JPH06123223A - Exhaust emission control device for internal combustion engine - Google Patents
Exhaust emission control device for internal combustion engineInfo
- Publication number
- JPH06123223A JPH06123223A JP4268682A JP26868292A JPH06123223A JP H06123223 A JPH06123223 A JP H06123223A JP 4268682 A JP4268682 A JP 4268682A JP 26868292 A JP26868292 A JP 26868292A JP H06123223 A JPH06123223 A JP H06123223A
- Authority
- JP
- Japan
- Prior art keywords
- exhaust gas
- exhaust
- temperature
- passage
- adsorbent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/0807—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
- F01N3/0828—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
- F01N3/0835—Hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2240/00—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
- F01N2240/18—Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an adsorber or absorber
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2570/00—Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
- F01N2570/12—Hydrocarbons
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、内燃機関の排気浄化装
置に関し、特に、機関の排気中に含まれる未燃HCを吸
着剤により吸着してそれを脱離(パージ)させたとき
の、排気浄化用触媒の浄化効率の低下を防止させた技術
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying apparatus for an internal combustion engine, and more particularly, when unburned HC contained in the exhaust gas of an engine is adsorbed by an adsorbent and desorbed (purged), The present invention relates to a technique for preventing a reduction in purification efficiency of an exhaust purification catalyst.
【0002】[0002]
【従来の技術】車両用の内燃機関においては排気浄化の
ため、排気通路中に排気中のHC (未燃ガス) ,COを
H2 O,CO2 に酸化する一方、NOX をN2 に還元し
て浄化する三元浄化触媒と称される排気浄化用触媒が介
装されている。ところで前記排気中の有害成分の中、H
Cの排出量は特に排気温度に影響されやすい。即ち、貴
金属触媒を使用する場合でも、HCの浄化には一般に3
00°C以上の触媒温度を必要とする。そのため、前記
三元触媒を備えただけの排気浄化装置では、機関の冷温
始動直後など排気温度の低い時には、HCは前記触媒に
よって浄化されがたい。2. Description of the Related Art In an internal combustion engine for a vehicle, in order to purify exhaust gas, HC (unburned gas) and CO in the exhaust gas are oxidized into H 2 O and CO 2 in the exhaust passage, while NO X is converted into N 2 . An exhaust gas purification catalyst called a three-way purification catalyst that reduces and purifies is installed. By the way, of the harmful components in the exhaust gas, H
The discharge amount of C is particularly susceptible to the exhaust temperature. In other words, even if a noble metal catalyst is used, it is generally 3
A catalyst temperature of 00 ° C or higher is required. Therefore, in the exhaust gas purification device only including the three-way catalyst, it is difficult to purify the HC by the catalyst when the exhaust gas temperature is low, such as immediately after the engine is started cold.
【0003】このため、従来の車両用の排気浄化装置と
しては、例えば、特開昭62−174522号公報に示
されるように、前記排気浄化用触媒の上流側の排気通路
にHCを吸着するための吸着剤を介装したものが提案さ
れている。即ち、このものは、吸着剤が低温時にはHC
を吸着し、高温になると吸着されたHCを脱離する特性
があることを利用し、排気浄化用触媒の上流の排気通路
の一部に前記吸着剤を介装したバイパス通路を並列に接
続して主通路とバイパス通路とを選択的に開閉自由な構
成とし、排気浄化用触媒が活性化される前の低温時に前
記バイパス通路を開いて吸着剤にHCを吸着しておき、
一旦バイパス通路を閉じた後、高温になって排気浄化用
触媒が活性化してから再度バイパス通路を開いて吸着さ
れたHCを脱離させて排気浄化用触媒で浄化するように
なっている。そして、吸着剤としては、ゼオライトが吸
着性に優れていることから例えばモノリス担体にゼオラ
イトをコーティングしたものが提案されている。Therefore, as a conventional exhaust gas purifying apparatus for a vehicle, for example, as shown in JP-A-62-174522, for adsorbing HC in the exhaust passage on the upstream side of the exhaust gas purifying catalyst. It has been proposed to interpose the adsorbent. That is, when the adsorbent has a low temperature,
By utilizing the fact that it has the property of adsorbing the adsorbent and desorbing the adsorbed HC when the temperature becomes high, a bypass passage in which the adsorbent is interposed is connected in parallel to a part of the exhaust passage upstream of the exhaust purification catalyst. The main passage and the bypass passage are selectively opened and closed, and the bypass passage is opened to adsorb HC at the adsorbent at a low temperature before the exhaust purification catalyst is activated.
After the bypass passage is closed once, the temperature becomes high and the exhaust purification catalyst is activated, and then the bypass passage is opened again to desorb the adsorbed HC and the exhaust purification catalyst purifies it. As the adsorbent, for example, a monolith carrier coated with zeolite has been proposed because zeolite has excellent adsorbability.
【0004】[0004]
【発明が解決しようとする課題】ところで、かかる吸着
剤を備えた排気浄化装置においては、排気浄化用触媒が
活性化されたことを検出すると、バイパス通路を全開し
て多量の排気を流入させるため、吸着剤に吸着されてい
たHCが急激、かつ、多量に脱離してしまい、活性化さ
れていた排気浄化用触媒が多量のHCの流入によって入
口温度を下げられて、触媒の浄化効率が極端に低下して
排気エミッションの悪化をもたらすといった問題点を生
じていた。By the way, in the exhaust gas purification apparatus provided with such an adsorbent, when it is detected that the exhaust gas purification catalyst is activated, the bypass passage is fully opened to allow a large amount of exhaust gas to flow therein. However, the HC adsorbed on the adsorbent is rapidly and largely desorbed, and the activated exhaust purification catalyst has its inlet temperature lowered by the inflow of a large amount of HC, resulting in extremely high catalyst purification efficiency. However, there was a problem that the exhaust emission deteriorated.
【0005】本発明は、このような従来の問題点に鑑み
なされたものであり、触媒に流入する排気温度の低下を
抑制しつつ制御することにより、触媒の浄化効率を良好
に維持して排気エミッションの悪化を防止できる内燃機
関の排気浄化装置を提供することを目的とする。The present invention has been made in view of the above conventional problems, and controls the catalyst while suppressing a decrease in the temperature of the exhaust gas flowing into the catalyst, thereby maintaining a good purification efficiency of the catalyst and exhausting the exhaust gas. An object of the present invention is to provide an exhaust emission control device for an internal combustion engine that can prevent deterioration of emissions.
【0006】[0006]
【課題を解決するための手段】このため、本発明は、図
1に示すように、機関の排気通路に排気浄化用触媒を備
えると共に、該排気浄化用触媒の上流の排気通路の一部
を主通路と該主通路に並列に接続され排気中の未燃HC
を低温時に吸着し高温時に脱離する機能を有した吸着剤
を介装したバイパス通路とで構成し、排気温度状態に応
じて前記主通路とバイパス通路との開度を開度制御手段
により制御しつつ排気浄化用触媒の活性化前の低温状態
で吸着剤に排気中のHCを吸着し、少なくとも排気浄化
用触媒の活性化後の高温状態であることを条件として吸
着剤に吸着されたHCを脱離して排気浄化用触媒により
浄化させるようにした内燃機関の排気浄化装置におい
て、所定以上の排気温度上昇を伴う加速状態を判定する
加速状態判定手段と、前記排気浄化用触媒が活性化され
る高温状態で、かつ、前記加速状態判定手段により所定
以上の排気温度上昇を伴う加速状態が判定されると、前
記バイパス通路を開いて吸着剤に吸着されたHCを脱離
させる脱離開始時期制御手段と、を含んで構成される。Therefore, according to the present invention, as shown in FIG. 1, an exhaust gas purification catalyst is provided in an exhaust passage of an engine, and a part of the exhaust gas passage upstream of the exhaust purification catalyst is provided. Main passage and unburned HC in exhaust gas connected in parallel to the main passage
Is constituted by a bypass passage having an adsorbent having a function of adsorbing at a low temperature and desorbing at a high temperature, and the opening degree control means controls the opening degree of the main passage and the bypass passage according to the exhaust temperature state. While adsorbing the HC in the exhaust gas to the adsorbent in a low temperature state before the activation of the exhaust gas purification catalyst, the HC adsorbed to the adsorbent is provided at least in the high temperature state after the activation of the exhaust gas purification catalyst. In an exhaust gas purification apparatus for an internal combustion engine, which is desorbed and purified by an exhaust gas purification catalyst, an acceleration state determination means for determining an acceleration state involving a rise in exhaust gas temperature above a predetermined level, and the exhaust gas purification catalyst is activated. Desorption start timing for opening the bypass passage and desorbing the HC adsorbed by the adsorbent when the acceleration state determination means determines that the acceleration state is accompanied by a rise in exhaust gas temperature above a predetermined level. Configured to include a control means.
【0007】[0007]
【作用】かかる構成によれば、排気浄化用触媒の出口温
度に基づいて、排気浄化用触媒が活性化する前は、バイ
パス通路が開かれて吸着剤に排気中のHCを吸着させ
る。その後、排気浄化用触媒が活性化するまでは、バイ
パス通路を閉じて主通路に排気を導く。この間に排気温
度は吸着剤からHCを脱離する温度に達するが、バイパ
ス通路を閉じて排気が導かれないので、脱離は行われな
い。According to this structure, based on the outlet temperature of the exhaust gas purification catalyst, before the exhaust gas purification catalyst is activated, the bypass passage is opened to adsorb the HC in the exhaust gas to the adsorbent. After that, the bypass passage is closed and the exhaust gas is guided to the main passage until the exhaust gas purification catalyst is activated. During this time, the exhaust gas temperature reaches the temperature at which HC is desorbed from the adsorbent, but since the exhaust gas is not guided by closing the bypass passage, desorption is not performed.
【0008】しかし、排気浄化用触媒が活性化される高
温状態で、かつ、加速状態判定手段により所定以上の排
気温度上昇を伴う加速状態が判定されると、バイパス通
路を開いて吸着剤に吸着されたHCが脱離させる。即
ち、これにより、吸着剤からの低温で高濃度のHCを有
する排気が排気バイパス通路を通って排気浄化用触媒入
口へ導入されることになるが、機関の加速状態における
高温の排気も同時に排気通路より排気浄化用触媒入口へ
導入されることになる。However, when the exhaust purification catalyst is activated in a high temperature state and the acceleration state determination means determines that the exhaust gas temperature rises above a predetermined level, the bypass passage is opened to adsorb the adsorbent. The removed HC desorbs. That is, as a result, the exhaust gas having a low temperature and a high concentration of HC from the adsorbent is introduced into the exhaust gas purification catalyst inlet through the exhaust gas bypass passage, but at the same time, the high temperature exhaust gas in the acceleration state of the engine is also exhausted. It is introduced from the passage to the exhaust gas purification catalyst inlet.
【0009】したがって、HC脱離時における排気浄化
用触媒の温度低下が防止されて、排気浄化用触媒の浄化
効率を低浄化効率から高浄化効率へと回復させることが
でき、以て、排気エミッションの悪化を防止することが
できる。Therefore, the temperature of the exhaust purification catalyst is prevented from lowering during the desorption of HC, and the purification efficiency of the exhaust purification catalyst can be restored from low purification efficiency to high purification efficiency. Can be prevented from worsening.
【0010】[0010]
【実施例】以下に、本発明の実施例を図に基づいて説明
する。先ず、図2において、本発明に係る排気浄化装置
の全体構成を説明すると、機関11の排気通路13の一
部が主通路13aと、該主通路13aと並列に接続され
た排気バイパス通路14で形成され、該排気バイパス通
路14内には吸着剤15が介装されている。この吸着剤
15は、例えば、モノリス形状のセラミック担体にゼオ
ライト、活性炭、γアルミナ等の吸着性を有する物質を
コーティングしたもので形成される。Embodiments of the present invention will be described below with reference to the drawings. First, referring to FIG. 2, the overall configuration of the exhaust gas purification device according to the present invention will be described. A part of the exhaust passage 13 of the engine 11 is composed of a main passage 13a and an exhaust bypass passage 14 connected in parallel with the main passage 13a. An adsorbent 15 is formed in the exhaust bypass passage 14. The adsorbent 15 is formed, for example, by coating a monolithic ceramic carrier with a substance having an adsorbing property such as zeolite, activated carbon, or γ-alumina.
【0011】そして、バイパス通路14の排気入口14
a及び排気出口14bには主通路13aとバイパス通路
14との開度比を連続的に制御する手段としての制御弁
16a、16bが夫々設けられている。この制御弁16
a、16bは、例えば、ダイヤフラム式のアクチュエー
タを備えてなり、コントロールユニット17からの信号
に基づき該アクチュエータにより弁開度を制御するよう
に形成される。尚、制御弁16a、16bの弁開度の状
態は、図3において、Aが全閉状態を、Bが全開状態
を、Cが半開状態を夫々示す。The exhaust inlet 14 of the bypass passage 14
Control valves 16a and 16b as means for continuously controlling the opening ratio between the main passage 13a and the bypass passage 14 are provided at the "a" and the exhaust outlet 14b, respectively. This control valve 16
Each of a and 16b includes, for example, a diaphragm type actuator, and is formed so that the valve opening degree is controlled by the actuator based on a signal from the control unit 17. The state of the valve opening degree of the control valves 16a and 16b in FIG. 3 is A in a fully closed state, B in a fully open state, and C in a half open state.
【0012】排気通路13には、排気バイパス通路14
の排気入口14a上流側及び排気出口14b下流側に排
気浄化用触媒としての夫々プリ三元触媒19a及びメイ
ン三元触媒19bが備えられている。そして、メイン三
元触媒装置19bの入口部分には機関11から排出され
る排気温度を検出するための排気温度センサ20が設け
られている。The exhaust passage 13 includes an exhaust bypass passage 14
A pre-three-way catalyst 19a and a main three-way catalyst 19b as exhaust purification catalysts are provided on the upstream side of the exhaust inlet 14a and the downstream side of the exhaust outlet 14b, respectively. An exhaust temperature sensor 20 for detecting the temperature of the exhaust gas discharged from the engine 11 is provided at the inlet of the main three-way catalyst device 19b.
【0013】コントロールユニット17は、機関の加速
状態判定手段としての機能を有する加速状態判定部17
aと、開度制御手段及び脱離開始時期制御手段としての
機能を有する弁制御部17bとをソフトウエア的に備え
る。そして、機関の吸入空気量を検出するエアフロセン
サ21と、機関の回転速度を検出するクランク角センサ
22と、アクセルペダルの開度を検出するアクセル開度
センサ23とにより検出された各種信号がコントロール
ユニット17の加速状態判定部17aへ、排気温度セン
サ20により検出された信号が弁制御部17bへ夫々入
力され、該入力信号に基づき各種制御が行われる。そし
て、加速状態判定部17aによる判定結果は弁制御部1
7bへ入力され、制御弁16a、16bの開度制御が行
われる。The control unit 17 is an acceleration state determination section 17 having a function as an engine acceleration state determination means.
a and a valve control unit 17b having a function as an opening control unit and a desorption start timing control unit are provided as software. Various signals detected by an air flow sensor 21 that detects the intake air amount of the engine, a crank angle sensor 22 that detects the rotational speed of the engine, and an accelerator opening sensor 23 that detects the opening of the accelerator pedal are controlled. The signals detected by the exhaust gas temperature sensor 20 are input to the valve control unit 17b to the acceleration state determination unit 17a of the unit 17, and various controls are performed based on the input signals. Then, the determination result by the acceleration state determination unit 17a is the valve control unit 1
7b, and the opening of the control valves 16a and 16b is controlled.
【0014】尚、アクセル開度センサ23は、アクセル
ペダルと連動するスロットルバルブの弁開度を検出する
スロットルセンサで置き換えることもできる。次に、図
4に示すフローチャートにより、動作を説明する。先
ず、ステップ1(以下「S1」という。)では、制御弁
16a、16bの状態を読み込んで、S2で、制御弁1
6a,16bの開閉状態が全閉状態にあるか否か、即
ち、他の条件が揃えばパージができる状態にあるか否か
を判定する。The accelerator opening sensor 23 may be replaced with a throttle sensor that detects the valve opening of a throttle valve that works in conjunction with the accelerator pedal. Next, the operation will be described with reference to the flowchart shown in FIG. First, in step 1 (hereinafter referred to as "S1"), the states of the control valves 16a and 16b are read, and in step S2, the control valve 1 is read.
It is determined whether the open / closed state of 6a and 16b is the fully closed state, that is, whether the purge is possible if other conditions are met.
【0015】そして、全閉状態にありパージ可能な状態
であれば、S3以下でパージ判定を行ない、パージ不可
能な状態、即ち、制御弁16a、16bが吸着状態(全
開状態)あるいはパージ終了状態(半開状態)であれ
ば、本フローからぬけて動作を終了する。S3では、他
の条件を満たせばパージ可能な状態、即ち、制御弁16
a,16bが全閉状態にあるので、排気温度センサ18
によりメイン三元触媒19bの排気入口の排気温度Tを
検出し、S4で、メイン触媒が活性化温度Ta(350
°C付近)に達しているか否かを判定する。If it is in the fully closed state and the purge is possible, the purge determination is performed at S3 and below, and the purge is impossible, that is, the control valves 16a and 16b are in the adsorption state (fully opened state) or the purge completed state. If it is in the (half-opened state), the operation is ended by skipping this flow. In S3, if other conditions are satisfied, purging is possible, that is, the control valve 16
Since a and 16b are fully closed, the exhaust temperature sensor 18
The exhaust temperature T at the exhaust inlet of the main three-way catalyst 19b is detected by, and the activation temperature Ta (350
(Around ° C) is determined.
【0016】そして、活性化温度に達していれば、すぐ
にパージが可能であるが、S5以下でパージするための
機関の加速状態を判定してから行ない、活性化温度に達
していなければ、本フローからぬけて動作を終了する。
S5では、アクセル開度センサ23による検出値に基づ
き、アクセル開度の変化率dα/dtを演算する。If the activation temperature is reached, the purging can be performed immediately. However, after the acceleration state of the engine for purging is determined in S5 or less, the purge is performed, and if the activation temperature is not reached, The operation is ended without going through this flow.
In S5, the rate of change dα / dt of the accelerator opening is calculated based on the value detected by the accelerator opening sensor 23.
【0017】そして、S6で、図5で示される加速状態
判定マップより、クランク角センサ22からの検出値に
基づく機関回転数Nと燃料噴射パルスTpとから求めら
れる、判定値Aを読み込む。尚、図の加速状態判定マッ
プは、機関回転数Nが増加するほど、又燃料噴射弁の燃
料噴射パルスTpが大きくなるほど、機関から排出され
る排気温度は高くなるので、図で右上に行くほど加速状
態判定値Aとしては小さな値を与えている。Then, in S6, the determination value A obtained from the engine speed N and the fuel injection pulse Tp based on the detected value from the crank angle sensor 22 is read from the acceleration state determination map shown in FIG. In the acceleration state determination map of the figure, the exhaust temperature discharged from the engine increases as the engine speed N increases and the fuel injection pulse Tp of the fuel injection valve increases. A small value is given as the acceleration state determination value A.
【0018】尚、図で燃料噴射パルスTpは、Tp=Q
a /Nで求められ、Qa は、機関の吸入空気流量であ
る。そして、S7では、アクセル開度の変化率dα/d
tが判定値Aより大きいか否かを判定する。そして、判
定値Aより大きければ、S8に進み、小さければ、本フ
ローからぬけて動作を終了する。In the figure, the fuel injection pulse Tp is Tp = Q
Obtained by a / N, Q a is the intake air flow rate of the engine. Then, in S7, the rate of change of the accelerator opening dα / d
It is determined whether t is larger than the determination value A. If it is larger than the judgment value A, the process proceeds to S8.
【0019】S8では、アクセル開度の変化率dα/d
tが判定値Aより大きいため、加速による排気温度上昇
分によってパージによる温度低下がカバーできるので、
制御弁16a,16bを半開状態としてパージを行な
う。次に、S9では、排気温度センサ20によりメイン
三元触媒装置19b入口の排気温度Tを検出し、該排気
温度Tが触媒の活性化を阻害する所定温度Tb(例え
ば、400°C程度)以下であるか否かを判定する(S
10)。そして、Tbより小さくて下がる場合、即ち、
触媒の活性化温度以下となる可能性がある場合には、S
11に進み、制御弁16a、16bを閉じてパージを終
了させる。At S8, the rate of change of the accelerator opening dα / d
Since t is larger than the determination value A, the temperature decrease due to the purge can be covered by the exhaust gas temperature increase due to acceleration.
Purging is performed with the control valves 16a and 16b in a half-open state. Next, in S9, the exhaust temperature sensor 20 detects the exhaust temperature T at the inlet of the main three-way catalyst device 19b, and the exhaust temperature T is equal to or lower than a predetermined temperature Tb (for example, about 400 ° C.) that inhibits activation of the catalyst. Or not (S
10). And when it is smaller than Tb and falls, that is,
If there is a possibility that the temperature will be below the activation temperature of the catalyst, S
11, the control valves 16a and 16b are closed to complete the purge.
【0020】これにより、吸着剤のパージ状態で、排気
バイパス通路を通ってメイン触媒に流入する低温の排気
により該触媒の温度が低下するが、機関の加速状態で本
来備わっている機関から排出される高温排気がメイン触
媒入口の温度低下を補うことができる。更に、機関の加
速時に混合気の空燃比が一時的にリーンとなって、メイ
ン触媒の浄化効率の低下を引き起こし、NOX 排出量が
ピーク状態となることがあるが、加速時の高温排気によ
りメイン触媒を高浄化効率ゾーンへと回復させることが
可能となり、以て、排気エミッションの悪化を防止する
ことができる。As a result, in the purged state of the adsorbent, the temperature of the catalyst is lowered by the low temperature exhaust gas flowing into the main catalyst through the exhaust bypass passage, but is discharged from the engine which is originally provided in the accelerated state of the engine. The high temperature exhaust gas can compensate for the temperature drop at the main catalyst inlet. Furthermore, so that the air-fuel ratio is temporarily lean mixture during acceleration of the engine, causing a decrease in the purification efficiency of the main catalyst, but NO X emissions may become a peak state, the hot exhaust during acceleration It is possible to restore the main catalyst to the high purification efficiency zone, so that it is possible to prevent deterioration of exhaust emission.
【0021】尚、以上の実施例では、パージ終了の判定
は排気温度Tを検出して所定温度Tbと比較することに
より行っているが、吸着剤15下流にO2 センサを設
け、該O2 センサの検出値に基づく空燃比により判定す
ることもできる。即ち、排気ガスの空燃比と触媒の浄化
率の関係は、図6に示されるようであり、三元触媒では
排気ガスの空燃比が理論空燃比近傍になければ、CO,
HC,NOX の同時処理は不十分となる。したがって、
排気ガスの空燃比が理論空燃比に対してリッチ又はリー
ンであるか否かによってパージ終了の判定を行なうこと
ができる。[0021] In the above embodiment, although the determination of the purge termination is performed by comparing a predetermined temperature Tb by detecting the exhaust temperature T, the O 2 sensor disposed downstream adsorbent 15, the O 2 It can also be determined by the air-fuel ratio based on the detection value of the sensor. That is, the relationship between the air-fuel ratio of the exhaust gas and the purification rate of the catalyst is as shown in FIG. 6, and in the three-way catalyst, if the air-fuel ratio of the exhaust gas is not near the stoichiometric air-fuel ratio, CO,
Simultaneous treatment of HC and NO x becomes insufficient. Therefore,
Whether or not the purge is completed can be determined depending on whether the air-fuel ratio of the exhaust gas is rich or lean with respect to the stoichiometric air-fuel ratio.
【0022】また、以上の実施例では、制御弁16a,
16bの開度を半開とすることによりパージを行ってい
るが、機関の加速状態に応じて制御弁16a,16bの
開度をより微細に制御することにより、より精度の高い
パージ制御を行うことができることになる。In the above embodiment, the control valves 16a,
Purge is performed by opening the opening of 16b halfway, but more precise purge control is performed by finely controlling the opening of the control valves 16a and 16b according to the acceleration state of the engine. You will be able to
【0023】[0023]
【発明の効果】以上説明したように、本発明によれば、
排気浄化用触媒が活性化される高温状態で、かつ、加速
状態判定手段により所定以上の排気温度上昇を伴う加速
状態が判定されると、バイパス通路を開いて吸着剤に吸
着されたHCを脱離させる脱離開始時期制御手段を設け
たので、吸着剤からの低温で高濃度のHCを有する排気
が排気バイパス通路を通って触媒入口へ導入されること
になるが、機関の加速状態における高温の排気も同時に
排気通路より触媒入口へ導入されることになるため、H
C脱離時の触媒の温度低下が防止されて、触媒の浄化効
率を低浄化効率から高浄化効率へ回復させ、以て、排気
エミッションの悪化を防止することができる。As described above, according to the present invention,
When the exhaust purification catalyst is activated in a high temperature state and the acceleration state determination means determines that the exhaust gas temperature rises above a predetermined level, the bypass passage is opened to remove the HC adsorbed by the adsorbent. Since the desorption start timing control means for separating the exhaust gas is provided, the exhaust gas having a low temperature and a high concentration of HC from the adsorbent is introduced into the catalyst inlet through the exhaust bypass passage. Since the exhaust gas of H will also be introduced into the catalyst inlet from the exhaust passage at the same time,
It is possible to prevent the temperature of the catalyst from lowering at the time of desorption of C and to recover the purification efficiency of the catalyst from the low purification efficiency to the high purification efficiency, and thus to prevent the exhaust emission from deteriorating.
【図1】 本発明の構成を示すブロック図。FIG. 1 is a block diagram showing a configuration of the present invention.
【図2】 本発明の全体構成を示すシステム図。FIG. 2 is a system diagram showing the overall configuration of the present invention.
【図3】 制御弁の開閉状態を示す部分断面図。FIG. 3 is a partial cross-sectional view showing an open / closed state of a control valve.
【図4】 本発明の動作を示すフローチャート。FIG. 4 is a flowchart showing the operation of the present invention.
【図5】 機関の加速状態を判定するためのマップ。FIG. 5 is a map for determining the acceleration state of the engine.
【図6】 空燃比と三元触媒の浄化率との関係を説明す
るための説明図。FIG. 6 is an explanatory diagram for explaining a relationship between an air-fuel ratio and a purification rate of a three-way catalyst.
11 機関 13 排気通路 13a 主通路 14 バイパス通路 14a 排気入口 14b 排気出口 15 吸着剤 16a,b 開閉弁 17 コントロールユニット 17a 加速状態判定部 17b 弁制御部 19a プリ三元触媒 19b メイン三元触媒 20 排気温度センサ 21 エアフロセンサ 22 クランク角センサ 23 アクセル開度センサ 11 Engine 13 Exhaust Passage 13a Main Passage 14 Bypass Passage 14a Exhaust Inlet 14b Exhaust Outlet 15 Adsorbent 16a, b Open / close Valve 17 Control Unit 17a Acceleration State Judge 17b Valve Control 19a Pre-Three-Way Catalyst 19b Main Three-Way Catalyst 20 Exhaust Temperature Sensor 21 Airflow sensor 22 Crank angle sensor 23 Accelerator opening sensor
Claims (1)
ると共に、該排気浄化用触媒の上流の排気通路の一部を
主通路と該主通路に並列に接続され排気中の未燃HCを
低温時に吸着し高温時に脱離する機能を有した吸着剤を
介装したバイパス通路とで構成し、排気温度状態に応じ
て前記主通路とバイパス通路との開度を開度制御手段に
より制御しつつ排気浄化用触媒の活性化前の低温状態で
吸着剤に排気中のHCを吸着し、少なくとも排気浄化用
触媒の活性化後の高温状態であることを条件として吸着
剤に吸着されたHCを脱離して排気浄化用触媒により浄
化させるようにした内燃機関の排気浄化装置において、 所定以上の排気温度上昇を伴う加速状態を判定する加速
状態判定手段と、 前記排気浄化用触媒が活性化される高温状態で、かつ、
前記加速状態判定手段により所定以上の排気温度上昇を
伴う加速状態が判定されると、前記バイパス通路を開い
て吸着剤に吸着されたHCを脱離させる脱離開始時期制
御手段と、 を含んで構成されることを特徴とする内燃機関の排気浄
化装置。1. An exhaust gas purification catalyst is provided in an exhaust passage of an engine, and a part of an exhaust passage upstream of the exhaust purification catalyst is connected in parallel to a main passage and the main passage to remove unburned HC in exhaust gas. It is composed of a bypass passage having an adsorbent having a function of adsorbing at a low temperature and desorbing at a high temperature, and controls the opening degree of the main passage and the bypass passage according to the exhaust temperature state by an opening degree control means. Meanwhile, the HC in the exhaust gas is adsorbed by the adsorbent in a low temperature state before the activation of the exhaust purification catalyst, and the HC adsorbed by the adsorbent is required at least in the high temperature state after the activation of the exhaust purification catalyst. In an exhaust gas purification device for an internal combustion engine, which is desorbed and purified by an exhaust gas purification catalyst, an acceleration state determination means for determining an acceleration state with a rise in exhaust gas temperature above a predetermined level, and the exhaust gas purification catalyst is activated. At high temperature, and
And a desorption start timing control means for opening the bypass passage and desorbing the HC adsorbed by the adsorbent when the acceleration state determination means determines an acceleration state accompanied by a rise in exhaust gas temperature above a predetermined level. An exhaust emission control device for an internal combustion engine, which is configured.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4268682A JPH06123223A (en) | 1992-10-07 | 1992-10-07 | Exhaust emission control device for internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4268682A JPH06123223A (en) | 1992-10-07 | 1992-10-07 | Exhaust emission control device for internal combustion engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06123223A true JPH06123223A (en) | 1994-05-06 |
Family
ID=17461934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4268682A Pending JPH06123223A (en) | 1992-10-07 | 1992-10-07 | Exhaust emission control device for internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06123223A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019052556A (en) * | 2017-09-13 | 2019-04-04 | ダイハツ工業株式会社 | Engine system |
CN113446090A (en) * | 2020-03-25 | 2021-09-28 | 丰田自动车株式会社 | Control device for internal combustion engine |
-
1992
- 1992-10-07 JP JP4268682A patent/JPH06123223A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019052556A (en) * | 2017-09-13 | 2019-04-04 | ダイハツ工業株式会社 | Engine system |
CN113446090A (en) * | 2020-03-25 | 2021-09-28 | 丰田自动车株式会社 | Control device for internal combustion engine |
CN113446090B (en) * | 2020-03-25 | 2023-06-20 | 丰田自动车株式会社 | Control devices for internal combustion engines |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3557925B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP3596168B2 (en) | Exhaust gas purification device for internal combustion engine | |
JPH0559942A (en) | Cold hc adsorption removal device | |
JP3772583B2 (en) | Exhaust gas purification device for internal combustion engine | |
JPH07189653A (en) | Exhaust gas purifying method for diesel engine | |
JP2982440B2 (en) | Exhaust gas purification device for internal combustion engine | |
JPH0674019A (en) | Exhaust emission control device | |
JPH0693845A (en) | Exhaust emission control device for engine | |
JP4273797B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2000110553A (en) | Exhaust gas emission control device of internal combustion engine | |
JPH06123223A (en) | Exhaust emission control device for internal combustion engine | |
JP2803480B2 (en) | Adsorbent self-diagnosis device for internal combustion engine | |
JP2806170B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2004245046A (en) | Exhaust emission control device of internal combustion engine | |
JPH1162573A (en) | Secondary air introduction device for internal combustion engine | |
JPH0726947A (en) | Exhaust gas purifying device for engine | |
JP3413997B2 (en) | Degradation diagnosis device for HC adsorbent in internal combustion engine | |
JPH06200750A (en) | Exhaust emission control device for internal combustion engine | |
JPH0742538A (en) | Exhaust emission control device for vehicle | |
JPH05312031A (en) | Exhaust emission control device for engine | |
JPH0666130A (en) | Exhaust emission control device for internal combustion engine | |
JPH0674021A (en) | Exhaust gas purifying device of internal combustion engine | |
JP2855996B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JPH0893459A (en) | Exhaust emission control device of engine | |
JP3387792B2 (en) | Exhaust gas purification device for internal combustion engine |