanese Patent Application Laid-Open No. 61-13326), and dielectric ceramic compositions (Japanese Patent Application Laid-Open No. 3-28162) containing a predetermined amount of ZnO, NiO and MnO 2 in the main components. Has been.
【0003】[0003]
【発明が解決しようとする課題】しかし、上記従来の誘
電体磁器組成物では、高Qu、高εr 及び0近辺の
τf、更に製造条件による性能のバラツキの少なさにお
いて、全て満足するわけではない。However, the above-mentioned conventional dielectric ceramic compositions are all satisfied in terms of high Qu, high ε r and τ f near 0, and a small variation in performance due to manufacturing conditions. is not.
【0004】本発明は、上記問題点を解決するものであ
り、Quを実用的な特性範囲に維持しつつ、36〜38
という高いεr を備え、τf をゼロ付近の小さな値と
し、更に仮焼温度及び焼成温度を変えても安定した性能
を示すマイクロ波誘電体磁器組成物及びその製造方法を
提供することを目的とする。The present invention solves the above-mentioned problems and maintains 36 to 38 while maintaining Qu within a practical characteristic range.
It is an object of the present invention to provide a microwave dielectric ceramic composition having a high ε r , a small τ f value near zero, and stable performance even when the calcination temperature and the firing temperature are changed, and a method for producing the same. And
【0005】[0005]
【課題を解決するための手段】本発明者らは、誘電体磁
器組成物において、Quを実用的な特性範囲に維持しつ
つ、τf をゼロに近づけることができ、且つ仮焼温度及
び焼成温度を変えても安定した品質を備える組成につい
て種々検討した結果、MnO2 及びZnOを添加するこ
とによりこの欠点が解消されることを見出して、本発明
を完成するに至ったのである。DISCLOSURE OF THE INVENTION The inventors of the present invention have made it possible to maintain τ f close to zero in a dielectric ceramic composition while maintaining Qu within a practical characteristic range, and to obtain a calcination temperature and a firing temperature. As a result of various studies on a composition having stable quality even when the temperature was changed, it was found that addition of MnO 2 and ZnO eliminates this drawback, and the present invention has been completed.
【0006】即ち、本第1発明の誘電体磁器組成物は、
(Zr1-X SnX )TiO4 (但し0.1≦x≦0.
3)で示される組成を主成分とし、これに上記(Zr
1-X SnX )TiO4 100重量部に対して0.1〜
0.5重量部のMnO2 及び0.1〜1.0重量部(以
下、これらの場合を単に「重量%」という。)のZnO
が添加含有されたことを特徴とする。上記Xが0.1未
満では、焼結性不充分となり、0.3を越えると、急激
な特性の低下となり、好ましくない。また、上記MnO
2 添加量が0.1重量%未満では、焼結性不充分とεr
の低下となり、0.5重量%を越えると、Quの低下と
なり、好ましくない。更に上記ZnOの添加量が0.1
重量%未満では、εr の低下となり、1.0重量%を越
えると、Quが低下し、好ましくない。That is, the dielectric ceramic composition of the first invention is
(Zr 1-X Sn X ) TiO 4 (where 0.1 ≦ x ≦ 0.
The composition shown in 3) is the main component.
1-X Sn X ) TiO 4 0.1 to 100 parts by weight
0.5 parts by weight of MnO 2 and 0.1 to 1.0 parts by weight (hereinafter, these cases are simply referred to as “weight%”) ZnO.
Is added and contained. If the above X is less than 0.1, the sinterability will be insufficient, and if it exceeds 0.3, the characteristics will rapidly deteriorate, which is not preferable. In addition, the above MnO
2 If the addition amount is less than 0.1% by weight, the sinterability is insufficient and ε r
When it exceeds 0.5% by weight, Qu is lowered, which is not preferable. Further, the amount of ZnO added is 0.1
If it is less than wt%, ε r is lowered, and if it exceeds 1.0 wt%, Qu is lowered, which is not preferable.
【0007】本第2発明の誘電体磁器組成物の製造方法
は、ZrO2 粉末、SnO2 粉末及びTiO2 粉末を
(Zr1-X SnX )TiO4 (但し0.1≦x≦0.
3)の組成式組成になるように、且つMnO2 粉末を上
記(Zr1-X SnX )TiO4 100重量部に対して
0.1〜0.5重量部(重量%)、ZnO粉末を0.1
〜1.0重量部(重量%)の配合割合になるように、混
合し、その後、大気雰囲気中にて800〜900℃の温
度で仮焼し、次いで、この仮焼粉末に所定の有機バイン
ダー及び水を加えて粉砕し、その後、この粉砕物を凍結
乾燥にて造粒し、次いで、この造粒粉末を用いて所定形
状に成形し、大気雰囲気中、1325〜1425℃にて
焼成することを特徴とする。上記仮焼温度を800〜9
00℃に限定した理由は、800℃未満の場合は、例え
ばMnO2 の添加量が多い場合にはいずれの性能も低下
し、そのバラツキが大きくなる場合があり、900℃を
越えると、Quとτf が低下するからである。In the method for producing a dielectric ceramic composition according to the second aspect of the present invention, ZrO 2 powder, SnO 2 powder and TiO 2 powder are converted into (Zr 1-X Sn X ) TiO 4 (where 0.1 ≦ x ≦ 0.
The composition formula 3) is used, and the MnO 2 powder is added in an amount of 0.1 to 0.5 parts by weight (% by weight) based on 100 parts by weight of the above (Zr 1-X Sn X ) TiO 4 , and ZnO powder 0.1
To 1.0 part by weight (wt%), and then calcinated in an air atmosphere at a temperature of 800 to 900 ° C. Then, the calcinated powder is mixed with a predetermined organic binder. And pulverizing by adding water, and then granulating the pulverized product by freeze-drying, and then molding the granulated powder into a predetermined shape, and calcining at 1325 to 1425 ° C. in an air atmosphere. Is characterized by. The calcination temperature is set to 800-9
The reason for limiting the temperature to 00 ° C. is that when the temperature is lower than 800 ° C., for example, when the addition amount of MnO 2 is large, any of the performances may deteriorate and the variation may become large. This is because τ f decreases.
【0008】MnO2 を添加すると、Quは小さくなる
傾向にあるが(図1)、εr 及びτf は上がる傾向にあ
り(図2及び図3)、焼結密度はあまり変わらない(表
2)。特に、上記MnO2 の添加量が0.1重量%、Z
nOの添加量が0.5重量%、仮焼温度が900℃、且
つ焼成温度が1375℃である代表的な場合は、表1に
示すように、εr が37.6、Quが3500、τf が
+0.71ppm/℃であり、優れた諸特性を示してい
る。更に、MnO2 添加量、ZnO添加量及び焼成温度
が上記と同条件であり、仮焼温度を800〜900℃と
変化させても、εr は37.6±0、Quは3500±
0、τf が+0.71〜+0.72ppm/℃であり、
各性能のバラツキが極めて小さい(表1)。また、焼成
温度が1325〜1425℃の場合(これ以外は上記と
同条件)は、εr が37.4〜37.7、Quが316
0〜3500、τf が−0.18〜+0.71ppm/
℃であり、この場合も各性能のバラツキは極めて小さ
い。しかもτf は0ppm/℃近辺の小さな値となる。When MnO 2 is added, Qu tends to decrease (FIG. 1), ε r and τ f tend to increase (FIGS. 2 and 3), and the sintered density does not change much (Table 2). ). In particular, the amount of MnO 2 added is 0.1% by weight, Z
In a typical case where the added amount of nO is 0.5% by weight, the calcination temperature is 900 ° C., and the firing temperature is 1375 ° C., as shown in Table 1, ε r is 37.6, Qu is 3500, τ f is +0.71 ppm / ° C, which shows excellent characteristics. Furthermore, the amount of MnO 2 added, the amount of ZnO added, and the firing temperature are the same as above, and even if the calcination temperature is changed to 800 to 900 ° C., ε r is 37.6 ± 0 and Qu is 3500 ±.
0, τ f is +0.71 to +0.72 ppm / ° C,
The variation in each performance is extremely small (Table 1). When the firing temperature is 1325 to 1425 ° C. (other than above, the same conditions as above), ε r is 37.4 to 37.7 and Qu is 316.
0 to 3500, τ f is -0.18 to +0.71 ppm /
C., and even in this case, the variation in each performance is extremely small. Moreover, τ f becomes a small value around 0 ppm / ° C.
【0009】また、表3に示すように、ZnOを添加す
ると、εr は低下し、Quも低下し、τf はマイナス側
にわずか移行する。更に、表4に示すように、Xを0.
1〜0.3に変えると、εr は低下し、Quは増大し、
τf はマイナス側へ移行するものの、τf はX=0.2
で最も零に近い値を示した。また、表5に示すように、
ZrO2 の種類(純度)を変えても、ZnOのみの添加
(MnO2 不添加)の場合と比べると、各性能のバラツ
キは小さい。以上より、図1〜3及び表1〜5に示すよ
うに、MnO2 及びZnOの適当量の添加により、広い
温度範囲(仮焼温度、焼成温度)にて焼成しても、性能
に優れるとともに、この性能が安定し且つ焼結密度の高
い焼結体を製造できる。Further, as shown in Table 3, when ZnO is added, ε r decreases, Qu also decreases, and τ f slightly shifts to the minus side. Further, as shown in Table 4, X is 0.
When changing to 1-0.3, ε r decreases and Qu increases,
τ f shifts to the minus side, but τ f is X = 0.2
Showed the value closest to zero. In addition, as shown in Table 5,
Even if the type (purity) of ZrO 2 is changed, the variation in each performance is small as compared with the case where only ZnO is added (MnO 2 is not added). From the above, as shown in FIGS. 1 to 3 and Tables 1 to 5, by adding an appropriate amount of MnO 2 and ZnO, even when firing in a wide temperature range (calcination temperature, firing temperature), the performance is excellent and It is possible to manufacture a sintered body with stable performance and high sintering density.
【0010】[0010]
【実施例】以下、試験例及び実施例により本発明を具体
的に説明する。 (1)MnO2 及びZnOの添加量、仮焼温度及び焼成
温度と性能との関係 ZrO2 粉末(純度;99.35%)、SnO2 粉末
(純度;99.7%)、TiO2 粉末(純度;99.9
8%)、ZnO粉末(純度;99.5%)、MnO2 粉
末(純度;94%)を出発原料として、準備する。そし
て、表1〜3及び図1〜3に示すように、MnO2 添加
量が0.1〜0.5重量%の範囲にて変化させた組成に
なるように、また、表3に示すように、ZnO添加量が
0.2〜0.7重量%の範囲にて変化させた組成になる
ように、所定量(全量として約600g)を秤量、混合
した。EXAMPLES The present invention will be specifically described below with reference to test examples and examples. (1) Relationship between Addition Amount of MnO 2 and ZnO, Calcination Temperature and Firing Temperature and Performance ZrO 2 powder (purity; 99.35%), SnO 2 powder (purity; 99.7%), TiO 2 powder ( Purity; 99.9
8%), ZnO powder (purity; 99.5%), and MnO 2 powder (purity; 94%) as starting materials. Then, as shown in Tables 1 to 3 and FIGS. 1 to 3, the amount of MnO 2 added was changed in the range of 0.1 to 0.5% by weight, and as shown in Table 3. Then, a predetermined amount (total amount of about 600 g) was weighed and mixed so that the composition was changed in the range of 0.2 to 0.7% by weight of ZnO.
【0011】その後、ミキサーで乾式による混合(20
〜30分)及び一次粉砕を施した後、大気雰囲気中にて
800〜900℃の温度で2時間仮焼した。次いで、こ
の仮焼粉末に適量の有機バインダー(種類;ポリビニル
アルコール系化合物)29gと水450〜550gを加
え、20mmφのアルミナボールで、90rpm、23
時間粉砕した。その後、真空凍結乾燥(約0.4Tor
r、約23時間、凍結温度−20℃、乾燥温度50℃)
により造粒し、この造粒された原料を用いて1000k
g/cm2 のプレス圧で19mmφ×10mmt(厚
さ)の円柱状に成形した。Then, dry mixing (20
˜30 minutes) and primary pulverization, and then calcinated in the air atmosphere at a temperature of 800 to 900 ° C. for 2 hours. Then, 29 g of an appropriate amount of an organic binder (kind; polyvinyl alcohol compound) and 450 to 550 g of water are added to this calcined powder, and an alumina ball of 20 mmφ is used, and 90 rpm, 23
Crushed for hours. After that, vacuum freeze-drying (about 0.4 Tor
r, about 23 hours, freezing temperature -20 ° C, drying temperature 50 ° C)
Granulated by, and using this granulated raw material, 1000k
It was molded into a cylindrical shape of 19 mmφ × 10 mmt (thickness) with a pressing pressure of g / cm 2 .
【0012】次に、この成形体を大気中、650℃、3
時間にて脱脂し、その後、1325〜1425℃の範囲
の各温度で、3.5時間焼成し、最後に両端面を約16
mmφ×8mmt(厚さ)の円柱状に研磨して、誘電体
試料(表1のNo.1〜6、表2のNo.1〜2及び表
3のNo.1〜3)とした。そして、各試料につき、平
行導体板型誘電体円柱共振器法(TE011 MODE)等
により、εr 、Qu及びτf 、更に、アルキメデス法に
より焼結密度を測定した。尚、測定周波数は4.2GH
z〜4.5GHzで、4.5GHzに換算した値を示し
た。また、τf は30℃〜80℃の温度領域で測定し、
τf =(f80−f30)/(f30×ΔT)、ΔT=80−
30=50℃にて算出した。これらの結果を表1〜3及
び図1〜3に示す。尚、これらのZrO2 中にはHfO
2 が2重量%含まれる。また、図1〜3中の○は主成分
組成にMnO2 及び0.5重量%ZnOを添加したも
の、▲はMnO2 のみ添加したもの(ZnOを含まない
もの)を示す。Next, the molded body was placed in the atmosphere at 650 ° C. for 3 days.
Degreasing is performed for a period of time, and then firing is performed at each temperature in the range of 1325 to 1425 ° C. for 3.5 hours, and finally both end surfaces are about 16
It was polished into a cylindrical shape of mmφ × 8 mmt (thickness) to obtain dielectric samples (Nos. 1 to 6 in Table 1, Nos. 1 to 2 in Table 2 and Nos. 1 to 3 in Table 3). Then, for each sample, by the parallel conductive plate type dielectric cylindrical resonator method (TE 011 MODE) or the like, epsilon r, Qu and tau f, further, was measured sintered density by the Archimedes method. The measurement frequency is 4.2GH
A value converted to 4.5 GHz was shown at z to 4.5 GHz. Also, τ f is measured in the temperature range of 30 ° C to 80 ° C,
τ f = (f 80 −f 30 ) / (f 30 × ΔT), ΔT = 80−
It was calculated at 30 = 50 ° C. The results are shown in Tables 1 to 3 and FIGS. HfO is contained in these ZrO 2.
2 is contained by 2% by weight. Further, in FIGS. 1 to 3, ◯ indicates that MnO 2 and 0.5 wt% ZnO were added to the main component composition, and ▲ indicates that only MnO 2 was added (without ZnO).
【0013】[0013]
【表1】 [Table 1]
【0014】[0014]
【表2】 [Table 2]
【0015】[0015]
【表3】 [Table 3]
【0016】(2)Zr及びSnの組成比 仮焼温度が900℃、焼成温度が1350℃であって、
組成式(Zr1-X SnX )TiO4 におけるXが0.
1、0.2及び0.3であること以外は、上記試験例と
同様にして、各磁器組成物を製造した。この組成物につ
いて同様に性能を評価し、その結果を表4に示す。(2) Composition ratio of Zr and Sn: The calcination temperature is 900 ° C. and the firing temperature is 1350 ° C.
X in the composition formula (Zr 1-X Sn X ) TiO 4 is 0.
Each porcelain composition was manufactured in the same manner as in the above-mentioned test example except that it was 1, 0.2 and 0.3. The performance of this composition was evaluated in the same manner, and the results are shown in Table 4.
【0017】[0017]
【表4】 [Table 4]
【0018】(3)ZrO2 粉末の高純度品と低純度品
との比較及び従来磁器組成物との比較 表5に示すように、組成式(Zr0.8 Sn0.2 )TiO
4 +0.5重量%ZnO+0.1重量%MnO2 であっ
て、表5に示す仮焼、焼成条件下にて製造した磁器組成
物の特性値を同表に示す。高純度品(純度;99.97
%)を用いた場合を実施例1、低純度品(純度;99.
35%)を用いた場合を実施例2とした。尚、これらの
高、低純度品中には、HfO2 が2重量%含まれる。比
較例1としては、組成式(Zr0.8 Sn0.2 )TiO4
+0.5重量%ZnO(MnO2を含まない。)であっ
て高純度品のZrO2 を用いたもの、比較例2は、比較
例1と同組成であって低純度品のZrO2 を用いたも
の、比較例3は、組成式(Zr0.8 Sn0.2 )TiO4
+0.3重量%MnO2 (ZnOを含まない。)であっ
て高純度品のZrO2 を用いたもの、比較例4は、比較
例3と同組成であって低純度品のZrO2 を用いたもの
である。(3) Comparison of high-purity ZrO 2 powder with low-purity product and comparison with conventional porcelain composition As shown in Table 5, the composition formula (Zr 0.8 Sn 0.2 ) TiO 2
The characteristic values of the porcelain composition, which is 4 + 0.5 wt% ZnO + 0.1 wt% MnO 2 and is manufactured under the conditions of calcination and firing shown in Table 5, are shown in the same table. High-purity product (Purity: 99.97
% In Example 1, low purity product (purity; 99.
35%) was used as Example 2. Note that 2% by weight of HfO 2 is contained in these high and low purity products. As Comparative Example 1, the composition formula (Zr 0.8 Sn 0.2 ) TiO 4 was used.
+0.5 wt% ZnO (not containing MnO 2 ) and using high-purity ZrO 2 , Comparative Example 2 uses the same composition as Comparative Example 1 and low-purity ZrO 2 . The comparative example 3 has a composition formula (Zr 0.8 Sn 0.2 ) TiO 4
+0.3 wt% MnO 2 (without ZnO) and using high-purity ZrO 2 , Comparative Example 4 uses the same composition as Comparative Example 3 and low-purity ZrO 2 . It was what I had.
【0019】[0019]
【表5】 [Table 5]
【0020】(4)試験例及び実施例の効果 表1の結果によれば、MnO2 の添加により、εr はあ
まり変わらないものの、Quはやや小さくなり、逆にτ
f は大きくなる傾向にある。従って、MnO2の0.1
〜0.2重量%の添加、仮焼温度が800〜900℃及
び焼成温度が1325〜1425℃の場合、Qu(31
00〜3500)の低下を抑えつつ、εr を37以上
(37.2〜38.0)に維持でき、且つτf を0pp
m/℃近辺(−0.34〜+1.28ppm/℃)に維
持できる。(4) Effects of Test Examples and Examples According to the results of Table 1, addition of MnO 2 does not significantly change ε r , but Qu becomes slightly small, and conversely τ.
f tends to be large. Therefore, MnO 2 of 0.1
When the calcination temperature is 800 to 900 ° C and the firing temperature is 1325 to 1425 ° C, Qu (31
It is possible to maintain ε r at 37 or more (37.2 to 38.0) and suppress τ f to 0 pp while suppressing the decrease of 0 to 3500).
It can be maintained around m / ° C (-0.34 to +1.28 ppm / ° C).
【0021】また、仮焼温度が800でも900℃(Z
nO0.5重量%、MnO2 0.1重量%、焼成温度1
375℃)でも各性能差はほとんどなく〔Qu:Δ(バ
ラツキを示す、以下も同じ。)0、εr :Δ0、τf :
Δ0.01〕、安定した性能を示している。更に、焼成
温度を1325〜1425℃の範囲(ZnO0.5重量
%、MnO2 0.1重量%、仮焼温度900℃)にて変
動させても、各性能のバラツキは極めて小さく(Qu:
Δ340、εr :0.3、τf :Δ0.89)、しかも
τf は−0.18ppm/℃〜+0.71ppm/℃と
小さいため、0ppm/℃付近の小さな値を極めて容易
に調節できる。表2の結果によれば、仮焼温度、焼成温
度及びMnO2 添加量を変えても安定した焼結密度(5
以上;5.030〜5.092)が得られる。表3の結
果によれば、ZnOの添加により、εr は低下し、Qu
も低下し、τf はマイナス側に移行する。Even if the calcination temperature is 800, 900 ° C. (Z
nO 0.5 wt%, MnO 2 0.1 wt%, firing temperature 1
There is almost no difference in performance even at 375 ° C.) [Qu: Δ (variation is shown, the same applies below) 0, ε r : Δ 0, τ f :
Δ0.01], indicating stable performance. Furthermore, even if the firing temperature is varied in the range of 1325 to 1425 ° C. (ZnO 0.5% by weight, MnO 2 0.1% by weight, calcination temperature 900 ° C.), the variation in each performance is extremely small (Qu:
Δ340, ε r : 0.3, τ f : Δ 0.89), and τ f is as small as −0.18 ppm / ° C. to +0.71 ppm / ° C., so a small value near 0 ppm / ° C. can be adjusted very easily. . According to Table 2 results, the calcining temperature, changing the firing temperature and MnO 2 added amounts stable sintered density (5
Above; 5.030 to 5.092) is obtained. According to the results shown in Table 3, ε r was decreased by adding ZnO and Qu
Also decreases, and τ f shifts to the negative side.
【0022】更に、表4の結果によれば、SnO2 (X
=0.1〜0.3の範囲内)の増加によって、εr は低
下し、Quは向上するが、τf がマイナス側に移行しX
が0.2にてτf が略0ppm/℃の結果を示した。ま
た、表5の結果によれば、実施例1及び2のZrO2 の
種類(純度)を変えても、MnO2 のみの添加の場合
(εr :Δ0.79、τf :Δ0)と比べると大きいも
のの、ZnOのみの添加の場合(εr :Δ1.24、τ
f :Δ5.45)と比べると、各性能のバラツキは小さ
い(εr :Δ1.02、τf :Δ1.19)。Further, according to the results of Table 4, SnO 2 (X
= Within the range of 0.1 to 0.3), ε r decreases and Qu increases, but τ f shifts to the negative side and X
Was 0.2 and τ f was about 0 ppm / ° C. Further, according to the results in Table 5, even when the type (purity) of ZrO 2 in Examples 1 and 2 is changed, it is compared with the case where only MnO 2 is added (ε r : Δ0.79, τ f : Δ0). However, when only ZnO is added (ε r : Δ1.24, τ
f : Δ5.45), the variation in each performance is small (ε r : Δ1.02, τ f : Δ1.19).
【0023】尚、本発明においては、前記具体的実施例
に示すものに限られず、目的、用途に応じて本発明の範
囲内で種々変更した実施例とすることができる。即ち、
前記仮焼温度等の仮焼条件、焼成温度等の焼成条件等は
種々選択できる。また、酸化物についても、加熱により
酸化物となる他種化合物を用いることができる。The present invention is not limited to the specific examples described above, and various modifications may be made within the scope of the present invention depending on the purpose and application. That is,
Various calcination conditions such as the calcination temperature and the calcination conditions such as the calcination temperature can be selected. Further, as for the oxide, it is possible to use another compound which becomes an oxide by heating.
【0024】[0024]
【発明の効果】本発明の誘電体磁器組成物においては、
MnO2 の添加量を加減することによって、Qu及びε
r を実用的な(高い)特性範囲に維持しつつ、τf をゼ
ロに近づける又はゼロを中心としてプラス側とマイナス
側の所望の値に任意に調節するることができるので、大
変性能のバランスに優れる。また、仮焼温度及び焼成温
度を変えても極めて安定した性能を示す。本発明の製造
方法によれば、上記安定し且つ性能バランスの優れた磁
器組成物を、容易に製造できる。In the dielectric ceramic composition of the present invention,
By adjusting the amount of MnO 2 added, Qu and ε
While maintaining r in a practical (high) characteristic range, τ f can be brought close to zero or adjusted to desired values on the plus side and minus side centered on zero, so a very good performance balance. Excellent in. Further, it shows extremely stable performance even if the calcination temperature and the calcination temperature are changed. According to the production method of the present invention, the porcelain composition which is stable and has an excellent performance balance can be easily produced.
【図1】〔(Zr0.8 Sn0.2 )TiO4 +(0.1〜
0.5)重量%MnO2 +0.5重量%ZnO〕磁器組
成物において、MnO2 量とQuとの関係を示すグラフ
である。FIG. 1 [(Zr 0.8 Sn 0.2 ) TiO 4 + (0.1-
0.5) wt% MnO 2 +0.5 wt% ZnO] A ceramic composition showing the relationship between the amount of MnO 2 and Qu.
【図2】図1にて示す磁器組成物において、(0.1〜
0.5重量%)MnO2 量とεr との関係を示すグラフ
である。2] In the porcelain composition shown in FIG.
5 is a graph showing the relationship between 0.5 wt% MnO 2 amount and ε r .
【図3】図1にて示す磁器組成物において、(0.1〜
0.5重量%)MnO2 量とτf との関係を示すグラフ
である。3] In the porcelain composition shown in FIG.
5 is a graph showing the relationship between 0.5% by weight) MnO 2 amount and τ f .
Claims (2)
1≦x≦0.3)で示される組成を主成分とし、これに
上記(Zr1-X SnX )TiO4 100重量部に対して
0.1〜0.5重量部のMnO2 及び0.1〜1.0重
量部のZnOが添加含有されたことを特徴とするマイク
ロ波誘電体磁器組成物。1. (Zr 1-X Sn X ) TiO 4 (provided that 0.
1 ≦ x ≦ 0.3) as a main component, and 0.1 to 0.5 parts by weight of MnO 2 and 0 based on 100 parts by weight of the above (Zr 1-x Sn x ) TiO 4 1 to 1.0 parts by weight of ZnO is added to the microwave dielectric ceramic composition.
2 粉末を(Zr1-XSnX )TiO4 (但し0.1≦x
≦0.3)の組成式組成になるように、且つMnO2 粉
末を上記(Zr1-X SnX )TiO4 100重量部に対
して0.1〜0.5重量部、ZnO粉末を0.1〜1.
0重量部の配合割合になるように、混合し、その後、大
気雰囲気中にて800〜900℃の温度で仮焼し、次い
で、この仮焼粉末に所定の有機バインダー及び水を加え
て粉砕し、その後、この粉砕物を凍結乾燥にて造粒し、
次いで、この造粒粉末を用いて所定形状に成形し、大気
雰囲気中、1325〜1425℃にて焼成することを特
徴とするマイクロ波誘電体磁器組成物の製造方法。2. ZrO 2 powder, SnO 2 powder and TiO 2.
2 powders (Zr 1-X Sn X ) TiO 4 (where 0.1 ≦ x
≦ 0.3), and 0.1 to 0.5 parts by weight of MnO 2 powder with respect to 100 parts by weight of (Zr 1-X Sn x ) TiO 4 and 0 of ZnO powder. 1-1.
The mixture is mixed so as to have a blending ratio of 0 parts by weight, and then calcined at a temperature of 800 to 900 ° C. in an air atmosphere, and then a predetermined organic binder and water are added to the calcined powder and the powder is ground. , Then granulate this crushed product by freeze-drying,
Then, the granulated powder is molded into a predetermined shape and fired at 1325 to 1425 ° C. in an air atmosphere, which is a method for producing a microwave dielectric ceramic composition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5052971A JPH06239663A (en) | 1993-02-18 | 1993-02-18 | Microwave dielectric material porcelain composition and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5052971A JPH06239663A (en) | 1993-02-18 | 1993-02-18 | Microwave dielectric material porcelain composition and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06239663A true JPH06239663A (en) | 1994-08-30 |
Family
ID=12929782
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5052971A Pending JPH06239663A (en) | 1993-02-18 | 1993-02-18 | Microwave dielectric material porcelain composition and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06239663A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100822586B1 (en) * | 2006-12-28 | 2008-04-16 | 삼화콘덴서공업주식회사 | Piezoelectric Dielectric and Manufacturing Method of Piezoelectric Laminated Ceramic Capacitor Using the Same |
WO2012086740A1 (en) * | 2010-12-22 | 2012-06-28 | 京セラ株式会社 | Dielectric ceramic and dielectric filter provided with same |
CN113354411A (en) * | 2021-06-01 | 2021-09-07 | 摩比天线技术(深圳)有限公司 | Medium high thermal shock resistance microwave dielectric ceramic material and preparation method thereof |
CN113429204A (en) * | 2021-03-31 | 2021-09-24 | 摩比天线技术(深圳)有限公司 | Zirconium-tin-titanium microwave dielectric ceramic material and preparation method thereof |
-
1993
- 1993-02-18 JP JP5052971A patent/JPH06239663A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100822586B1 (en) * | 2006-12-28 | 2008-04-16 | 삼화콘덴서공업주식회사 | Piezoelectric Dielectric and Manufacturing Method of Piezoelectric Laminated Ceramic Capacitor Using the Same |
WO2012086740A1 (en) * | 2010-12-22 | 2012-06-28 | 京セラ株式会社 | Dielectric ceramic and dielectric filter provided with same |
US9006122B2 (en) | 2010-12-22 | 2015-04-14 | Kyocera Corporation | Dielectric ceramic and dielectric filter having the same |
JP5726209B2 (en) * | 2010-12-22 | 2015-05-27 | 京セラ株式会社 | Dielectric ceramics and dielectric filter provided with the same |
CN113429204A (en) * | 2021-03-31 | 2021-09-24 | 摩比天线技术(深圳)有限公司 | Zirconium-tin-titanium microwave dielectric ceramic material and preparation method thereof |
CN113354411A (en) * | 2021-06-01 | 2021-09-07 | 摩比天线技术(深圳)有限公司 | Medium high thermal shock resistance microwave dielectric ceramic material and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2001114553A (en) | Microwave dielectric substance ceramic composition | |
JPH06215626A (en) | Microwave dielectric porcelain composition and manufacture thereof | |
JPH06239663A (en) | Microwave dielectric material porcelain composition and its production | |
JPH0517213A (en) | Microwave dielectric porcelain composition | |
JPH07201223A (en) | Microwave dielectric porcelain composite, and its manufacture | |
JP3027031B2 (en) | Microwave dielectric porcelain composition and method for producing the same | |
JP3100173B2 (en) | Microwave dielectric porcelain composition | |
JP3550414B2 (en) | Method for producing microwave dielectric porcelain composition | |
JP2974823B2 (en) | Microwave dielectric porcelain composition | |
JP3179916B2 (en) | Microwave dielectric porcelain composition | |
JP3162208B2 (en) | Microwave dielectric porcelain composition | |
JPH06309926A (en) | Dielectric ceramic composition | |
JP2950672B2 (en) | Dielectric porcelain composition | |
JP3384598B2 (en) | Microwave dielectric porcelain composition and method for producing the same | |
JP3291780B2 (en) | Dielectric porcelain composition | |
JPH06325620A (en) | Dielectric porcelain composition | |
JPH06275126A (en) | Dielectric porcelain composition | |
JPH01234358A (en) | Dielectric ceramic composition | |
JP3243890B2 (en) | Dielectric porcelain composition | |
JPH0692727A (en) | Microwave dielectric porcelain composition | |
JP3257147B2 (en) | Dielectric porcelain composition | |
JP3365873B2 (en) | Microwave dielectric porcelain composition and method for producing the same | |
JP3301651B2 (en) | Microwave dielectric porcelain composition | |
JPH06321631A (en) | Microwave dielectric porcelain composition | |
JPH07165466A (en) | Production of microwave dielectric ceramic composition |