[go: up one dir, main page]

JP3162208B2 - Microwave dielectric porcelain composition - Google Patents

Microwave dielectric porcelain composition

Info

Publication number
JP3162208B2
JP3162208B2 JP27947292A JP27947292A JP3162208B2 JP 3162208 B2 JP3162208 B2 JP 3162208B2 JP 27947292 A JP27947292 A JP 27947292A JP 27947292 A JP27947292 A JP 27947292A JP 3162208 B2 JP3162208 B2 JP 3162208B2
Authority
JP
Japan
Prior art keywords
weight
catio
porcelain composition
amount
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27947292A
Other languages
Japanese (ja)
Other versions
JPH06107457A (en
Inventor
宗臣 加藤
博文 尾関
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to JP27947292A priority Critical patent/JP3162208B2/en
Priority to US08/101,252 priority patent/US5340784A/en
Priority to EP93112424A priority patent/EP0582274B1/en
Priority to DE69311768T priority patent/DE69311768T2/en
Publication of JPH06107457A publication Critical patent/JPH06107457A/en
Application granted granted Critical
Publication of JP3162208B2 publication Critical patent/JP3162208B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、マイクロ波誘電体磁器
組成物に関し、更に詳しく言えば、無負荷Q(以下、単
にQuという。)を高い値で維持しつつ、共振周波数の
温度係数(以下、単にτfという。)をゼロに近づける
ことができ、更にCaTiO3 の混合割合を加減するこ
とによって、τfをゼロを中心としてプラス側とマイナ
ス側に任意に制御し得ることができ、またNb2 5
添加により広い温度範囲にて焼成しても高品質を備える
マイクロ波誘電体磁器組成物に関するものである。本発
明は、マイクロ波領域において誘電体共振器、マイクロ
波集積回路基板、各種マイクロ波回路のインピーダンス
整合等に利用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microwave dielectric porcelain composition, and more particularly, to a temperature coefficient of resonance frequency (hereinafter referred to as "Qu") while maintaining a high value of unloaded Q (hereinafter referred to simply as Qu). Hereinafter, simply referred to as τf) can be made close to zero, and by further adjusting the mixing ratio of CaTiO 3 , τf can be arbitrarily controlled to a plus side and a minus side with zero as a center, and Nb can be controlled. The present invention relates to a microwave dielectric porcelain composition having high quality even when baked in a wide temperature range by adding 2 O 5 . INDUSTRIAL APPLICABILITY The present invention is used for a dielectric resonator, a microwave integrated circuit board, impedance matching of various microwave circuits, and the like in a microwave region.

【0002】[0002]

【従来の技術】マイクロ波誘電体磁器組成物(以下、単
に誘電体磁器組成物という。)は、使用周波数が高周波
となるに従って誘電損失が大きくなる傾向にあるので、
マイクロ周波数領域でQuの大きな誘電体磁器組成物が
望まれている。従来の誘電体磁器材料としては、結晶構
造がペロブスカイト相とイルメナイト相との2相を含む
誘電体磁器組成物(特開平2−129065号公報)、
MgTiO3 とTiO2 に所定量のCaTiO3 を含有
した誘電体磁器組成物(特開昭52−118599号公
報)等が知られている。
2. Description of the Related Art Microwave dielectric porcelain compositions (hereinafter simply referred to as dielectric porcelain compositions) tend to increase dielectric loss as the operating frequency increases.
There is a demand for a dielectric ceramic composition having a large Qu in the micro frequency range. As a conventional dielectric porcelain material, a dielectric porcelain composition having a crystal structure including two phases of a perovskite phase and an ilmenite phase (Japanese Patent Laid-Open No. 2-129065),
A dielectric ceramic composition containing a predetermined amount of CaTiO 3 in MgTiO 3 and TiO 2 (Japanese Patent Application Laid-Open No. Sho 52-118599) is known.

【0003】[0003]

【発明が解決しようとする課題】しかし、前者の誘電体
磁器組成物ではNd2 3 、La2 3 、PbO、Zn
O等の他成分が多く含まれる上、Quも必ずしも大きな
値とは言えない。後者の誘電体磁器組成物では、TiO
2 を必須成分として含み、CaTiO3 の混合量が3〜
10重量%の範囲においてはτfが+87〜−100と
大きく変化し、0付近の小さな値には調整が困難等の問
題があった。
However, in the former dielectric ceramic composition, Nd 2 O 3 , La 2 O 3 , PbO, Zn
In addition to containing many other components such as O, Qu cannot always be said to be a large value. In the latter dielectric porcelain composition, TiO
2 as an essential component, and the mixing amount of CaTiO 3 is 3 to
In the range of 10% by weight, τf greatly changes from +87 to -100, and a small value near 0 has a problem that adjustment is difficult.

【0004】本発明は、上記問題点を解決するものであ
り、CaTiO3 及びNb2 5 の配合割合を加減する
ことによって、εr 及びQuを実用的な特性範囲に維持
しつつ、τfをゼロに近づける又はゼロを中心としてプ
ラス側とマイナス側の所望の値に任意に且つ安定して制
御し得ることができ、更にNb2 5 の添加により広い
温度範囲にて焼成しても高品質を備える誘電体磁器組成
物を提供することを目的とする。
The present invention solves the above-mentioned problems. By adjusting the mixing ratio of CaTiO 3 and Nb 2 O 5 , the τf can be maintained while maintaining ε r and Qu within a practical characteristic range. It can be arbitrarily and stably controlled to a desired value on the plus side and the minus side near zero or centered on zero. Further, even if it is fired in a wide temperature range by adding Nb 2 O 5 , high quality can be obtained. It is an object to provide a dielectric ceramic composition comprising:

【0005】[0005]

【課題を解決するための手段】本発明者は、誘電体磁器
組成物において、高いQuを維持しつつ、τfをゼロに
近づけることができ、且つ焼成温度を変えても安定した
品質を備える組成について種々検討した結果、CaTi
3 及びNb2 5 の混合(構成)割合を加減すること
によりこの欠点が解消されることを見出して、本発明を
完成するに至ったのである。
Means for Solving the Problems The present inventor has proposed a dielectric ceramic composition which can make τf close to zero while maintaining a high Qu, and has a stable quality even when the firing temperature is changed. As a result of various investigations, CaTi
The inventors have found that this disadvantage can be solved by adjusting the mixing (constitution) ratio of O 3 and Nb 2 O 5 , and have completed the present invention.

【0006】即ち、本発明の誘電体磁器組成物は、xM
gTiO3 ・(1−x)CaTiO3 〔但し、0.92
5≦x≦0.940〕で示される組成を主成分とし、こ
れに上記xMgTiO3 ・(1−x)CaTiO3 10
0重量部に対して1〜6重量部のNb2 5 を添加含有
させたことを特徴とする。上記xが0.925より小さ
いと、τfが大きな正の値をとるとともに、Quが小さ
くなり、逆に0.940を越えるとτfが大きな負の値
をとり、好ましくないからである。また、特に、上記x
が0.930、Nb2 5 の添加量が2重量%である場
合は、1275〜1400℃にて焼成したとき、Quが
3980〜4320、τfが−3.69〜+0.52p
pm/℃、εr が19.05〜21.51であり、広い
温度範囲にて焼成しても高品質なものを安定して確保で
きる。
That is, the dielectric ceramic composition of the present invention comprises xM
gTiO 3 · (1-x) CaTiO 3 [provided that 0.92
5 ≦ x ≦ 0.940] as a main component, and the composition represented by xMgTiO 3. (1-x) CaTiO 3 10
Characterized that it contained added Nb 2 O 5 1-6 parts by weight with respect to 0 parts by weight. If x is smaller than 0.925, τf takes a large positive value and Qu decreases. Conversely, if it exceeds 0.940, τf takes a large negative value, which is not preferable. Also, in particular, the above x
Is 0.930 and the amount of Nb 2 O 5 added is 2% by weight, when baked at 1275 to 1400 ° C., Qu is 3980 to 4320 and τf is −3.69 to + 0.52p.
pm / ° C., ε r is 19.05 to 21.51, and a high-quality product can be stably secured even when fired in a wide temperature range.

【0007】尚、CaTiO3 の混合割合が、多くなる
ほど、τfは負の値から正の方向へ向かい(図3)、ε
r は大きくなり(図2)、一方Quは小さくなる傾向に
ある(図1)。また、図4〜6に示すように、Nb2
5 の添加により、Qu及びεrはあまり変わらないもの
の、τf は小さくなる傾向にある。特に、CaTiO3
の混合割合(x)が0.07の場合では、Nb2 5
加量が2重量%前後で、τf が0ppm/℃前後とな
り、大変好ましい。更に、図7〜11並びに表2及び3
に示すように、Nb2 5 の添加により、広い温度範囲
にて焼成しても性能が安定し且つ焼結密度の高い焼結体
を製造できる。従って、Nb2 5 の添加量が特に1〜
4重量%(そのうち特に2重量%前後)の場合は、更に
一層、優れた性能のバランス及び安定した焼結性の点で
優れる。以上より、CaTiO3 及びNb2 5 の上記
適正な混合範囲において、これらの性能に優れ且つその
バランスのとれたものとなるとともに、安定した品質の
ものとなる。
Incidentally, as the mixing ratio of CaTiO 3 increases, τf changes from a negative value to a positive direction (FIG. 3),
r tends to increase (FIG. 2), while Qu tends to decrease (FIG. 1). Further, as shown in FIG. 4 to 6, Nb 2 O
By adding 5 , Qu and εr do not change much, but τ f tends to decrease. In particular, CaTiO 3
When the mixing ratio (x) is 0.07, the addition amount of Nb 2 O 5 is about 2% by weight, and τ f is about 0 ppm / ° C., which is very preferable. 7 to 11 and Tables 2 and 3
As shown in (1), by adding Nb 2 O 5 , it is possible to produce a sintered body having stable performance and high sintering density even when fired in a wide temperature range. Therefore, the addition amount of Nb 2 O 5 is particularly 1 to
When the content is 4% by weight (in particular, about 2% by weight), it is more excellent in terms of excellent performance balance and stable sinterability. As described above, in the above-mentioned appropriate mixing range of CaTiO 3 and Nb 2 O 5 , the performances thereof are excellent and balanced, and the quality is stable.

【0008】[0008]

【実施例】以下、実施例により本発明を具体的に説明す
る。MgO粉末(純度;99.4%)、CaOとしてC
aCO3 粉末(純度;99%)、TiO2 粉末(純度;
99.98%)、Nb2 5 粉末(純度;100%)を
出発原料として、表1〜3及び図1、図4に示すよう
に、組成式xMgTiO3 ・(1−x)CaTiO3
y重量%Nb2 5 〔xMgTiO3 ・(1−x)Ca
TiO3 100重量部に対してNb2 5 y重量部を意
味する。〕の各xとyが変化した組成になるように、所
定量(全量として約500g)を秤量、混合した。尚、
表1はMgTiO3 の添加量を変化させたもの、表2及
び表3はNb2 5 の添加量を変化させたものである。
その後、ミキサーで乾式による混合(20〜30分)及
び一次粉砕を施した後、大気雰囲気中にて1100℃の
温度で2時間仮焼した。次いで、この仮焼粉末に適量の
有機バインダー(29g)と水(300〜400g)を
加え、20mmφのアルミナボールで、90rpm、2
3時間粉砕した。その後、真空凍結乾燥(約0.4To
rr、40〜50℃、約20時間)により造粒し、この
造粒された原料を用いて1000kg/cm2 のプレス
圧で19mmφ×11mmt(厚さ)の円柱状に成形し
た。
The present invention will be described below in detail with reference to examples. MgO powder (purity; 99.4%), C as CaO
aCO 3 powder (purity; 99%), TiO 2 powder (purity;
99.98%) and Nb 2 O 5 powder (purity: 100%) as starting materials, and as shown in Tables 1 to 3 and FIGS. 1 and 4, the composition formula xMgTiO 3. (1-x) CaTiO 3 +
y weight% Nb 2 O 5 [xMgTiO 3. (1-x) Ca
100 parts by weight of TiO 3 means y parts by weight of Nb 2 O 5 . A predetermined amount (about 500 g in total) was weighed and mixed so that each of x and y in the above formulas was changed. still,
Table 1 shows changes in the amount of MgTiO 3 added, and Tables 2 and 3 show changes in the amount of Nb 2 O 5 added.
Then, after performing dry mixing (20 to 30 minutes) and primary pulverization with a mixer, the mixture was calcined at 1100 ° C. for 2 hours in an air atmosphere. Next, an appropriate amount of an organic binder (29 g) and water (300 to 400 g) were added to the calcined powder, and the mixture was mixed with a 20 mmφ alumina ball at 90 rpm, 2 rpm.
Milled for 3 hours. Then, freeze-dry (approximately 0.4 To
rr, 40-50 ° C., about 20 hours), and the obtained raw material was formed into a 19 mmφ × 11 mmt (thickness) cylindrical shape at a pressing pressure of 1000 kg / cm 2 .

【0009】[0009]

【表1】 [Table 1]

【0010】[0010]

【表2】 [Table 2]

【0011】[0011]

【表3】 [Table 3]

【0012】次に、この成形体を大気中、500℃、3
時間にて脱脂し、その後、各図に示す1275〜140
0℃の範囲の各温度で、4時間焼成し、最後に両端面を
約16mmφ×8mmt(厚さ)の円柱状に研磨して、
誘電体試料(表1のNo.1〜24並びに表1及び表3
のNo.1〜36)とした。そして、各試料につき、平
行導体板型誘電体円柱共振器法(TE011 MODE)等
により、比誘電率(以下、単にεr という。)、Qu及
びτf、更に、焼結密度をアルキメデス法により測定し
た。尚、共振周波数は6GHzである。これらの結果を
表1〜3及び図1〜11に示す。また、一例として、
0.93MgTiO3 ・0.07CaTiO3 の場合の
X線回折の結果を図12(0.93MgTiO3 ・0.
07CaTiO3 に対して2、4又は6重量%のNb2
5 を含有、1350℃で4時間焼成)に示す。
Next, this molded body is heated at 500 ° C.
Degreasing at time, then 1275-140 shown in each figure
Baking for 4 hours at each temperature in the range of 0 ° C., and finally polishing both end surfaces into a columnar shape of about 16 mmφ × 8 mmt (thickness)
Dielectric samples (Nos. 1 to 24 in Table 1 and Tables 1 and 3)
No. 1-36). Then, for each sample, by the parallel conductive plate type dielectric cylindrical resonator method (TE 011 MODE) or the like, the relative dielectric constant (hereinafter, simply referred epsilon r.), Qu and .tau.f, further, by the Archimedes method sintered density It was measured. The resonance frequency is 6 GHz. The results are shown in Tables 1 to 3 and FIGS. Also, as an example,
FIG. 12 shows the result of X-ray diffraction in the case of 0.93 MgTiO 3 .0.07 CaTiO 3 (0.93 MgTiO 3 .0.
2, 4 or 6% by weight of Nb 2 with respect to 07CaTiO 3
Containing O 5 and calcined at 1350 ° C. for 4 hours).

【0013】これらの結果によれば、xMgTiO3
(1−x)CaTiO3 のxが小さいとQu値は小さく
なる傾向にあるが、逆にτfとεr はプラス側に大きく
なる傾向がある。尚、焼結密度は、焼成温度が高いほど
大きくなる傾向にあるが、Nb2 5 の添加量が増すと
焼成温度を変えてもあまり変わらなくなる。また、Nb
2 5 の添加により、Qu及びεrはあまり変わらない
ものの、τf は小さくなる傾向にある。従って、Nb2
5 の添加は、Qu及びεrの性能を低下させずにτf
の調整に適する。更に、Nb2 5 を添加しない場合
は、焼成温度が低いとき(1275〜1325℃)では
特性が測定不能であり(表3)、1350〜1400℃
にて焼成したときでも、特性の測定は可能であるもの
の、τf が著しく大きく〔表2及び図6;19.7(N
o.1)、17.5(No.7)、15.1ppm/℃
(No.13)〕、焼結密度も、1375℃又は135
0℃での焼成のときは小さなものとなる(表2のNo.
7及びNo.13)。
According to these results, xMgTiO 3.
(1-x) Qu value x is small CaTiO 3 is tends to be low, the τf and epsilon r conversely tends to increase on the plus side. The sintering density tends to increase as the firing temperature increases. However, when the amount of Nb 2 O 5 added increases, the sintering density does not change much even when the firing temperature is changed. Also, Nb
By addition of 2 O 5 , Qu and εr do not change much, but τ f tends to decrease. Therefore, Nb 2
The addition of O 5 adds τ f without degrading Qu and εr performance.
Suitable for adjustment. Further, when Nb 2 O 5 is not added, the characteristics cannot be measured when the firing temperature is low (1275 to 1325 ° C.) (Table 3), and 1350 to 1400 ° C.
, The properties can be measured, but τ f is extremely large [Table 2 and FIG. 6; 19.7 (N
o. 1), 17.5 (No. 7), 15.1 ppm / ° C
(No. 13)], and the sintered density was 1375 ° C. or 135.
At the time of firing at 0 ° C., the size becomes small (No.
7 and No. 7 13).

【0014】また、焼成温度が1300〜1400℃及
びNb2 5 の添加量が2重量%の場合において、xが
0.925〜0.940の範囲では、τfは+8.01
〜−11.72ppm/℃、εr は20.07〜21.
86、Quは3900〜4540と実用的な特性範囲を
示すため好ましい。特にxが0.930、Nb2 5
添加量が2重量%の場合は、例えば焼成温度が1350
℃及び1375℃の場合をとると、τfが−0.16〜
+0.51ppm/℃、εr が21.48〜21.5
1、Quが3980〜4030であり、特に優れた性能
バランスを示すとともに、性能のバラツキが極めて少な
い。更に、τfに関して言えば、焼成温度に対する変化
率が低いため0ppm/℃付近の小さな値を調節し易
い。一方、CaTiO3 を含まない場合は、Qu値が大
きいものの、εr が小さく、しかもτfが−25〜−4
4ppm/℃とマイナス側に著しく小さなものとなり、
好ましくない。
When the firing temperature is 1300 to 1400 ° C. and the amount of Nb 2 O 5 added is 2% by weight, τf is +8.01 when x is in the range of 0.925 to 0.940.
~ -11.72 ppm / ° C, ε r is 20.07-21.
86 and Qu are preferable because they show a practical characteristic range of 3900 to 4540. In particular, when x is 0.930 and the amount of Nb 2 O 5 added is 2% by weight, for example, the firing temperature is 1350%.
° C and 1375 ° C, τf is -0.16 ~
+0.51 ppm / ° C., ε r 21.48 to 21.5
1. Qu is 3980 to 4030, showing particularly excellent performance balance and extremely small variation in performance. Further, with respect to τf, since the rate of change with respect to the firing temperature is low, it is easy to adjust a small value around 0 ppm / ° C. On the other hand, when it contains no CaTiO 3, although Qu value is large, epsilon r is small, and τf is -25-4
4ppm / ℃, which is significantly smaller on the minus side,
Not preferred.

【0015】また、図12に示すX線回折ピークの有無
による分析方法によれば、本発明品の構造は、MgTi
3 (○)とCaTiO3 (●)を含み、他のピークと
してはMgTi2 5 (△)があり、MgO、CaO、
TiO2 を含んでいないことを示している。また、Nb
2 5 化合物のピークは検出されなかった。但し、Nb
2 5 添加量に対して回折パターンは殆ど同じであるも
のの、この添加量が2重量%から6重量%に伴って、M
gTiO3 、MgTi2 5 のピークが2θの低角度側
にややシフトした(図12)。従って、Nb5+イオン
は、MgTiO3、MgTi2 5 に固溶したものと考
えられる。
Further, according to the analysis method based on the presence or absence of the X-ray diffraction peak shown in FIG.
It contains O 3 (と) and CaTiO 3 (●), and other peaks include MgTi 2 O 5 (△), and MgO, CaO,
This indicates that TiO 2 is not contained. Also, Nb
No peak of the 2 O 5 compound was detected. However, Nb
Although the diffraction pattern is almost the same with respect to the added amount of 2 O 5, as the added amount increases from 2% by weight to 6% by weight, M
The peaks of gTiO 3 and MgTi 2 O 5 were slightly shifted to the lower angle side of 2θ (FIG. 12). Therefore, it is considered that the Nb 5+ ions were dissolved in MgTiO 3 and MgTi 2 O 5 .

【0016】更に、図示しないが、電子顕微鏡写真の結
果によれば、焼成温度の上昇とともに粒子径が大きくな
り(1275℃;2.6μm、1300℃;3.1μ
m、1350℃;4.9μm、1400℃;6.1μ
m、いずれもIntercept 法により測定)、しかも気孔が
減少し、1350℃にて緻密化が完了することを示して
いる。破断面はいずれも粒内破壊を示した。
Further, although not shown, according to the results of electron micrographs, the particle diameter increases as the firing temperature increases (1275 ° C .; 2.6 μm, 1300 ° C .; 3.1 μm).
m, 1350 ° C; 4.9 µm, 1400 ° C; 6.1 µm
m, both measured by the Intercept method), indicating that the pores were reduced and densification was completed at 1350 ° C. All fracture surfaces showed intragranular fracture.

【0017】尚、本発明においては、前記具体的実施例
に示すものに限られず、目的、用途に応じて本発明の範
囲内で種々変更した実施例とすることができる。即ち、
前記仮焼温度等の仮焼条件、焼成温度等の焼成条件等は
種々選択できる。また、CaOとなる原料も上記CaC
3 以外にも、過酸化物、水酸化物、硝酸塩等を用いる
こともできる。他の酸化物についても同様に、加熱によ
り酸化物となる他種化合物を用いることができる。
The present invention is not limited to the specific embodiments described above, but may be variously modified within the scope of the present invention according to the purpose and application. That is,
Various calcination conditions such as the calcination temperature and calcination conditions such as the calcination temperature can be selected. Also, the raw material to be CaO is the same as the above CaC.
In addition to O 3 , peroxides, hydroxides, nitrates and the like can also be used. Similarly, other compounds that become oxides by heating can be used for other oxides.

【0018】[0018]

【発明の効果】以上のように、本発明の誘電体磁器組成
物は、Qu及びεr を実用的な(高い)特性範囲に維持
しつつ、CaTiO3 及びNb2 5 の配合割合を加減
することによって、τfをゼロに近づける又はゼロを中
心としてプラス側とマイナス側の所望の値に任意に制御
し得ることができるとともに、τfを0付近に安定して
調節できる。更に、Nb2 5 の添加により、広い温度
範囲内において焼成温度を種々変動させても、密度が高
く且つ高品質な焼結体を安定して製造できる。従って、
目的に応じて、CaTiO3 及びNb2 5 の混合割合
を変えることができる。
As it is evident from the foregoing description, the dielectric ceramic composition of the present invention, practical (high) the Qu and epsilon r while maintaining the characteristic range, adjusting the mixing ratio of CaTiO 3 and Nb 2 O 5 By doing so, it is possible to make τf close to zero or to control arbitrarily to desired values on the plus side and the minus side centering on zero, and to stably adjust τf to around zero. Further, by adding Nb 2 O 5, a high-density and high-quality sintered body can be stably manufactured even if the firing temperature is varied in a wide temperature range. Therefore,
The mixing ratio of CaTiO 3 and Nb 2 O 5 can be changed according to the purpose.

【図面の簡単な説明】[Brief description of the drawings]

【図1】各焼成温度(1275〜1400℃)にて製造
された〔xMgTiO3 ・(1−x)CaTiO3 +2
重量%Nb2 5 〕磁器組成物において、xとQuとの
関係を示すグラフである。
FIG. 1 [xMgTiO 3. (1-x) CaTiO 3 +2 manufactured at each firing temperature (1275 to 1400 ° C.)
2 is a graph showing the relationship between x and Qu in a [weight% Nb 2 O 5 ] porcelain composition.

【図2】図1にて示す磁器組成物において、xとεr
の関係を示すグラフである。
In Figure 2 ceramic composition shown in FIG. 1 is a graph showing the relationship between x and epsilon r.

【図3】図1にて示す磁器組成物において、xとτfと
の関係を示すグラフである。
FIG. 3 is a graph showing the relationship between x and τf in the porcelain composition shown in FIG.

【図4】各焼成温度により焼成されて製造された〔0.
93MgTiO3 ・0.07CaTiO3 +(0〜6)
重量%Nb2 5 〕磁器組成物において、Nb2 5
とQuとの関係を示すグラフである。
FIG. 4 is manufactured by firing at each firing temperature [0.
93MgTiO 3 · 0.07CaTiO 3 + (0~6 )
2 is a graph showing the relationship between the amount of Nb 2 O 5 and Qu in a [weight% Nb 2 O 5 ] porcelain composition.

【図5】図4にて示す磁器組成物において、(0〜6)
重量%Nb2 5 量とεr との関係を示すグラフであ
る。
5] In the porcelain composition shown in FIG. 4, (0-6)
Is a graph showing the relationship between the weight% Nb 2 O 5 amount and epsilon r.

【図6】図4にて示す磁器組成物において、(1〜6重
量%)Nb2 5 量とτf との関係を示すグラフであ
る。
6 is a graph showing the relationship between the amount of (1 to 6% by weight) Nb 2 O 5 and τ f in the porcelain composition shown in FIG. 4.

【図7】図4にて示す磁器組成物において、(0〜6重
量%)Nb2 5 量と焼結密度との関係を示すグラフで
ある。
FIG. 7 is a graph showing the relationship between the amount of (0 to 6% by weight) Nb 2 O 5 and the sintered density in the porcelain composition shown in FIG.

【図8】〔0.93MgTiO3 ・0.07CaTiO
3 +(1〜6)重量%Nb2 5〕磁器組成物におい
て、焼成温度とQuとの関係を示すグラフである。
FIG. 8 [0.93MgTiO 3 .0.07CaTiO
3 is a graph showing the relationship between sintering temperature and Qu in a 3+ (1-6) wt% Nb 2 O 5 ] porcelain composition.

【図9】図8にて示す磁器組成物において、焼成温度と
εr との関係を示すグラフである。
In ceramic composition shown in FIG. 9 8 is a graph showing the relationship between firing temperature and epsilon r.

【図10】図8にて示す磁器組成物において、焼成温度
とτfとの関係を示すグラフである。
FIG. 10 is a graph showing the relationship between the firing temperature and τf in the porcelain composition shown in FIG.

【図11】図8にて示す磁器組成物において、焼成温度
と焼結密度との関係を示すグラフである。
11 is a graph showing a relationship between a sintering temperature and a sintering density in the porcelain composition shown in FIG.

【図12】〔0.93MgTiO3 ・0.07CaTi
3 +2、4又は6重量%Nb25 〕磁器組成物のX
線回折結果を示すグラフである。
FIG. 12 [0.93MgTiO 3 .0.07CaTi
O 3 +2, 4 or 6 wt% Nb 2 O 5 ] X of the porcelain composition
It is a graph which shows a line diffraction result.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C04B 35/42 - 35/49 CA(STN) REGISTRY(STN)──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C04B 35/42-35/49 CA (STN) REGISTRY (STN)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 xMgTiO3 ・(1−x)CaTiO
3 〔但し、0.925≦x≦0.940〕で示される組
成を主成分とし、これに上記xMgTiO3・(1−
x)CaTiO3 100重量部に対して1〜6重量部の
Nb2 5 が添加含有されたことを特徴とするマイクロ
波誘電体磁器組成物。
1. xMgTiO 3. (1-x) CaTiO
3 [where 0.925 ≦ x ≦ 0.940] is the main component, and the composition of xMgTiO 3. (1-
x) CaTiO 3 microwave dielectric ceramic composition, wherein a Nb 2 O 5 1-6 parts by weight are contained added to 100 parts by weight.
JP27947292A 1992-08-03 1992-09-24 Microwave dielectric porcelain composition Expired - Lifetime JP3162208B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP27947292A JP3162208B2 (en) 1992-09-24 1992-09-24 Microwave dielectric porcelain composition
US08/101,252 US5340784A (en) 1992-08-03 1993-08-02 Microwave dielectric ceramic composition
EP93112424A EP0582274B1 (en) 1992-08-03 1993-08-03 Microwave dielectric ceramic composition
DE69311768T DE69311768T2 (en) 1992-08-03 1993-08-03 Dielectric ceramic composition for microwaves

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27947292A JP3162208B2 (en) 1992-09-24 1992-09-24 Microwave dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JPH06107457A JPH06107457A (en) 1994-04-19
JP3162208B2 true JP3162208B2 (en) 2001-04-25

Family

ID=17611538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27947292A Expired - Lifetime JP3162208B2 (en) 1992-08-03 1992-09-24 Microwave dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JP3162208B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100349006B1 (en) * 2000-06-22 2002-08-17 주식회사 어드밴택 A dielectric material for microwave
US6900150B2 (en) 2003-04-29 2005-05-31 Cts Corporation Ceramic composition and method

Also Published As

Publication number Publication date
JPH06107457A (en) 1994-04-19

Similar Documents

Publication Publication Date Title
JPH11106255A (en) Dielectric porcelain composition and method for producing the same
JP3162208B2 (en) Microwave dielectric porcelain composition
JP2974829B2 (en) Microwave dielectric porcelain composition
US5272122A (en) BaO-xTiO2 dielectric ceramic composition
JP3179916B2 (en) Microwave dielectric porcelain composition
JP3436770B2 (en) Method for producing microwave dielectric porcelain composition
JP3027031B2 (en) Microwave dielectric porcelain composition and method for producing the same
JP3212704B2 (en) Microwave dielectric porcelain composition
JP3179901B2 (en) Microwave dielectric porcelain composition
JP3301651B2 (en) Microwave dielectric porcelain composition
JPH07201223A (en) Microwave dielectric porcelain composite, and its manufacture
JP2003146752A (en) Dielectric ceramic composition
JP3067815B2 (en) Microwave dielectric porcelain composition
JP2974823B2 (en) Microwave dielectric porcelain composition
JP3100178B2 (en) Microwave dielectric porcelain composition
JPH0692727A (en) Microwave dielectric porcelain composition
JP3067814B2 (en) Dielectric porcelain composition
JPH09221355A (en) Alumina sintered body for high frequency
JPH06239663A (en) Microwave dielectric material porcelain composition and its production
JP3242243B2 (en) Microwave dielectric porcelain composition
JPH06199567A (en) Microwave dielectric porcelain composition
JP3550414B2 (en) Method for producing microwave dielectric porcelain composition
JP3243890B2 (en) Dielectric porcelain composition
JP3322739B2 (en) Microwave dielectric porcelain composition and method for producing the same
JP3100182B2 (en) Microwave dielectric porcelain composition

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090223

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090223

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 12