JPH05312031A - Exhaust emission control device for engine - Google Patents
Exhaust emission control device for engineInfo
- Publication number
- JPH05312031A JPH05312031A JP4119307A JP11930792A JPH05312031A JP H05312031 A JPH05312031 A JP H05312031A JP 4119307 A JP4119307 A JP 4119307A JP 11930792 A JP11930792 A JP 11930792A JP H05312031 A JPH05312031 A JP H05312031A
- Authority
- JP
- Japan
- Prior art keywords
- engine
- fuel
- nox catalyst
- lean nox
- bypass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000446 fuel Substances 0.000 claims abstract description 60
- 239000003054 catalyst Substances 0.000 claims abstract description 58
- 239000007789 gas Substances 0.000 abstract description 18
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 abstract description 13
- 239000001301 oxygen Substances 0.000 abstract description 13
- 229910052760 oxygen Inorganic materials 0.000 abstract description 13
- 238000002347 injection Methods 0.000 abstract description 9
- 239000007924 injection Substances 0.000 abstract description 9
- 238000000746 purification Methods 0.000 abstract description 7
- 230000006866 deterioration Effects 0.000 abstract description 4
- 238000011144 upstream manufacturing Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 238000012937 correction Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Landscapes
- Combined Controls Of Internal Combustion Engines (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は排気系にいわゆるリーン
NOx触媒を備えたエンジンの排気制御装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an engine exhaust control device having an exhaust system provided with a so-called lean NOx catalyst.
【0002】[0002]
【従来の技術】従来から特開平3ー225013号公報
に記載されているように、空燃比が理論空燃比よりも大
きいリーン空燃比領域でエンジン排気ガス中のNOxを
浄化する触媒として、遷移金属あるいは貴金属を担持せ
しめたゼオライトからなり、酸化雰囲気中、HCの存在
下で排気ガス中のNOxを還元する触媒いわゆるリーン
NOx触媒を排気系に設けるとともに、このリーンNO
x触媒をバイパスするバイパス通路とこのバイパス通路
を開くバイパスバルブを設け、空燃比リッチの領域では
リーンNOx触媒をバイパスするよう排気ガスの流れを
制御するものが知られている。そして、このように排気
系にリーンNOx触媒とバイパス通路を設けたものにお
いては、また、触媒温度が耐熱温度を越えたときに上記
バイパス通路を開くことによりリーンNOx触媒への排
気ガスの流入を停止して触媒温度をコントロールするこ
とが一般に知られている。2. Description of the Related Art As described in Japanese Patent Laid-Open No. 3-225013, a transition metal is used as a catalyst for purifying NOx in engine exhaust gas in a lean air-fuel ratio region where the air-fuel ratio is larger than the theoretical air-fuel ratio. Alternatively, a catalyst, which is made of zeolite supporting a noble metal and reduces NOx in the exhaust gas in the presence of HC in an oxidizing atmosphere, a so-called lean NOx catalyst is provided in the exhaust system, and the lean NOx catalyst is provided.
It is known that a bypass passage that bypasses the x catalyst and a bypass valve that opens this bypass passage are provided, and the flow of exhaust gas is controlled so as to bypass the lean NOx catalyst in the air-fuel ratio rich region. In the exhaust system having the lean NOx catalyst and the bypass passage as described above, when the catalyst temperature exceeds the heat resistant temperature, the bypass passage is opened to prevent the exhaust gas from flowing into the lean NOx catalyst. It is generally known to stop and control the catalyst temperature.
【0003】また、これとは別に、エンジンには例えば
特開昭63ー113139号公報に記載されているよう
に減速時に燃料の供給を停止する減速燃料停止手段を設
けるのが普通であり、また、減速時以外にも、エンジン
の過回転防止とか車速制限のために回転センサや車速セ
ンサの出力に基づいて燃料停止手段を作動させるように
することが従来から行われている。Separately from this, the engine is usually provided with a deceleration fuel stopping means for stopping the fuel supply at the time of deceleration, as described in, for example, JP-A-63-113139. In addition to deceleration, it has been conventionally practiced to operate the fuel stopping means based on the output of the rotation sensor or the vehicle speed sensor in order to prevent the engine from over-rotating or limit the vehicle speed.
【0004】[0004]
【発明が解決しようとする課題】リーンNOx触媒は排
気ガス成分中のHCとNOxを吸着してNOxを還元し
浄化するものであるが、酸素を吸着すると一時的に劣化
し浄化性能が著しく低下する。そして、特に、エンジン
の過回転防止あるいは車速制限のために燃料の供給を停
止した時とか減速燃料停止時等のように排気ガス中に多
量の酸素が含まれる状況でリーンNOx触媒に排気ガス
が流れると、触媒に酸素が多量に吸着されて劣化が顕著
となる。The lean NOx catalyst adsorbs HC and NOx in the exhaust gas components to reduce and purify NOx. However, if oxygen is adsorbed, the NOx catalyst temporarily deteriorates and the purification performance remarkably deteriorates. To do. In particular, when the exhaust gas contains a large amount of oxygen, such as when the fuel supply is stopped to prevent engine over-rotation or to limit the vehicle speed, or when the deceleration fuel is stopped, the lean NOx catalyst contains exhaust gas. When flowing, a large amount of oxygen is adsorbed on the catalyst, and the deterioration becomes remarkable.
【0005】本発明は上記問題点に鑑みてなされたもの
であって、燃料停止時に酸素を吸着することによってリ
ーンNOx触媒の浄化性能が低下するのを防止すること
を目的とする。The present invention has been made in view of the above problems, and an object of the present invention is to prevent the purification performance of a lean NOx catalyst from being lowered by adsorbing oxygen when fuel is stopped.
【0006】[0006]
【課題を解決するための手段】本発明はエンジンの排気
制御装置に係るものであって、その構成は、少なくとも
空燃比が理論空燃比より大きいリーン空燃比領域におい
てエンジン排気ガス中のNOxを還元するリーンNOx
触媒と、このリーンNOx触媒をバイパスするバイパス
通路と、エンジンの運転状態に応じてエンジンの排気経
路をリーンNOx触媒に排気ガスを流す経路とバイパス
通路に排気ガスを流す経路とに切り換える切換手段とを
排気系に備え、かつ、所定の運転領域においてエンジン
への燃料の供給を停止する燃料停止手段を備えたエンジ
ンにおいて、燃料停止手段の作動時には運転状態に拘わ
らずエンジンの排気ガスをリーンNOx触媒をバイパス
してバイパス通路に流すよう切換手段を制御する燃料停
止時触媒バイパス制御手段を設けたことを特徴とする。SUMMARY OF THE INVENTION The present invention relates to an exhaust control system for an engine, the structure of which reduces NOx in engine exhaust gas at least in a lean air-fuel ratio region where the air-fuel ratio is larger than the theoretical air-fuel ratio. Lean NOx
A catalyst, a bypass passage for bypassing the lean NOx catalyst, and a switching means for switching the exhaust passage of the engine to a passage for flowing exhaust gas to the lean NOx catalyst and a passage for flowing exhaust gas to the bypass passage according to the operating state of the engine. An exhaust system, and a fuel stop means for stopping the supply of fuel to the engine in a predetermined operating region, the exhaust gas of the engine is lean NOx catalyst regardless of the operating state when the fuel stop means is in operation. The fuel bypass catalyst bypass control means is provided for controlling the switching means so that the fuel is bypassed to flow into the bypass passage.
【0007】上記燃料停止手段は、所定回転数以上のエ
ンジン回転数が検出された運転領域で作動するものとす
ることができ、また、所定車速以上の車速が検出された
運転領域で作動するものとすることができる。The fuel stopping means may operate in an operating range in which an engine speed equal to or higher than a predetermined rotational speed is detected, and operates in an operating range in which a vehicle speed equal to or higher than a predetermined vehicle speed is detected. Can be
【0008】また、燃料停止手段はエンジンの減速が検
出された運転領域で作動するものとすることができる。
この場合、燃料停止手段作動時のリーンNOx触媒バイ
パス制御手段の作動に所定のディレイをかけるようバイ
パスディレイ手段を設けるとよい。Further, the fuel stopping means can be operated in an operating region where deceleration of the engine is detected.
In this case, the bypass delay means may be provided so as to delay the operation of the lean NOx catalyst bypass control means when the fuel stop means is operated.
【0009】図1は本発明の上記構成を示す全体構成図
である。FIG. 1 is an overall configuration diagram showing the above configuration of the present invention.
【0010】[0010]
【作用】所定回転以上のエンジン回転数が検出された運
転領域とか、所定車速以上の車速が検出された運転領域
とか、あるいは、エンジンの減速が検出された運転領域
においては、燃料停止手段が作動し、それによってエン
ジンへの燃料の供給が停止される。そして、このような
燃料停止時には、リーンNOx触媒をバイパスするバイ
パス通路に排気ガスを流すよう排気経路が切り換えら
れ、これによって、多量の酸素がリーンNOx触媒に流
れて吸着されるのが防止される。また、特にエンジン減
速時においては、所定のディレイ時間をおいて排気ガス
の流れがバイパス通路側に切り換えるような制御が行わ
れ、その際、減速初期の付着燃料の吸入によるリッチ雰
囲気によって酸素がリーンNOx触媒から離脱し、NO
x浄化性能が向上する。The fuel stop means operates in the operating range in which the engine speed equal to or higher than the predetermined speed is detected, the operating range in which the vehicle speed equal to or higher than the predetermined vehicle speed is detected, or the operating range in which the engine deceleration is detected. Then, the supply of fuel to the engine is stopped. When the fuel is stopped, the exhaust path is switched so that the exhaust gas flows through the bypass passage that bypasses the lean NOx catalyst, thereby preventing a large amount of oxygen from flowing and adsorbing to the lean NOx catalyst. .. Further, particularly during engine deceleration, control is performed so that the flow of exhaust gas is switched to the bypass passage side after a predetermined delay time, and at that time, oxygen is lean due to the rich atmosphere due to the intake of adhered fuel at the initial stage of deceleration. NO from the NOx catalyst
x Purification performance is improved.
【0011】[0011]
【実施例】以下、本発明の実施例を図面に基づいて説明
する。Embodiments of the present invention will be described below with reference to the drawings.
【0012】図2は本発明の一実施例のシステム図であ
る。図において1はエンジンであって、エンジン1の吸
気通路2にはサージタンク3が設けられ、サージタンク
3の上流にはスロットル弁4が、下流には燃料噴射弁5
が設けられている。また、エンジン1の排気通路6は、
側方に迂回するよう延設されたメイン通路6aと、この
メイン通路6aの上流部と下流部をストレートに結ぶバ
イパス通路6bとからなるものであって、メイン通路6
aには迂回部分に空燃比が理論空燃比より希薄なリーン
運転時にNOxを還元浄化するリーンNOx触媒7が設
けられ、バイパス通路6bとの合流部下流には三元触媒
8が設けれている。また、バイパス通路6bにはこのバ
イパス通路6bを開閉するバイパスバルブ9が設けられ
ている。FIG. 2 is a system diagram of an embodiment of the present invention. In the figure, reference numeral 1 denotes an engine, a surge tank 3 is provided in an intake passage 2 of the engine 1, a throttle valve 4 is provided upstream of the surge tank 3, and a fuel injection valve 5 is provided downstream thereof.
Is provided. Further, the exhaust passage 6 of the engine 1 is
The main passage 6a is formed to extend laterally and a bypass passage 6b that connects the upstream portion and the downstream portion of the main passage 6a in a straight line.
A lean NOx catalyst 7 that reduces and purifies NOx during lean operation in which the air-fuel ratio is leaner than the stoichiometric air-fuel ratio is provided in the bypass portion, and a three-way catalyst 8 is provided downstream of the confluence with the bypass passage 6b. .. The bypass passage 6b is provided with a bypass valve 9 that opens and closes the bypass passage 6b.
【0013】上記燃料噴射弁5およびバイパスバルブ9
の制御はマイクロコンピュータにより構成されたコント
ロールユニット10によって行う。そのため、コントロ
ールユニット10にはリーンNOx触媒7に設けられた
温度センサ11から触媒温度信号が入力されるほか、ス
ロットル弁4に付設されたスロットルセンサ12からス
ロットル開度信号が入力され、また、図示しない回転セ
ンサからエンジン回転数信号が入力される。また、コン
トロールユニット10には図示しない車速センサから車
速信号が入力される。また、コントロールユニット10
には、そのほか、吸入空気量,吸気管負圧,エンジン水
温,排気ガス中の酸素濃度等の各種信号が入力される。The fuel injection valve 5 and the bypass valve 9
Is controlled by the control unit 10 composed of a microcomputer. Therefore, the control unit 10 receives a catalyst temperature signal from a temperature sensor 11 provided in the lean NOx catalyst 7, a throttle opening signal from a throttle sensor 12 attached to the throttle valve 4, and the drawing. The engine speed signal is input from the rotation sensor. A vehicle speed signal is input to the control unit 10 from a vehicle speed sensor (not shown). In addition, the control unit 10
In addition, various signals such as the intake air amount, the intake pipe negative pressure, the engine water temperature, and the oxygen concentration in the exhaust gas are input.
【0014】図3は上記実施例における燃料制御の領域
図であって、縦軸に負荷(吸気管負圧)をとり横軸にエ
ンジン回転数をとって、空燃比リーン設定のフィードバ
ック(リーンF/B),高負荷・高回転増量,アイドル
増量,減速燃料停止(減速F/C)および過回転燃料停
止(オーバーレブF/C)の各ゾーンを示している。FIG. 3 is a region diagram of the fuel control in the above embodiment, in which the vertical axis represents the load (intake pipe negative pressure) and the horizontal axis represents the engine speed, and the feedback of the air-fuel ratio lean setting (lean F). / B), high load / high speed increase, idle increase, deceleration fuel stop (deceleration F / C) and over-speed fuel stop (overrev F / C).
【0015】上記リーンF/Bゾーンでは、空燃比(A
/F)が理論空燃比よりも大きくされ、かつ、その設定
値はエンジン回転数と負荷に応じたものとされる。この
リーンF/Bゾーンにおいては、エンジン回転数と吸入
空気量に基づいて燃料の基本噴射量が設定され、それに
水温等による各種補正が加えられ、さらに、酸素濃度信
号に基づいたフィードバック補正が加えられて最終噴射
量とされる。そして、この最終噴射量に相当する制御パ
ルスが上記燃料噴射弁5に印加され、それによってエン
ジン1の空燃比が所定の値に制御される。また、高負荷
・高回転増量ゾーンおよびアイドル増量ゾーンでは、フ
ィードバック制御が停止されて所要の燃料増量が行わ
れ、減速F/CゾーンおよびオーバーレブF/Cゾーン
(例えばエンジン回転数が7000rpm以上)では燃
料の供給が停止される。また、上記領域図には表れない
が、車速が所定値(例えば180km/h)を越える時
にも燃料の供給は停止される。In the lean F / B zone, the air-fuel ratio (A
/ F) is made larger than the stoichiometric air-fuel ratio, and its set value depends on the engine speed and the load. In the lean F / B zone, the basic fuel injection amount is set based on the engine speed and the intake air amount, and various corrections such as water temperature are added to the basic injection amount, and further feedback correction based on the oxygen concentration signal is added. And the final injection amount. Then, a control pulse corresponding to this final injection amount is applied to the fuel injection valve 5, whereby the air-fuel ratio of the engine 1 is controlled to a predetermined value. Further, in the high load / high rotation increasing zone and the idle increasing zone, the feedback control is stopped to perform the required fuel increase, and in the deceleration F / C zone and the overrev F / C zone (for example, the engine speed is 7,000 rpm or more). The fuel supply is stopped. Although not shown in the above area diagram, the fuel supply is also stopped when the vehicle speed exceeds a predetermined value (for example, 180 km / h).
【0016】一方、上記実施例ではリーンNOx触媒7
の温度が耐熱温度より低いときにバイパスバルブ9を閉
じ、リーンNOx触媒7が耐熱温度以上となったときに
バイパスバルブ9を開くことによって、リーンNOx触
媒7の温度を耐熱温度範囲にコントロールするようにし
ている。また、上記減速F/Cゾーンあるいはオーバー
レブF/Cゾーンにおいて、あるいは車速が所定値を越
える領域においては、触媒温度に拘わらず強制的にバイ
パスバルブ9が開かれ、それによって、酸素濃度の高い
排気ガスがリーンNOx触媒7に流れるのが防止され
る。また、この内、減速F/Cゾーンでのバイパスバル
ブ9の制御では、エンジン1が減速F/Cゾーンに入っ
たことが検出されてから所定のディレイ時間をおいてバ
イパスバルブ9の開制御が実行される。このディレイの
間は、減速初期に吸入される付着燃料がそのままリーン
NOx触媒7に流れ、リーンNOx触媒7に吸着された
酸素を離脱させる。On the other hand, in the above embodiment, the lean NOx catalyst 7 is used.
By closing the bypass valve 9 when the temperature is lower than the heat resistant temperature and opening the bypass valve 9 when the lean NOx catalyst 7 becomes higher than the heat resistant temperature, the temperature of the lean NOx catalyst 7 is controlled within the heat resistant temperature range. I have to. Further, in the deceleration F / C zone or the overrev F / C zone, or in the region where the vehicle speed exceeds a predetermined value, the bypass valve 9 is forcibly opened regardless of the catalyst temperature, whereby exhaust gas with high oxygen concentration is produced. Gas is prevented from flowing to the lean NOx catalyst 7. Further, among these, in the control of the bypass valve 9 in the deceleration F / C zone, the opening control of the bypass valve 9 is performed with a predetermined delay time after it is detected that the engine 1 has entered the deceleration F / C zone. Executed. During this delay, the adhering fuel sucked in at the initial stage of deceleration flows as it is to the lean NOx catalyst 7, and the oxygen adsorbed on the lean NOx catalyst 7 is released.
【0017】図4は上記バイパスバルブ9の制御を実行
するフローチャートであり、S1〜S6はその各ステッ
プを示している。FIG. 4 is a flow chart for executing the control of the bypass valve 9, and S1 to S6 show respective steps thereof.
【0018】図4のフローチャートでは、スタートする
と、S1で触媒温度,エンジン回転数,車速,吸気管負
圧,スロットル開度といった各種信号を読み込む。そし
て、S2で現在の触媒の温度T0が触媒の耐熱温度T1よ
り低いかどうかを見る。In the flowchart of FIG. 4, when starting, various signals such as catalyst temperature, engine speed, vehicle speed, intake pipe negative pressure and throttle opening are read in S1. Then, in S2, it is checked whether the current temperature T 0 of the catalyst is lower than the heat resistant temperature T 1 of the catalyst.
【0019】S2で現在の触媒の温度T0が耐熱温度T1
より低いというときは、S3へ進み、エンジン1の運転
領域が減速F/CあるいはオーバーレブF/C若しくは
車速が所定値を越えたことによる燃料停止(F/C)の
領域かどうかを判定する。そして、F/Cの領域という
ことであれば、S4に進み、そのF/Cが減速F/Cで
あるかどうかを判定し、減速F/Cであれば、S5へ進
み、所定のディレイをおいた後でバイパスバルブ9を開
く。At S2, the current catalyst temperature T 0 is the heat resistant temperature T 1
If it is lower, the process proceeds to S3, and it is determined whether the operating region of the engine 1 is the deceleration F / C or the overrev F / C or the fuel stop (F / C) region due to the vehicle speed exceeding a predetermined value. If it is in the F / C area, the process proceeds to S4, and it is determined whether the F / C is the deceleration F / C. If the F / C is the deceleration F / C, the process proceeds to S5 and a predetermined delay is applied. After the opening, the bypass valve 9 is opened.
【0020】また、S4で減速F/C以外でのF/Cす
なわちオーバーレブF/Cあるいは車速が所定値を越え
たことによるF/Cである場合には、S6へ進んで直ち
にバイパスバルブ9を開く。In S4, if the F / C other than the deceleration F / C, that is, the overrev F / C or the F / C resulting from the vehicle speed exceeding a predetermined value, the process proceeds to S6 and the bypass valve 9 is immediately opened. open.
【0021】また、S2の判定で現在の触媒の温度T0
が触媒の耐熱温度T1以上という場合は、やはりS6へ
進んで直ちにバイパスバルブ9を開く。Further, the current temperature T 0 of the catalyst is determined in the determination of S2.
If is higher than the heat resistant temperature T 1 of the catalyst, the process also proceeds to S6 and the bypass valve 9 is opened immediately.
【0022】また、S3の判定でF/Cでないときはそ
のままリターンする。If the result of S3 is not F / C, the process directly returns.
【0023】[0023]
【発明の効果】本発明は以上のように構成されているの
で、燃料停止時にリーンNOx触媒をバイパスすること
により、リーンNOx触媒が酸素を吸着して劣化しNO
x浄化性能が低下するのを防止することができる。ま
た、特に減速燃料停止時にリーンNOx触媒のバイパス
に所定のディレイをかけることにより、リーンNOx触
媒に吸着された酸素を離脱させてNOx浄化性能を向上
させることができる。As described above, the present invention is constructed as described above. By bypassing the lean NOx catalyst when fuel is stopped, the lean NOx catalyst adsorbs oxygen and deteriorates.
x It is possible to prevent deterioration of the purification performance. In addition, by applying a predetermined delay to the bypass of the lean NOx catalyst when the deceleration fuel is stopped, it is possible to separate the oxygen adsorbed by the lean NOx catalyst and improve the NOx purification performance.
【図1】本発明の全体構成図FIG. 1 is an overall configuration diagram of the present invention.
【図2】本発明の一実施例のシステム図FIG. 2 is a system diagram of an embodiment of the present invention.
【図3】本発明の一実施例における燃料制御の領域図FIG. 3 is a region diagram of fuel control in one embodiment of the present invention.
【図4】本発明の一実施例におけるバイパスバルブの制
御を実行するフローチャートFIG. 4 is a flowchart for executing control of a bypass valve according to an embodiment of the present invention.
1 エンジン 5 燃料噴射弁 6b バイパス通路 7 リーンNOx触媒 9 バイパスバルブ 10 コントロールユニット 1 engine 5 fuel injection valve 6b bypass passage 7 lean NOx catalyst 9 bypass valve 10 control unit
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F02D 45/00 301 G 7536−3G (72)発明者 中角 忠孝 広島県安芸郡府中町新地3番1号 マツダ 株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical display location F02D 45/00 301 G 7536-3G (72) Inventor Tadataka Nakagaku Shinchi Fuchu-cho, Aki-gun, Hiroshima No. 1 in Mazda Motor Corporation
Claims (5)
いリーン空燃比領域においてエンジン排気ガス中のNO
xを還元するリーンNOx触媒と、該リーンNOx触媒
をバイパスするバイパス通路と、エンジンの運転状態に
応じて該エンジンの排気経路を前記リーンNOx触媒に
排気ガスを流す経路と前記バイパス通路に排気ガスを流
す経路とに切り換える切換手段とを排気系に備え、か
つ、所定の運転領域において該エンジンへの燃料の供給
を停止する燃料停止手段を備えたエンジンにおいて、前
記燃料停止手段の作動時には前記運転状態に拘わらず該
エンジンの排気ガスを前記リーンNOx触媒をバイパス
して前記バイパス通路に流すよう前記切換手段を制御す
る燃料停止時触媒バイパス制御手段を設けたことを特徴
とするエンジンの排気制御装置。1. NO in engine exhaust gas at least in a lean air-fuel ratio region where the air-fuel ratio is larger than the theoretical air-fuel ratio.
lean NOx catalyst for reducing x, a bypass passage for bypassing the lean NOx catalyst, an exhaust path of the engine for flowing exhaust gas to the lean NOx catalyst and an exhaust gas for the bypass passage according to an operating state of the engine. In the engine, the exhaust system is provided with a switching means for switching to a path through which the fuel flows, and a fuel stopping means for stopping the supply of fuel to the engine in a predetermined operating region. An engine exhaust control device characterized in that a fuel stop catalyst bypass control means is provided for controlling the switching means so that exhaust gas of the engine bypasses the lean NOx catalyst and flows into the bypass passage regardless of the state. ..
ン回転数が検出された運転領域で作動するものである請
求項1記載のエンジンの排気制御装置。2. The exhaust control system for an engine according to claim 1, wherein the fuel stopping means operates in an operating region in which an engine speed equal to or higher than a predetermined speed is detected.
出された運転領域で作動するものである請求項1記載の
エンジンの排気制御装置。3. The exhaust control system for an engine according to claim 1, wherein the fuel stopping means operates in an operating region where a vehicle speed equal to or higher than a predetermined vehicle speed is detected.
れた運転領域で作動するものである請求項1記載のエン
ジンの排気制御装置。4. The exhaust control system for an engine according to claim 1, wherein the fuel stopping means operates in an operating region where deceleration of the engine is detected.
バイパス制御手段の作動に所定のディレイをかけるバイ
パスディレイ手段を設けた請求項4記載のエンジンの排
気制御装置。5. The exhaust control device for an engine according to claim 4, further comprising a bypass delay means for applying a predetermined delay to the operation of the lean NOx catalyst bypass control means at the time of operating the fuel stop means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4119307A JPH05312031A (en) | 1992-05-12 | 1992-05-12 | Exhaust emission control device for engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4119307A JPH05312031A (en) | 1992-05-12 | 1992-05-12 | Exhaust emission control device for engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05312031A true JPH05312031A (en) | 1993-11-22 |
Family
ID=14758189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4119307A Pending JPH05312031A (en) | 1992-05-12 | 1992-05-12 | Exhaust emission control device for engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05312031A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6502391B1 (en) * | 1999-01-25 | 2003-01-07 | Toyota Jidosha Kabushiki Kaisha | Exhaust emission control device of internal combustion engine |
FR2863657A1 (en) * | 2003-12-16 | 2005-06-17 | Renault Sas | Method and installation for the treatment of exhaust gases from the internal combustion engine of an automobile |
JP2007255319A (en) * | 2006-03-23 | 2007-10-04 | Toyota Motor Corp | Variable exhaust system for internal combustion engine |
JP2022094444A (en) * | 2020-12-15 | 2022-06-27 | 株式会社豊田自動織機 | Catalyst temperature raising system |
-
1992
- 1992-05-12 JP JP4119307A patent/JPH05312031A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6502391B1 (en) * | 1999-01-25 | 2003-01-07 | Toyota Jidosha Kabushiki Kaisha | Exhaust emission control device of internal combustion engine |
FR2863657A1 (en) * | 2003-12-16 | 2005-06-17 | Renault Sas | Method and installation for the treatment of exhaust gases from the internal combustion engine of an automobile |
JP2007255319A (en) * | 2006-03-23 | 2007-10-04 | Toyota Motor Corp | Variable exhaust system for internal combustion engine |
JP2022094444A (en) * | 2020-12-15 | 2022-06-27 | 株式会社豊田自動織機 | Catalyst temperature raising system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH04224221A (en) | Exhaust purification device for diesel engine | |
JPS58573B2 (en) | Fuel supply cylinder number control device | |
JPS6176734A (en) | Atmospheric pollution prevention device of engine | |
JP3154110B2 (en) | Engine emission control device | |
JPH05312031A (en) | Exhaust emission control device for engine | |
JPH05133260A (en) | Exhaust gas purifying device for internal combustion engine | |
JPH0693845A (en) | Exhaust emission control device for engine | |
JPS61132745A (en) | Air-fuel ratio controller of internal-conbustion engine | |
JPS5925107B2 (en) | Engine exhaust gas purification device | |
JP2543736Y2 (en) | Exhaust gas purification device for internal combustion engine | |
JP2806170B2 (en) | Exhaust gas purification device for internal combustion engine | |
JP3800633B2 (en) | Engine exhaust gas purification device | |
JPH06200750A (en) | Exhaust emission control device for internal combustion engine | |
JPH07279651A (en) | Exhaust emission control device of internal combustion engine | |
JP2914121B2 (en) | Control device for lean-burn internal combustion engine | |
JPS6380033A (en) | Trouble diagnostics for air-fuel ratio control system | |
JPS60192845A (en) | Air-fuel ratio control device | |
JPH0633749A (en) | Secondary air control device for internal combustion engine | |
JP3202288B2 (en) | Engine secondary air supply | |
JPH0693840A (en) | Exhaust emission control device for internal combustion engine | |
JP3013050B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JPH0636266Y2 (en) | Exhaust gas purification device for internal combustion engine | |
JPH0559935A (en) | Catalyst deterioration preventive device of internal combustion engine | |
JP2855996B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JPH06123223A (en) | Exhaust emission control device for internal combustion engine |