[go: up one dir, main page]

JP3179916B2 - Microwave dielectric porcelain composition - Google Patents

Microwave dielectric porcelain composition

Info

Publication number
JP3179916B2
JP3179916B2 JP36005992A JP36005992A JP3179916B2 JP 3179916 B2 JP3179916 B2 JP 3179916B2 JP 36005992 A JP36005992 A JP 36005992A JP 36005992 A JP36005992 A JP 36005992A JP 3179916 B2 JP3179916 B2 JP 3179916B2
Authority
JP
Japan
Prior art keywords
weight
porcelain composition
amount
dielectric
catio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP36005992A
Other languages
Japanese (ja)
Other versions
JPH06199568A (en
Inventor
宗臣 加藤
博文 尾関
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to JP36005992A priority Critical patent/JP3179916B2/en
Priority to US08/101,252 priority patent/US5340784A/en
Priority to EP93112424A priority patent/EP0582274B1/en
Priority to DE69311768T priority patent/DE69311768T2/en
Publication of JPH06199568A publication Critical patent/JPH06199568A/en
Application granted granted Critical
Publication of JP3179916B2 publication Critical patent/JP3179916B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、マイクロ波誘電体磁器
組成物に関し、更に詳しく言えば、無負荷Q(以下、単
にQuという。)及び比誘電率(以下、単にεr とい
う。)を高い値で維持しつつ、共振周波数の温度係数
(以下、単にτfという。)をゼロに近づけることがで
き、更にCo2 3 の添加量を加減することによって、
τfをゼロを中心としてプラス側とマイナス側に任意に
制御し得ることができるマイクロ波誘電体磁器組成物に
関するものである。本発明は、マイクロ波領域において
誘電体共振器、マイクロ波集積回路基板、各種マイクロ
波回路のインピーダンス整合等に利用される。
BACKGROUND OF THE INVENTION This invention relates to a microwave dielectric ceramic composition and, more particularly, the unloaded Q (hereinafter, simply. As Qu) and dielectric constant (hereinafter, simply epsilon r of.) The While maintaining the value at a high value, the temperature coefficient of the resonance frequency (hereinafter simply referred to as τf) can be made close to zero, and by further adjusting the addition amount of Co 2 O 3 ,
The present invention relates to a microwave dielectric porcelain composition capable of arbitrarily controlling τf to a plus side and a minus side with zero as a center. INDUSTRIAL APPLICABILITY The present invention is used for a dielectric resonator, a microwave integrated circuit board, impedance matching of various microwave circuits, and the like in a microwave region.

【0002】[0002]

【従来の技術】マイクロ波誘電体磁器組成物(以下、単
に誘電体磁器組成物という。)は、使用周波数が高周波
となるに従って誘電損失が大きくなる傾向にあるので、
マイクロ周波数領域でQuの大きな誘電体磁器組成物が
望まれている。従来の誘電体磁器材料としては、結晶構
造がペロブスカイト相とイルメナイト相との2相を含む
誘電体磁器組成物(特開平2−129065号公報)、
MgTiO3 とTiO2 に所定量のCaTiO3 を含有
した誘電体磁器組成物(特開昭52−118599号公
報)等が知られている。
2. Description of the Related Art Microwave dielectric porcelain compositions (hereinafter simply referred to as dielectric porcelain compositions) tend to increase dielectric loss as the operating frequency increases.
There is a demand for a dielectric ceramic composition having a large Qu in the micro frequency range. As a conventional dielectric porcelain material, a dielectric porcelain composition having a crystal structure including two phases of a perovskite phase and an ilmenite phase (Japanese Patent Laid-Open No. 2-129065),
A dielectric ceramic composition containing a predetermined amount of CaTiO 3 in MgTiO 3 and TiO 2 (Japanese Patent Application Laid-Open No. Sho 52-118599) is known.

【0003】[0003]

【発明が解決しようとする課題】しかし、前者の誘電体
磁器組成物ではNd2 3 、La2 3 、PbO、Zn
O等の他成分が多く含まれる上、Quも必ずしも大きな
値とは言えない。後者の誘電体磁器組成物では、TiO
2 を必須成分として含み、CaTiO3 の混合量が3〜
10重量%の範囲においてはτfが+87〜−100と
大きく変化し、0付近の小さな値に調整すること(特に
微調整すること)が困難である等の問題があった。
However, in the former dielectric ceramic composition, Nd 2 O 3 , La 2 O 3 , PbO, Zn
In addition to containing many other components such as O, Qu cannot always be said to be a large value. In the latter dielectric porcelain composition, TiO
2 as an essential component, and the mixing amount of CaTiO 3 is 3 to
In the range of 10% by weight, there was a problem that τf greatly changed from +87 to -100, and it was difficult to adjust (especially fine adjustment) to a small value near 0.

【0004】本発明は、上記問題点を解決するものであ
り、Qu及びεr を実用的な特性範囲に維持しつつ、τ
fをゼロに近づける又はゼロを中心としてプラス側とマ
イナス側の所望の値に任意に且つ精密に制御し得ること
ができる誘電体磁器組成物を提供することを目的とす
る。
[0004] The present invention is to solve the above problems, while maintaining Qu and epsilon r a practical characteristic range, tau
It is an object of the present invention to provide a dielectric ceramic composition capable of arbitrarily and precisely controlling f to be close to zero or to desired values on the plus side and the minus side with zero as a center.

【0005】[0005]

【課題を解決するための手段】本発明者らは、誘電体磁
器組成物において、高いQu及びεr を維持しつつ、τ
fをゼロに近づけることができ、且つ焼成温度を変えて
も安定した品質を備える組成について種々検討した結
果、Co2 3 の添加量を加減することによりこの欠点
が解消されることを見出して、本発明を完成するに至っ
たのである。
Means for Solving the Problems The present inventors have found that, in the dielectric ceramic composition, while maintaining high Qu and epsilon r, tau
As a result of various studies on compositions that can make f close to zero and have stable quality even when the firing temperature is changed, it was found that this defect can be solved by adjusting the amount of Co 2 O 3 added. Thus, the present invention has been completed.

【0006】即ち、本発明の誘電体磁器組成物は、xM
gTiO3 ・(1−x)CaTiO3 〔但し、0.93
≦x≦0.95〕で示される組成を主成分とし、これに
上記xMgTiO3 ・(1−x)CaTiO3 100重
量部に対して3〜12重量部(以下、便宜上、3〜12
重量%という。)のCo2 3 を添加含有させたことを
特徴とする。上記xが0.93より小さいと、τfが大
きな正の値をとるとともに、Quが小さくなり、逆に
0.95を越えるとτfが大きな負の値をとり、好まし
くないからである。また、Co2 3 の添加量が、3重
量%未満となるとτf がプラス側に大きくなり、また、
12重量%を越えるとτf がマイナス側に大きくなり、
且つQuが小さくなるので、好ましくない。一方、これ
が3〜12重量%の場合は、Qu及びεr をあまり低下
させずに実用的な範囲に収めつつ、τf をゼロ近辺の値
とすることができるからである。そして、CaTiO3
の混合割合(1−x)が多くなるほど、Quは小さくな
り、εr は大きくなり、τfはマイナスの値からプラス
の方向へ向かう傾向にある(表1)。また、Co2 3
の添加量が多くなるほど、Quは小さくなる傾向にあり
(図1)、εr はあまり変わらないもののやや小さくな
る傾向にあり(図2)、τfはマイナスの方向に向かう
傾向にあり(図3)、焼結密度は上がる傾向にある(図
4)。
That is, the dielectric ceramic composition of the present invention comprises xM
gTiO 3 · (1-x) CaTiO 3 [provided that 0.93
≦ x ≦ 0.95] as a main component, and 3 to 12 parts by weight based on 100 parts by weight of the above xMgTiO 3. (1-x) CaTiO 3 (hereinafter, 3 to 12 parts for convenience)
% By weight. Characterized in that the Co 2 O 3) of was contained added. If x is smaller than 0.93, τf takes a large positive value and Qu decreases. Conversely, if it exceeds 0.95, τf takes a large negative value, which is not preferable. When the addition amount of Co 2 O 3 is less than 3% by weight, τ f increases to the plus side, and
If it exceeds 12% by weight, τ f becomes large on the minus side,
In addition, Qu becomes undesirably small. On the other hand, when the content is 3 to 12% by weight, τ f can be set to a value close to zero while keeping Qu and ε r within a practical range without much lowering. And CaTiO 3
The mixing ratio (1-x) as increases of, Qu decreases, epsilon r increases, .tau.f tends toward the negative value to a positive direction (Table 1). Also, Co 2 O 3
Increases, the Qu tends to decrease (FIG. 1), the ε r does not change much, but tends to slightly decrease (FIG. 2), and the τf tends to the minus direction (FIG. 3). ), The sintering density tends to increase (FIG. 4).

【0007】特に、上記Co2 3 の添加量が6重量%
であり、且つ1350〜1450℃にて焼成した場合
は、表1及び図1〜8に示すように、Quが3780〜
3970、τfが−0.74〜−0.03ppm/℃、
εr が20.4〜20.8、焼結密度が3.83〜3.
89g/cm3 であり、100℃という広い温度範囲内
にて焼成しても、各性能のバラツキが少ないとともに優
れた性能を示している。特に、τfが0ppm/℃付近
の絶対値の極めて小さな値となり、且つ約0.5(pp
m/℃)/1重量%Co2 3 を示し、大変好ましくτ
f の微調整も極めて容易である。以上より、Co2 3
の添加量及び適正で且つ広いな焼成温度範囲において、
これらの性能に優れ且つそのバランスのとれたものとな
るとともに、τf の微調整が容易で安定した品質のもの
となる。
In particular, when the amount of Co 2 O 3 added is 6% by weight.
And when fired at 1350-1450 ° C., as shown in Table 1 and FIGS.
3970, τf is −0.74 to −0.03 ppm / ° C.,
The ε r is 20.4 to 20.8, and the sintered density is 3.83 to 3.
It is 89 g / cm 3 , and even when fired in a wide temperature range of 100 ° C., the dispersion of each performance is small and excellent performance is shown. In particular, τf has an extremely small absolute value near 0 ppm / ° C. and is about 0.5 (pp
m / ° C.) / 1% by weight Co 2 O 3 , very preferably τ
Fine adjustment of f is also very easy. From the above, Co 2 O 3
And the appropriate and wide firing temperature range,
These performances are excellent and balanced, and fine adjustment of τ f is easy and stable.

【0008】[0008]

【実施例】以下、実施例により本発明を具体的に説明す
る。MgO粉末(純度;99.4%)、CaOとしてC
aCO3 粉末(純度;99%)、TiO2 粉末(純度;
99.98%)、Co2 3 粉末(純度;99.1%)
を出発原料として、表1〜3及び図1〜8に示すよう
に、組成式xMgTiO3 ・(1−x)CaTiO3
yCo2 3 重量%〔xMgTiO3 ・(1−x)Ca
TiO3 100重量部に対してCo2 3 y重量部を意
味する。〕の各xとyが変化した組成になるように、所
定量(全量として約500g)を秤量、混合した。尚、
表1はCo2 3 を含有せずにCaTiO3 (1−x)
の添加量を変化させたもの、表2は一定量のCaTiO
3 (1−x)を添加(構成)した場合において、Co2
3 の添加量を変化させたもの、表3は一定量のCo2
3 を添加した場合において、CaTiO3 の添加量を
変化させたものである。
The present invention will be described below in detail with reference to examples. MgO powder (purity; 99.4%), C as CaO
aCO 3 powder (purity; 99%), TiO 2 powder (purity;
99.98%), Co 2 O 3 powder (purity; 99.1%)
As a starting material, as shown in Tables 1 to 3 and FIGS. 1 to 8, the composition formula xMgTiO 3. (1-x) CaTiO 3 +
yCo 2 O 3 % by weight [xMgTiO 3. (1-x) Ca
100 parts by weight of TiO 3 means y parts by weight of Co 2 O 3 . A predetermined amount (about 500 g in total) was weighed and mixed so that each of x and y in the above formulas was changed. still,
Table 1 shows that CaTiO 3 (1-x) without containing Co 2 O 3
Table 2 shows that a certain amount of CaTiO 2 was added.
3 When (1-x) is added (composed), Co 2
That the amount of O 3 is varied, Table 3 a certain amount of Co 2
In the case where O 3 is added, the amount of CaTiO 3 added is changed.

【0009】[0009]

【表1】 [Table 1]

【0010】[0010]

【表2】 [Table 2]

【0011】[0011]

【表3】 [Table 3]

【0012】その後、ミキサーで乾式による混合(20
〜30分)及び一次粉砕を施した後、大気雰囲気中にて
1100℃の温度で2時間仮焼した。次いで、この仮焼
粉末に適量の有機バインダー(29g)と水(300〜
400g)を加え、20mmφのアルミナボールで、9
0rpm、23時間粉砕した。その後、真空凍結乾燥
(約0.4Torr、40〜50℃、約20時間)によ
り造粒し、この造粒された原料を用いて1トン/cm2
のプレス圧で19mmφ×11mmt(厚さ)の円柱状
に成形した。次に、この成形体を大気中、500℃、3
時間にて脱脂し、その後、1325〜1450℃の範囲
の各温度で、4時間焼成し、最後に両端面を約16mm
φ×mmt(厚さ)の円柱状に研磨して、誘電体試料
(表1のNo.1〜12、表2のNo.1〜24、表3
のNo.25、26)とした。
Thereafter, dry mixing (20)
-30 minutes) and primary pulverization, and then calcined in an air atmosphere at a temperature of 1100 ° C for 2 hours. Next, an appropriate amount of an organic binder (29 g) and water (300 to 300 g) were added to the calcined powder.
400 g), and with an alumina ball of 20 mmφ, 9
Grinding was performed at 0 rpm for 23 hours. Thereafter, granulation is performed by vacuum freeze-drying (about 0.4 Torr, 40 to 50 ° C., about 20 hours), and 1 ton / cm 2 is obtained using the granulated raw material.
At a pressing pressure of 19 mmφ × 11 mmt (thickness). Next, the molded body was heated at 500 ° C.
Was degreased with time, then, at each temperature in the range of 1,325-1,450 ° C., and calcined for 4 hours, and finally the two end faces about 16 mm
Polished into a cylindrical shape of φ × 8 mmt (thickness), and the dielectric samples (Nos. 1 to 12 in Table 1, Nos. 1 to 24 in Table 2, and Table 3)
No. 25, 26).

【0013】そして、各試料につき、平行導体板型誘電
体円柱共振器法(TE011 MODE)等により、εr
Qu及びτf、更に、焼結密度をアルキメデス法により
測定した。尚、このτf は20℃〜80℃の温度領域で
測定し、τf =〔(f(80 ℃)−f(20 ℃)〕/〔f(2
0 ℃) ×ΔT〕で算出した。このΔTは80℃−20℃
=60℃である。尚、共振周波数は6GHzである。こ
れらの結果を表1〜3及び図1〜8に示す。また、一例
として、0.94MgTiO3 ・0.06CaTiO3
・3、6又は12重量%Co2 3 の磁器組成物(14
00℃で4時間焼成)についてのX線回折の結果を図1
0に示す。
Then, for each sample, ε r , ε r , by the parallel conductor plate type dielectric cylinder resonator method (TE 011 MODE), etc.
Qu and τf, and the sintered density were measured by Archimedes' method. Here, τ f is measured in a temperature range of 20 ° C. to 80 ° C., and τ f = [(f (80 ° C.) − F (20 ° C.)] / [F (2
0 ° C.) × ΔT]. This ΔT is 80 ° C-20 ° C
= 60 ° C. The resonance frequency is 6 GHz. The results are shown in Tables 1 to 3 and FIGS. In addition, as an example, 0.94MgTiO 3 · 0.06CaTiO 3
A porcelain composition of 3 , 6 or 12% by weight Co 2 O 3 (14
FIG. 1 shows the results of X-ray diffraction for
0 is shown.

【0014】これらの結果によれば、xMgTiO3
(1−x)CaTiO3 の(1−x)が大きいとQu値
は小さくなる傾向にあるが、逆にτfとεr はプラス側
に大きくなる傾向がある。尚、焼結密度は、焼成温度が
高いほど大きくなる傾向にある。また、Co2 3 の添
加により、εr はあまり変わらないものの、Qu及びτ
fは小さくなる傾向にあり、焼結密度は増加する傾向に
ある。特に(1−x)が0.06及びCo2 3 の添加
量が6重量%の場合は、例えば焼成温度が1375℃の
場合をとると、τfが−0.10ppm/℃、εr が2
0.82、Quが3870、焼結密度が3.894であ
り、特に優れた性能バランスを示す。また、焼成温度を
1350〜1450℃とした場合は、Qu、εr 及びτ
f のいずれも、そのバラツキが極めて小さく(例えば、
Co2 3 6重量%の場合、順次、3780〜397
0、20.35〜20.82、−0.03〜−0.74
ppm/℃)、所望の品質のもを安定して得ることがで
きる。更に、Co2 3 の添加量を変えても、同様に、
Qu、εr 及びτf のいずれも、そのバラツキが極めて
小さい(例えば、焼成温度が1400℃の場合、順次、
3700〜3900、20.43〜21.00、−0.
05〜−3.13ppm/℃)。従って、Co23
加量及び焼成温度を変えても、極めて安定した品質のも
のを製造できる。特に、τfの微調整が極めて容易であ
る。
According to these results, xMgTiO 3.
(1-x) Qu value (1-x) is large CaTiO 3 is tends to be low, the τf and epsilon r conversely tends to increase on the plus side. The sintering density tends to increase as the firing temperature increases. Also, although ε r does not change much by the addition of Co 2 O 3 , Qu and τ
f tends to be small, and the sintered density tends to increase. In particular, when (1-x) is 0.06 and the added amount of Co 2 O 3 is 6% by weight, for example, when the firing temperature is 1375 ° C., τf is −0.10 ppm / ° C. and ε r is 2
0.82, Qu is 3870, and sintering density is 3.894, showing particularly excellent performance balance. When the firing temperature is 1350 to 1450 ° C., Qu, ε r and τ
f has very small variation (for example,
When Co 2 O 3 is 6% by weight, 3780 to 397
0, 20.35 to 20.82, -0.03 to -0.74
ppm / ° C.), and the desired quality can be stably obtained. Furthermore, even if the addition amount of Co 2 O 3 is changed,
Qu, ε r and τ f have extremely small variations (for example, when the firing temperature is 1400 ° C.,
3700-3900, 20.43-21.00, -0.
05 to -3.13 ppm / ° C). Therefore, even when the amount of Co 2 O 3 added and the sintering temperature are changed, products with extremely stable quality can be manufactured. In particular, fine adjustment of τf is extremely easy.

【0015】また、図10に示すX線回折ピークの有無
による分析方法によれば、本発明品の構造は、MgTi
3 (○)とCaTiO3 (■)を含み、他のピークと
してはMgTi2 4 (●)があり、Co2 3 との反
応生成物を含んでいないことを示している。また、Co
2 3 添加量の増加に伴いMgTiO3 の相対ピーク強
度が減少し、MgTi2 4 の強度は増加する。Quの
低下は、MgTiO3量の減少が原因と考えられる。
Further, according to the analysis method based on the presence or absence of the X-ray diffraction peak shown in FIG.
It contains O 3 (○) and CaTiO 3 (■), and the other peak is MgTi 2 O 4 (●), indicating that it does not contain a reaction product with Co 2 O 3 . Also, Co
As the added amount of 2 O 3 increases, the relative peak intensity of MgTiO 3 decreases, and the intensity of MgTi 2 O 4 increases. It is considered that the decrease in Qu is caused by a decrease in the amount of MgTiO 3 .

【0016】更に、図示しないが、電子顕微鏡写真の結
果によれば、焼成温度の上昇とともに粒子径が大きくな
り(1350℃;4.30μm、1400℃;5.32
μm、1450℃;7.20μm、いずれもIntercept
法により測定)。破断面組織はいずれも粒内破壊を示し
た。
Further, although not shown, according to the results of electron micrographs, the particle diameter increases as the firing temperature increases (1350 ° C .; 4.30 μm, 1400 ° C .; 5.32).
μm, 1450 ° C; 7.20 μm, both Intercept
Method). All fracture surface structures showed intragranular fracture.

【0017】尚、本発明においては、前記具体的実施例
に示すものに限られず、目的、用途に応じて本発明の範
囲内で種々変更した実施例とすることができる。即ち、
前記仮焼温度等の仮焼条件、焼成温度等の焼成条件等は
種々選択できる。また、CaOとなる原料も上記CaC
3 以外にも、過酸化物、水酸化物、硝酸塩等を用いる
こともできる。他の酸化物についても同様に、加熱によ
り酸化物となる他種化合物を用いることができる。
The present invention is not limited to the specific embodiments described above, but may be variously modified within the scope of the present invention according to the purpose and application. That is,
Various calcination conditions such as the calcination temperature and calcination conditions such as the calcination temperature can be selected. Also, the raw material to be CaO is the same as the above CaC.
In addition to O 3 , peroxides, hydroxides, nitrates and the like can also be used. Similarly, other compounds that become oxides by heating can be used for other oxides.

【0018】[0018]

【発明の効果】以上のように、本発明の誘電体磁器組成
物は、Qu及びεr を実用的な(高い)特性範囲に維持
しつつ、Co2 3 の添加量を加減することによって、
τfをゼロに近づける又はゼロを中心としてプラス側と
マイナス側の所望の値に任意に制御し得ることができる
とともに、τfを0付近に安定して調節できる。更に、
Co2 3 の添加により、広い温度範囲内において焼成
温度を種々変動させても、高品質な焼結体を安定して製
造できるし、またτfの微調整が極めて容易である。
As described above, the dielectric porcelain composition of the present invention can be obtained by adjusting the amount of Co 2 O 3 while maintaining Qu and ε r within a practical (high) characteristic range. ,
It is possible to make τf close to zero or arbitrarily control the desired value on the plus side and the minus side with zero as the center, and to stably adjust τf to around zero. Furthermore,
By adding Co 2 O 3 , a high-quality sintered body can be stably manufactured even when the firing temperature is varied in a wide temperature range, and fine adjustment of τf is extremely easy.

【図面の簡単な説明】[Brief description of the drawings]

【図1】各焼成温度により焼成されて製造された〔0.
94MgTiO3 ・0.06CaTiO3 +(3〜1
2)Co2 3 重量%〕磁器組成物において、Co2
3量とQuとの関係を示すグラフである。
FIG. 1 is manufactured by firing at each firing temperature [0.
94MgTiO 3 · 0.06CaTiO 3 + (3~1
In 2) Co 2 O 3 wt%] ceramic composition, Co 2 O
It is a graph which shows the relationship between 3 quantity and Qu.

【図2】図1にて示す磁器組成物において、(3〜12
重量%)Co2 3 量とεr との関係を示すグラフであ
る。
2] In the porcelain composition shown in FIG.
Is a graph showing the relationship between the weight%) Co 2 O 3 amount and epsilon r.

【図3】図1にて示す磁器組成物において、(3〜12
重量%)Co2 3 量とτfとの関係を示すグラフであ
る。
FIG. 3 shows the porcelain composition shown in FIG.
4 is a graph showing the relationship between the amount of Co 2 O 3 and τf.

【図4】図1にて示す磁器組成物において、(3〜12
重量%)Co2 3 量と焼結密度との関係を示すグラフ
である。
FIG. 4 shows the porcelain composition shown in FIG.
4 is a graph showing the relationship between the amount of Co 2 O 3 and the sintered density.

【図5】〔0.94MgTiO3 ・0.06CaTiO
3 +(3〜12)重量%Co2 3 〕磁器組成物におい
て、焼成温度とQuとの関係を示すグラフである。
FIG. 5 [0.94MgTiO 3 .0.06CaTiO
3 is a graph showing the relationship between sintering temperature and Qu in a 3+ (3-12) wt% Co 2 O 3 ] porcelain composition.

【図6】図5にて示す磁器組成物において、焼成温度と
εr との関係を示すグラフである。
In Figure 6 ceramic composition shown in FIG. 5 is a graph showing the relationship between firing temperature and epsilon r.

【図7】図5にて示す磁器組成物において、焼成温度と
τfとの関係を示すグラフである。
FIG. 7 is a graph showing the relationship between the firing temperature and τf in the porcelain composition shown in FIG.

【図8】図5にて示す磁器組成物において、焼成温度と
焼結密度との関係を示すグラフである。
FIG. 8 is a graph showing a relationship between a sintering temperature and a sintering density in the porcelain composition shown in FIG.

【図9】図5にて示す磁器組成物において、焼成温度と
平均粒径との関係を示すグラフである。
9 is a graph showing the relationship between the firing temperature and the average particle size in the porcelain composition shown in FIG.

【図10】〔0.94MgTiO3 ・0.06CaTi
3 +3、6又は12重量%Co2 3 〕磁器組成物の
X線回折結果を示すグラフである。
FIG. 10 [0.94MgTiO 3 .0.06CaTi
3 is a graph showing the results of X-ray diffraction of [O 3 +3, 6, or 12% by weight Co 2 O 3 ] porcelain composition.

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C04B 35/42 - 35/49 CA(STN) REGISTRY(STN)Continued on the front page (58) Fields surveyed (Int. Cl. 7 , DB name) C04B 35/42-35/49 CA (STN) REGISTRY (STN)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 xMgTiO3 ・(1−x)CaTiO
3 〔但し、0.93≦x≦0.95〕で示される組成を
主成分とし、これに上記xMgTiO3 ・(1−x)C
aTiO3 100重量部に対して3〜12重量部のCo
2 3 を添加含有させたことを特徴とするマイクロ波誘
電体磁器組成物。
1. xMgTiO 3. (1-x) CaTiO
3 [However, a composition represented by 0.93 ≦ x ≦ 0.95] as a main component, and the above-mentioned xMgTiO 3. (1-x) C
Co 3-12 parts by weight per ATiO 3 100 parts by weight
A microwave dielectric porcelain composition comprising 2 O 3 added and contained.
JP36005992A 1992-08-03 1992-12-30 Microwave dielectric porcelain composition Expired - Lifetime JP3179916B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP36005992A JP3179916B2 (en) 1992-12-30 1992-12-30 Microwave dielectric porcelain composition
US08/101,252 US5340784A (en) 1992-08-03 1993-08-02 Microwave dielectric ceramic composition
EP93112424A EP0582274B1 (en) 1992-08-03 1993-08-03 Microwave dielectric ceramic composition
DE69311768T DE69311768T2 (en) 1992-08-03 1993-08-03 Dielectric ceramic composition for microwaves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36005992A JP3179916B2 (en) 1992-12-30 1992-12-30 Microwave dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JPH06199568A JPH06199568A (en) 1994-07-19
JP3179916B2 true JP3179916B2 (en) 2001-06-25

Family

ID=18467700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36005992A Expired - Lifetime JP3179916B2 (en) 1992-08-03 1992-12-30 Microwave dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JP3179916B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1598328A4 (en) 2003-01-24 2008-07-09 Ube Industries DIELECTRIC CERAMIC COMPOSITION, DIELECTRIC CERAMIC, AND LAMINATED CERAMIC ELEMENT COMPRISING THE SAME
US8765621B2 (en) 2008-11-25 2014-07-01 Ube Industries, Ltd. Dielectric ceramic composition for high-frequency use and method for producing the same, as well as dielectric ceramic for high-frequency use and method for producing the same and high-frequency circuit element using the same
CN110862256B (en) * 2019-11-13 2021-12-03 深圳顺络电子股份有限公司 Preparation method of microwave dielectric sintered powder material, microwave dielectric ceramic and application thereof

Also Published As

Publication number Publication date
JPH06199568A (en) 1994-07-19

Similar Documents

Publication Publication Date Title
JP3028503B2 (en) Non-reducing dielectric porcelain composition
JP2000007429A (en) Dielectric material and its production
JPH09118562A (en) Ceramic dielectric for high-frequency wave
JP3179916B2 (en) Microwave dielectric porcelain composition
JPH11106255A (en) Dielectric porcelain composition and method for producing the same
JP2001114553A (en) Microwave dielectric substance ceramic composition
US5272122A (en) BaO-xTiO2 dielectric ceramic composition
JP2974829B2 (en) Microwave dielectric porcelain composition
JP3162208B2 (en) Microwave dielectric porcelain composition
JP3027031B2 (en) Microwave dielectric porcelain composition and method for producing the same
JP3436770B2 (en) Method for producing microwave dielectric porcelain composition
JP3179901B2 (en) Microwave dielectric porcelain composition
JP2554478B2 (en) Microwave dielectric porcelain composition
JP3301651B2 (en) Microwave dielectric porcelain composition
JP3212704B2 (en) Microwave dielectric porcelain composition
US4442220A (en) Dielectric ceramics
JP3100178B2 (en) Microwave dielectric porcelain composition
JP3067815B2 (en) Microwave dielectric porcelain composition
JP2974823B2 (en) Microwave dielectric porcelain composition
US5219808A (en) Dielectric ceramic composition
JPH06333426A (en) Dielectric ceramic composition for high frequency
JPH06199567A (en) Microwave dielectric porcelain composition
JPH06239663A (en) Microwave dielectric material porcelain composition and its production
JPH0692727A (en) Microwave dielectric porcelain composition
JP2950672B2 (en) Dielectric porcelain composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080413

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090413

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090413

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090413

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 12