[go: up one dir, main page]

JPH06200750A - Exhaust emission control device for internal combustion engine - Google Patents

Exhaust emission control device for internal combustion engine

Info

Publication number
JPH06200750A
JPH06200750A JP5000834A JP83493A JPH06200750A JP H06200750 A JPH06200750 A JP H06200750A JP 5000834 A JP5000834 A JP 5000834A JP 83493 A JP83493 A JP 83493A JP H06200750 A JPH06200750 A JP H06200750A
Authority
JP
Japan
Prior art keywords
exhaust
exhaust gas
temperature
catalyst
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5000834A
Other languages
Japanese (ja)
Inventor
Hiroyasu Yoshino
太容 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP5000834A priority Critical patent/JPH06200750A/en
Publication of JPH06200750A publication Critical patent/JPH06200750A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/18Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an adsorber or absorber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/12Hydrocarbons

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To increase the reliability of an exhaust emission control device by providing a main passage and a by-pass passage with an adsorbent interposed therein, in parallel upstream of the catalyst of an exhaust passage, and controlling the exhaust flow ratio of both passages from the degree-of-degradation of the catalyst, the exhaust gas temperature, and the like according to the operating state of an engine so as to desorb HC from the adsorbent according to the degree of degradation. CONSTITUTION:Part of the exhaust passage 13 of an engine 11 is formed of a main passage 13a and a by-pass passage 14 with an adsorbent 15 interposed therein. A pre-three-way catalyst 19a and a main three-way catalyst 19b are provided upstream and downstream of both passages 13a, 14, and oxygen sensors 21a, 21b are provided. The degree-of-degradation of the three-way catalyst 19b is obtained from the oxygen sensors 21a, 21b, and the opening of a control valve 16 is controlled by the output of an exhaust gas temperature sensor 22. When the temperature of the exhaust gas is low, the exhaust gas is made flow mainly to the adsorbent 15 side, and part of the exhaust gas is made flow to the catalyst 19b side to accelerate temperature rise. Upon exceeding the specified temperature, a flow ratio on the by-pass passage 14 side is made zero. The opening of the control valve 16 is regulated according to the operating state so as to desorb HC from the adsorbent 15. The reliability of an exhaust emission control device is thus increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内燃機関の排気浄化装
置に関し、特に、機関の排気中に含まれる未燃HCを低
温時に吸着剤により一時的に吸着後脱離し、活性化後の
排気浄化用触媒により浄化する装置において排気浄化用
触媒を対策した技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purification apparatus for an internal combustion engine, and more particularly, to an unburned HC contained in the exhaust gas of an engine, which is temporarily adsorbed and desorbed by an adsorbent at a low temperature and exhausted after activation. The present invention relates to a technology in which an exhaust purification catalyst is used as a countermeasure in an apparatus that purifies with a purification catalyst.

【0002】[0002]

【従来の技術】車両用の内燃機関においては排気浄化の
ため、排気通路中に排気中のHC (未燃ガス) ,COを
2 O,CO2 に酸化する一方、NOX をN2 に還元し
て浄化する三元浄化触媒と称される排気浄化用触媒が介
装されている。ところで前記排気中の有害成分の中、H
Cの排出量は特に排気温度に影響されやすい。即ち、貴
金属触媒を使用する場合でも、HCの浄化には一般に3
00°C以上の触媒温度を必要とする。そのため、前記
三元触媒を備えただけの排気浄化装置では、機関の冷温
始動直後など排気温度の低い時には、HCは前記触媒に
よって浄化されがたい。
2. Description of the Related Art In an internal combustion engine for a vehicle, in order to purify exhaust gas, HC (unburned gas) and CO in the exhaust gas are oxidized into H 2 O and CO 2 in the exhaust passage, while NO X is converted into N 2 . An exhaust gas purification catalyst called a three-way purification catalyst that reduces and purifies is installed. By the way, of the harmful components in the exhaust gas, H
The discharge amount of C is particularly susceptible to the exhaust temperature. In other words, even if a noble metal catalyst is used, it is generally 3
A catalyst temperature of 00 ° C or higher is required. Therefore, in the exhaust gas purification device only including the three-way catalyst, it is difficult to purify the HC by the catalyst when the exhaust gas temperature is low, such as immediately after the engine is started cold.

【0003】このため、従来の車両用の排気浄化装置と
しては、例えば、特開昭62−174522号公報に示
されるように、前記排気浄化用触媒の上流側の排気通路
にHCを吸着するための吸着剤を介装したものが提案さ
れている。即ち、このものは、吸着剤が低温時にはHC
を吸着し、高温になると吸着されたHCを脱離する特性
があることを利用し、排気浄化用触媒の上流の排気通路
の一部に前記吸着剤を介装したバイパス通路を並列に接
続して主通路とバイパス通路とを選択的に開閉自由な構
成とし、排気浄化用触媒が活性化される前の低温時に前
記バイパス通路を開いて吸着剤にHCを吸着しておき、
一旦バイパス通路を閉じた後、高温になって排気浄化用
触媒が活性化してから再度バイパス通路を開いて吸着さ
れたHCを脱離させて排気浄化用触媒で浄化するように
なっている。そして、吸着剤としては、ゼオライトが吸
着性に優れていることから例えばモノリス担体にゼオラ
イトをコーティングしたものが提案されている。
Therefore, as a conventional exhaust gas purifying apparatus for a vehicle, for example, as shown in JP-A-62-174522, for adsorbing HC in the exhaust passage on the upstream side of the exhaust gas purifying catalyst. It has been proposed to interpose the adsorbent. That is, when the adsorbent has a low temperature,
By utilizing the fact that it has the property of adsorbing the adsorbent and desorbing the adsorbed HC when the temperature becomes high, a bypass passage in which the adsorbent is interposed is connected in parallel to a part of the exhaust passage upstream of the exhaust purification catalyst. The main passage and the bypass passage are selectively opened and closed, and the bypass passage is opened to adsorb HC at the adsorbent at a low temperature before the exhaust purification catalyst is activated.
After the bypass passage is closed once, the temperature becomes high and the exhaust purification catalyst is activated, and then the bypass passage is opened again to desorb the adsorbed HC and the exhaust purification catalyst purifies it. As the adsorbent, for example, a monolith carrier coated with zeolite has been proposed because zeolite has excellent adsorbability.

【0004】[0004]

【発明が解決しようとする課題】ところで、かかる吸着
剤を備えた排気浄化装置においては、図8に示すように
排気浄化用触媒の劣化に伴って、より高温の排気になら
なければ触媒が活性化するに至らなくなると共に、触媒
が十分に活性化した場合でも触媒の浄化効率は低下する
にも拘らず、劣化に応じた制御の修正を行っていなかっ
たため、十分浄化が行われず排気エミッションの悪化を
もたらすといった問題点を生じていた。
By the way, in an exhaust gas purification apparatus provided with such an adsorbent, as shown in FIG. 8, the catalyst is activated unless the exhaust gas at a higher temperature is exhausted as the exhaust gas purification catalyst deteriorates. However, even if the catalyst is sufficiently activated, the purification efficiency of the catalyst will decrease, but since the control was not modified according to the deterioration, sufficient purification was not performed and exhaust emission worsened. Was causing problems.

【0005】本発明は、このような従来の問題点に鑑み
なされたものであり、触媒の劣化度に応じて吸着剤より
HCを脱離させる時期及び脱離量を制御することによ
り、排気エミッションの悪化を防止できるようにした内
燃機関の排気浄化装置を提供することを目的とする。
The present invention has been made in view of the above-mentioned conventional problems, and exhaust gas emission is controlled by controlling the timing and the amount of desorption of HC from the adsorbent in accordance with the degree of deterioration of the catalyst. It is an object of the present invention to provide an exhaust emission control device for an internal combustion engine, which can prevent the deterioration of the engine.

【0006】[0006]

【課題を解決するための手段】このため、本発明は、図
1に示すように、機関の排気通路に排気浄化用触媒を備
えると共に、該排気浄化用触媒の上流の排気通路の一部
を主通路と該主通路に並列に接続され排気中の未燃HC
を低温時に吸着し高温時に脱離する機能を有した吸着剤
を介装したバイパス通路とで構成し、かつ、前記主通路
とバイパス通路との排気の流量比を制御する排気流量比
制御手段とを備えた内燃機関の排気浄化装置において、
前記排気浄化用触媒の劣化度を検出する劣化度検出手段
と、機関の運転状態を検出する運転状態検出手段と、排
気の温度状態を検出する排気温度検出手段と、劣化度と
排気温度を含む条件に基づき機関の運転状態に応じて排
気流量比を設定する排気流量比設定手段と、を備え、該
排気流量比設定手段により設定された排気流量比が得ら
れるように前記排気流量比制御手段により制御するよう
にした構成とする。
Therefore, according to the present invention, as shown in FIG. 1, an exhaust gas purification catalyst is provided in an exhaust passage of an engine, and a part of the exhaust gas passage upstream of the exhaust purification catalyst is provided. Main passage and unburned HC in exhaust gas connected in parallel to the main passage
An exhaust flow rate ratio control means for controlling the flow rate ratio of exhaust gas between the main passage and the bypass passage, and a bypass passage having an adsorbent having a function of adsorbing at a low temperature and desorbing at a high temperature. In an exhaust gas purification device for an internal combustion engine, comprising:
Deterioration degree detecting means for detecting the degree of deterioration of the exhaust gas purification catalyst, operating state detecting means for detecting the operating state of the engine, exhaust temperature detecting means for detecting the temperature state of the exhaust gas, including the degree of deterioration and the exhaust temperature Exhaust flow ratio setting means for setting an exhaust flow ratio according to the operating state of the engine based on the conditions, and the exhaust flow ratio control means for obtaining the exhaust flow ratio set by the exhaust flow ratio setting means. It is configured to be controlled by.

【0007】また、前記排気流量比設定手段は、前記劣
化度検出手段により求められた排気浄化用触媒の劣化度
に応じて、吸着剤に吸着されたHCの脱離開始触媒温度
及び単位時間当りのHC脱離量を設定し、単位脱離量に
基づいて排気流量比の設定と当該設定された排気流量比
に維持する時間とを求めてなり、前記排気流量比制御手
段は、前記脱離開始触媒温度以上で排気流量比を前記設
定値に所定時間維持するように制御するように構成する
こともできる。
Further, the exhaust flow rate ratio setting means, depending on the deterioration degree of the exhaust purification catalyst obtained by the deterioration degree detecting means, desorbs the HC adsorbed by the adsorbent at a catalyst temperature per unit time. Of the HC desorption amount, the exhaust flow rate ratio is set based on the unit desorption amount, and the time for maintaining the set exhaust flow rate ratio is obtained. The exhaust flow rate ratio may be controlled to be maintained at the set value for a predetermined time at the temperature of the start catalyst or higher.

【0008】また、前記劣化度検出手段は、排気浄化用
触媒の上流入口部及び下流出口部の空燃比検出値の変動
周期の比率に基づいて排気浄化用触媒の劣化度を検出す
る手段とすることもできる。更に、前記劣化度検出手段
は、排気浄化用触媒の上流入口部及び下流出口部の排気
温度に基づいて排気浄化用触媒の劣化度を検出する手段
とすることもできる。
Further, the deterioration degree detecting means is means for detecting the deterioration degree of the exhaust purification catalyst based on the ratio of the fluctuation cycle of the air-fuel ratio detection value at the upstream inlet portion and the downstream outlet portion of the exhaust purification catalyst. You can also Further, the deterioration degree detection means may be means for detecting the deterioration degree of the exhaust gas purification catalyst based on the exhaust gas temperatures at the upstream inlet portion and the downstream outlet portion of the exhaust gas purification catalyst.

【0009】[0009]

【作用】かかる構成によれば、排気温度検出手段により
検出される排気温度が、排気浄化用触媒が活性化する温
度に達する前は、バイパス通路が開かれて吸着剤に排気
中のHCを吸着させる。その後、排気浄化用触媒が活性
化するまでは、排気流量比制御手段によりバイパス通路
を閉じて主通路に排気を導く。この間に排気温度は吸着
剤からHCを脱離する温度に達するが、バイパス通路を
閉じて排気が導かれないので、脱離は行われない。
According to this structure, before the exhaust gas temperature detected by the exhaust gas temperature detecting means reaches the temperature at which the exhaust gas purification catalyst is activated, the bypass passage is opened and the adsorbent adsorbs HC in the exhaust gas. Let After that, until the exhaust gas purification catalyst is activated, the exhaust flow rate ratio control means closes the bypass passage and guides the exhaust gas to the main passage. During this time, the exhaust gas temperature reaches the temperature at which HC is desorbed from the adsorbent, but since the exhaust gas is not guided by closing the bypass passage, desorption is not performed.

【0010】一方、劣化度検出手段により求められた排
気浄化用触媒の劣化度に応じて、吸着剤に吸着されたH
Cの脱離開始触媒温度及び脱離量を設定し、該HCの脱
離開始触媒温度になると、排気流量比制御手段によりバ
イパス通路を開いて排気を流入させ吸着剤に吸着された
HCを脱離させると共に、機関の運転状態に応じて、設
定されたHC脱離量が得られるように排気流量比を制御
する。
On the other hand, according to the deterioration degree of the exhaust gas purification catalyst obtained by the deterioration degree detecting means, the H adsorbed on the adsorbent
When the desorption start catalyst temperature and desorption amount of C are set, and when the desorption start catalyst temperature of the HC is reached, the exhaust flow rate ratio control means opens the bypass passage to allow the exhaust gas to flow in and remove the HC adsorbed by the adsorbent. The exhaust gas flow rate ratio is controlled so that the set HC desorption amount is obtained according to the operating state of the engine.

【0011】このように、触媒の劣化度に応じて吸着剤
よりHCを脱離させる時期及び脱離量を制御することに
より、排気特にHC浄化性能を良好に維持することがで
きる。 また、排気浄化用触媒の上流入口部及び下流出
口部の空燃比検出値の変動周期の比率に基づいて排気浄
化用触媒の劣化度を検出するようにした場合には、排気
浄化性能が直接的に検出されるために劣化度の検出精度
が高くなり、また、運転状態によらず劣化度が的確に検
出できるため、排気浄化装置の信頼性を増大させること
ができる。
As described above, by controlling the timing and the amount of desorption of HC from the adsorbent according to the degree of deterioration of the catalyst, it is possible to maintain excellent exhaust gas, particularly HC purification performance. Further, when the degree of deterioration of the exhaust purification catalyst is detected based on the ratio of the fluctuation cycle of the air-fuel ratio detection value at the upstream inlet portion and the downstream outlet portion of the exhaust purification catalyst, the exhaust purification performance is directly determined. Since the degree of deterioration can be detected with high accuracy, and the degree of deterioration can be accurately detected regardless of the operating state, the reliability of the exhaust emission control device can be increased.

【0012】更に、排気浄化用触媒の上流入口部及び下
流出口部の排気温度に基づいて排気浄化用触媒の劣化度
を検出するようにした場合には、より簡便な構成で製品
コストの上昇を抑制することが可能となる。
Further, when the degree of deterioration of the exhaust purification catalyst is detected based on the exhaust temperatures at the upstream inlet and the downstream outlet of the exhaust purification catalyst, the product cost can be increased with a simpler configuration. It becomes possible to suppress.

【0013】[0013]

【実施例】以下に、本発明の実施例を図に基づいて説明
する。先ず、図2において、本発明に係る排気浄化装置
の全体構成を説明すると、機関11の排気通路13の一
部が主通路13aと、該主通路13aと並列に接続され
た排気バイパス通路14で形成され、該排気バイパス通
路14内には吸着剤15が介装されている。この吸着剤
15は、例えば、モノリス形状のセラミック担体にゼオ
ライト、活性炭、γアルミナ等の吸着性を有する物質を
コーティングしたもので形成される。
Embodiments of the present invention will be described below with reference to the drawings. First, referring to FIG. 2, the overall configuration of the exhaust gas purification device according to the present invention will be described. A part of the exhaust passage 13 of the engine 11 is composed of a main passage 13a and an exhaust bypass passage 14 connected in parallel with the main passage 13a. An adsorbent 15 is formed in the exhaust bypass passage 14. The adsorbent 15 is formed, for example, by coating a monolithic ceramic carrier with a substance having an adsorbing property such as zeolite, activated carbon, or γ-alumina.

【0014】そして、バイパス通路14の排気入口14
aには主通路13aとバイパス通路14との開度比を連
続的に制御することにより主通路13aとバイパス通路
14との排気の流量比を制御する手段としての制御弁1
6が設けられている。この制御弁16は、例えば、ダイ
ヤフラム式のアクチュエータを備えてなり、コントロー
ルユニット17からの信号に基づき該アクチュエータに
より弁開度を制御するように形成される。
The exhaust inlet 14 of the bypass passage 14
In a, a control valve 1 as means for controlling the flow rate ratio of exhaust gas between the main passage 13a and the bypass passage 14 by continuously controlling the opening ratio between the main passage 13a and the bypass passage 14 is provided.
6 is provided. The control valve 16 includes, for example, a diaphragm type actuator, and is formed such that the valve opening degree is controlled by the actuator based on a signal from the control unit 17.

【0015】排気通路13には、排気バイパス通路14
の排気入口14a上流側及び排気出口14b下流側に排
気浄化用触媒としての夫々プリ三元触媒19a及びメイ
ン三元触媒19bが備えられている。そして、メイン三
元触媒装置19bの上流入口部分及び下流出口部分には
メイン三元触媒装置19bに流入する排気状態を検出す
るための酸素センサ21a,21bが設けられている。
An exhaust bypass passage 14 is provided in the exhaust passage 13.
A pre-three-way catalyst 19a and a main three-way catalyst 19b as exhaust purification catalysts are provided on the upstream side of the exhaust inlet 14a and the downstream side of the exhaust outlet 14b, respectively. Oxygen sensors 21a and 21b for detecting the exhaust state flowing into the main three-way catalyst device 19b are provided at the upstream inlet portion and the downstream outlet portion of the main three-way catalyst device 19b.

【0016】尚、吸着剤15及びメイン三元触媒装置1
9bの上流入口部には排気温度センサ22,20aが設
けられており、吸着剤15及びメイン三元触媒装置19
bに流入する排気温度を検出する。コントロールユニッ
ト17は、劣化度検出手段、排気流量比制御手段及び排
気流量比設定手段としての機能をソフトウエア的に備え
る。
The adsorbent 15 and the main three-way catalyst device 1
Exhaust temperature sensors 22 and 20a are provided at the upstream inlet of 9b, and the adsorbent 15 and the main three-way catalyst device 19 are provided.
The temperature of the exhaust gas flowing into b is detected. The control unit 17 is provided with the functions of deterioration degree detection means, exhaust flow rate ratio control means, and exhaust flow rate ratio setting means as software.

【0017】そして、機関の負荷Tp及び回転速度Ne
の検出値、酸素センサ値、吸着剤15及びメイン三元触
媒装置19bの排気温度の各種信号がコントロールユニ
ット17へ入力され、該入力信号に基づき各種制御が行
われる。次に、図3に示すフローチャートにより、本発
明の第1実施例による触媒の劣化度に基づくHC脱離開
始温度T1、HC脱離量M1及び脱離所要時間t1 を決
定するためのルーチンを説明する。
The engine load Tp and the rotation speed Ne
Various signals of the detection value of 1, the oxygen sensor value, the adsorbent 15 and the exhaust temperature of the main three-way catalyst device 19b are input to the control unit 17, and various controls are performed based on the input signals. Next, the routine for determining the HC desorption starting temperature T1, the HC desorption amount M1, and the desorption required time t1 based on the degree of deterioration of the catalyst according to the first embodiment of the present invention will be described with reference to the flowchart shown in FIG. To do.

【0018】先ず、ステップ1(以下「S1」とい
う。)では、排気浄化用触媒の上流及び下流に設けられ
た酸素センサ21a,21bの出力値から変動周期(単
位時間当りにリッチ/リーン反転を行なう回数)f1 及
びf2 を検出して、該検出値の比率により劣化度D1
(=f2 /f1 )を求める。尚、ここで触媒の劣化が進
むに従って下流側の酸素センサ21bの反転回数が多く
なるので、劣化度D1も大きくなることになる。
First, in step 1 (hereinafter referred to as "S1"), the fluctuation period (rich / lean inversion per unit time is calculated based on the output values of the oxygen sensors 21a and 21b provided upstream and downstream of the exhaust purification catalyst. The number of times f1 and f2 are detected, and the deterioration degree D1
Find (= f2 / f1). Here, as the deterioration of the catalyst progresses, the number of reversals of the oxygen sensor 21b on the downstream side increases, so that the deterioration degree D1 also increases.

【0019】次に、S2では、前記劣化度D1に基づ
き、HC脱離開始温度T1、HC脱離量M1及び脱離所
要時間t1 を夫々設定する。即ち、先ず、触媒は劣化が
進むに従って充分な活性を示す時の排気温度が高くなる
ので、50%転化率を示す時の排気温度を排気浄化が最
低限達成される活性化温度として、前記劣化度D1に基
づき活性化温度を求め、これをHC脱離開始温度T1と
して設定する。
Next, at S2, the HC desorption starting temperature T1, the HC desorption amount M1 and the desorption required time t1 are set based on the deterioration degree D1. That is, first, since the exhaust gas temperature at which the catalyst exhibits sufficient activity increases as the deterioration progresses, the exhaust temperature at which the catalyst exhibits a 50% conversion rate is set as the activation temperature at which exhaust purification is at least achieved. The activation temperature is obtained based on the temperature D1 and is set as the HC desorption start temperature T1.

【0020】次に、HC脱離量M1の関係式M1=m0
×100/(100−50)よりHC脱離量M1を決定
する。尚、ここでm0は単位時間当りのHC排出許容量
を示す。そして、t1 =M0/M1の関係式よりHC脱
離所要時間t1 を決定する。尚、ここでM0はHC吸着
容量(最大吸着量)を示し、HC吸着剤担持量によって
一義的に定まる。
Next, the relational expression M1 = m0 of the HC desorption amount M1
The HC desorption amount M1 is determined from × 100 / (100-50). Here, m0 represents the allowable amount of HC emission per unit time. Then, the HC desorption required time t1 is determined from the relational expression of t1 = M0 / M1. Here, M0 represents the HC adsorption capacity (maximum adsorption amount), which is uniquely determined by the HC adsorbent loading amount.

【0021】このように酸素センサ21a,21bの出
力値の比をとることにより劣化度を検出するようにした
ので、排気浄化性能が直接的に検出されるために劣化度
の検出精度が高くなり、また、運転状態によらず劣化度
が的確に検出できるため、排気浄化装置の信頼性を増大
させることができる。尚、以上において、S1は劣化度
検出手段としての機能を奏する。
Since the deterioration degree is detected by taking the ratio of the output values of the oxygen sensors 21a and 21b in this way, the exhaust gas purification performance is directly detected, so that the deterioration degree detection accuracy becomes high. Moreover, since the degree of deterioration can be accurately detected regardless of the operating state, the reliability of the exhaust gas purification device can be increased. In the above, S1 has a function as a deterioration degree detecting means.

【0022】次に、図4に示すフローチャートにより、
HC吸着・脱離処理のルーチンを説明する。先ず、S1
0では、機関始動後、HC吸着剤上流入口部の排気温度
Taを排気温度センサ22により検出する。S11で
は、上記排気温度Taが所定値Toよりも低いか否かを
判定する。そして、Ta<Toであれば、S12に進み
排気通路13に設けられた制御弁16を所定開度1開き
排気を主に吸着剤15側に流して排気中のHCを吸着さ
せ、排気の一部を排気浄化用触媒19b側へ流し触媒の
昇温を促す。また、Ta≧Toであれば、S13に進
む。
Next, according to the flow chart shown in FIG.
A routine for HC adsorption / desorption processing will be described. First, S1
At 0, after the engine is started, the exhaust gas temperature sensor 22 detects the exhaust gas temperature Ta at the inlet of the HC adsorbent. In S11, it is determined whether the exhaust gas temperature Ta is lower than the predetermined value To. If Ta <To, the process proceeds to S12, in which the control valve 16 provided in the exhaust passage 13 is opened by a predetermined opening to allow the exhaust gas to flow mainly to the adsorbent 15 side to adsorb HC in the exhaust gas and Part to the exhaust purification catalyst 19b side to promote the temperature rise of the catalyst. If Ta ≧ To, the process proceeds to S13.

【0023】S13では、吸着剤15に流入した排気温
度が所定値を越えたので制御弁16を所定開度2(バイ
パス通路14側の排気流量比をゼロ)にして排気を全て
排気浄化用触媒19b側へ流す。S14では、排気浄化
用触媒19bの上流入口部分の排気温度Tcを排気温度
センサ20aにより検出する。
In S13, since the temperature of the exhaust gas flowing into the adsorbent 15 exceeds the predetermined value, the control valve 16 is opened to the predetermined opening 2 (the exhaust flow rate ratio on the side of the bypass passage 14 is zero), and all the exhaust gas is used as the exhaust purification catalyst. Flow to the 19b side. In S14, the exhaust temperature sensor 20a detects the exhaust temperature Tc at the upstream inlet portion of the exhaust purification catalyst 19b.

【0024】S15では、排気温度Tcが前記ルーチン
で求めた脱離開始温度T1よりも低いか否かを判定す
る。そして、Tc<T1であれば、排気浄化用触媒19
bがまだ活性化温度に達していないので、S13からの
ステップをもう一度繰り返して排出HC量が許容値を越
えないようにし、、Tc≧T1であれば、活性化温度に
達しているので制御弁16を開いてHCを脱離させる。
In S15, it is determined whether the exhaust temperature Tc is lower than the desorption start temperature T1 obtained in the above routine. If Tc <T1, the exhaust gas purification catalyst 19
Since b has not yet reached the activation temperature, the steps from S13 are repeated once more so that the amount of discharged HC does not exceed the allowable value. If Tc ≧ T1, the activation temperature is reached, so the control valve 16 is opened to release HC.

【0025】次に、S16では、機関の運転状態(機関
負荷Tp,機関回転数Ne)に応じて前記ルーチンで求
めた単位時間当りのHC脱離量M1となるように、制御
弁16の弁開度を制御する。S17では、脱離開始から
前記ルーチンで求めた脱離時間t1 を経過しているか否
かを判定する。そして、脱離時間t1 を経過していれ
ば、S18で制御弁16を所定開度2に開き排気を全て
排気浄化用触媒19bへ流し、脱離時間t1 が未だ経過
していなければ、S14からのルーチンを繰り返す。
Next, in S16, the valve of the control valve 16 is adjusted so that the HC desorption amount M1 per unit time obtained in the above routine is obtained according to the operating condition of the engine (engine load Tp, engine speed Ne). Control the opening. In S17, it is determined whether or not the desorption time t1 calculated in the above routine has elapsed since the desorption started. Then, if the desorption time t1 has elapsed, the control valve 16 is opened to the predetermined opening 2 in S18 and all the exhaust gas is allowed to flow to the exhaust gas purification catalyst 19b. If the desorption time t1 has not yet elapsed, from S14. Repeat the routine.

【0026】以上において、HC脱離開始温度T1、H
C脱離量M1及び脱離所要時間t1は、前回運転時の算
出値を用いる。尚、ここでS14は、排気温度検出手段
として、S16は、排気流量比制御手段としての機能を
奏する。次に、図5に示すフローチャートにより、前記
S16で示す制御弁16の弁開度決定のサブルーチンを
説明する。
In the above, the HC desorption starting temperatures T1, H
For the C desorption amount M1 and desorption required time t1, the calculated values at the previous operation are used. Incidentally, here, S14 functions as an exhaust gas temperature detecting means, and S16 functions as an exhaust gas flow rate ratio controlling means. Next, the subroutine for determining the valve opening degree of the control valve 16 shown in S16 will be described with reference to the flowchart shown in FIG.

【0027】先ず、S20では、機関の負荷Tp及び回
転速度Neを検出する。次に、S21では、この検出さ
れた負荷Tp及び回転速度Neに基づき、マップより排
気流量Q1を検索する。S22では、バイパス通路流量
Qb1 をQb1 =k・M1の関係式より算出する。尚、
ここで、kは定数であり、Qb1 とM1は略比例関係を
示す。
First, in S20, the load Tp and the rotation speed Ne of the engine are detected. Next, in S21, the exhaust flow rate Q1 is searched from the map based on the detected load Tp and the rotational speed Ne. In S22, the bypass passage flow rate Qb1 is calculated from the relational expression of Qb1 = k · M1. still,
Here, k is a constant, and Qb1 and M1 show a substantially proportional relationship.

【0028】S23では、制御弁16の弁開度V01を
前記ステップで求めたQ1及びQb1 に基づきマップよ
り検索する。そして、この制御弁16の弁開度がV01
になるように制御することにより、単位時間当りのHC
脱離量M1となるように制御することが可能となる。
尚、このS20は、運転状態検出手段として、S21〜
S23までのサブルーチンは、排気流量比設定手段とし
て、S20〜S23までのサブルーチンは、排気流量比
制御手段としての機能を奏する。
In S23, the valve opening V01 of the control valve 16 is searched from the map based on Q1 and Qb1 obtained in the above step. The valve opening degree of the control valve 16 is V01.
HC per unit time by controlling so that
It is possible to control the desorption amount M1.
In addition, this S20 is S21-
The subroutine up to S23 has a function as an exhaust flow rate ratio setting means, and the subroutines at S20 to S23 have a function as an exhaust flow rate ratio control means.

【0029】このように、排気浄化用触媒19bの劣化
度に応じて吸着剤15よりHCを脱離させる時期及び脱
離量を制御することにより、排気特にHC浄化性能を良
好に維持することができる。次に、図6及び図7に基づ
き、第2実施例について説明する。このものは、図6に
示すように、前記第1実施例の酸素センサ21aをなく
し、酸素センサ21bを排気温度センサ20bで置き換
えたものであり、他の構成は第1実施例のものと同一で
あるので、同一符号を付してその説明を省略する。即
ち、メイン三元触媒装置19bの上流入口部分及び下流
出口部分には排気温度センサ20a,20bが設けられ
ており、メイン三元触媒装置19bに流入し、該触媒装
置19bから流出する排気の温度を検出する。
In this way, by controlling the timing and the amount of desorption of HC from the adsorbent 15 in accordance with the degree of deterioration of the exhaust gas purification catalyst 19b, it is possible to maintain good exhaust gas, especially HC purification performance. it can. Next, a second embodiment will be described based on FIGS. 6 and 7. As shown in FIG. 6, the oxygen sensor 21a of the first embodiment is eliminated, and the oxygen sensor 21b is replaced with an exhaust gas temperature sensor 20b. Other configurations are the same as those of the first embodiment. Therefore, the same reference numerals are given and the description thereof is omitted. That is, exhaust temperature sensors 20a and 20b are provided at the upstream inlet portion and the downstream outlet portion of the main three-way catalyst device 19b, and the temperature of the exhaust gas that flows into the main three-way catalyst device 19b and flows out from the catalyst device 19b. To detect.

【0030】次に、図7に示すフローチャートにより、
本発明の第2実施例による触媒の劣化度に基づくHC脱
離開始温度T1、HC脱離量M1及び脱離所要時間t1
を決定するためのルーチンを説明する。先ず、S1Aで
は、排気浄化用触媒の上流及び下流に設けられた排気温
度センサ20a,20bにより排気浄化用触媒の排気温
度を検出する。そして、該検出値において、触媒上流の
排気温度よりも触媒下流の排気温度が高くなった時の触
媒上流の排気温度T1をHC脱離開始温度とする。尚、
ここで触媒の劣化が進むに従って触媒上流の排気温度T
1は徐々に高温に推移していくことになるため、T1は
同時に劣化度を表すものとする。
Next, according to the flow chart shown in FIG.
The HC desorption starting temperature T1, the HC desorption amount M1 and the desorption required time t1 based on the degree of deterioration of the catalyst according to the second embodiment of the present invention.
A routine for determining is explained. First, in S1A, the exhaust temperature of the exhaust purification catalyst is detected by the exhaust temperature sensors 20a and 20b provided upstream and downstream of the exhaust purification catalyst. Then, in the detected value, the exhaust temperature T1 of the catalyst upstream when the exhaust temperature of the catalyst downstream becomes higher than the exhaust temperature of the catalyst upstream is set as the HC desorption start temperature. still,
Here, as the catalyst deteriorates, the exhaust temperature T upstream of the catalyst increases.
Since 1 gradually changes to a high temperature, T1 represents the degree of deterioration at the same time.

【0031】次に、S2では、前記第1実施例と同様
に、HC脱離開始温度T1に基づいて、HC脱離量M1
及び脱離所要時間t1 を夫々設定する。このように、排
気温度センサ20a,20bによる検出値より劣化度を
検出するようにした場合には、より安価な構成で製品コ
ストの上昇を抑制することが可能となる。
Next, in S2, as in the first embodiment, the HC desorption amount M1 is calculated based on the HC desorption start temperature T1.
And the desorption required time t1 are set respectively. In this way, when the degree of deterioration is detected from the detection values of the exhaust gas temperature sensors 20a and 20b, it is possible to suppress an increase in product cost with a cheaper configuration.

【0032】[0032]

【発明の効果】以上説明したように、本発明によれば、
劣化度検出手段により求められた排気浄化用触媒の劣化
度に応じて、吸着剤に吸着されたHCの脱離開始触媒温
度及び脱離量を設定し、該HCの脱離開始触媒温度にな
ると、排気流量比制御手段によりバイパス通路を開いて
排気を流入させ吸着剤に吸着されたHCを脱離させると
共に、機関の運転状態に応じて、設定されたHC脱離量
が得られるように排気流量比を制御するように構成され
るので、排気特にHC浄化性能を良好に維持することが
できる。
As described above, according to the present invention,
The desorption start catalyst temperature and the desorption amount of the HC adsorbed by the adsorbent are set according to the deterioration degree of the exhaust gas purification catalyst obtained by the deterioration degree detection means, and when the desorption start catalyst temperature of the HC is reached. The exhaust gas flow ratio control means opens the bypass passage to allow the exhaust gas to flow in to desorb the HC adsorbed by the adsorbent, and at the same time, to obtain the set HC desorption amount according to the operating state of the engine. Since it is configured to control the flow rate ratio, it is possible to maintain excellent exhaust gas, particularly HC purification performance.

【0033】また、劣化度検出手段を、排気浄化用触媒
の上流入口部及び下流出口部の空燃比検出値の変動周期
の比率に基づいて排気浄化用触媒の劣化度を検出する手
段とした場合には、排気浄化性能が直接的に検出される
ために劣化度の検出精度が高くなり、また、運転状態に
よらず劣化度が的確に検出できるため、排気浄化装置の
信頼性を増大させることができる。
Further, when the deterioration degree detecting means is a means for detecting the deterioration degree of the exhaust purification catalyst based on the ratio of the fluctuation cycle of the air-fuel ratio detection value at the upstream inlet portion and the downstream outlet portion of the exhaust purification catalyst. In addition, since the exhaust purification performance is directly detected, the degree of deterioration can be detected with high accuracy, and the degree of deterioration can be accurately detected regardless of the operating state. You can

【0034】更に、劣化度検出手段を、排気浄化用触媒
の上流入口部及び下流出口部の排気温度に基づいて排気
浄化用触媒の劣化度を検出する手段とした場合には、よ
り安価な構成で製品コストの上昇を抑制することが可能
となる。
Further, when the deterioration degree detecting means is a means for detecting the deterioration degree of the exhaust gas purifying catalyst based on the exhaust gas temperatures at the upstream inlet portion and the downstream outlet portion of the exhaust gas purifying catalyst, a more inexpensive construction is provided. This makes it possible to suppress an increase in product cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の構成を示すブロック図。FIG. 1 is a block diagram showing a configuration of the present invention.

【図2】本発明の全体構成を示すシステム図。FIG. 2 is a system diagram showing the overall configuration of the present invention.

【図3】本発明のHC脱離開始温度T1、HC脱離量M
1及び脱離所要時間t1 決定ルーチンを示すフローチャ
ート。
FIG. 3 shows the HC desorption starting temperature T1 and the HC desorption amount M of the present invention.
1 is a flow chart showing a routine for determining 1 and desorption required time t1.

【図4】本発明のHC吸着・脱離処理のルーチンを示す
フローチャート。
FIG. 4 is a flowchart showing a routine of HC adsorption / desorption processing of the present invention.

【図5】排気通路の制御弁開度を決定するためのルーチ
ンを示すフローチャート。
FIG. 5 is a flowchart showing a routine for determining a control valve opening degree of an exhaust passage.

【図6】本発明の他の実施例の全体構成を示すシステム
図。
FIG. 6 is a system diagram showing the overall configuration of another embodiment of the present invention.

【図7】本発明の他の実施例のHC脱離開始温度T1、
HC脱離量M1及び脱離所要時間t1 決定ルーチンを示
すフローチャート。
FIG. 7 is a HC desorption starting temperature T1 according to another embodiment of the present invention.
5 is a flowchart showing a routine for determining the amount of desorption of HC M1 and the time required for desorption t1.

【図8】従来例を説明するための排気温度と触媒の転化
率の関係を説明するための説明図。
FIG. 8 is an explanatory diagram for explaining a relationship between an exhaust temperature and a conversion rate of a catalyst for explaining a conventional example.

【符号の説明】[Explanation of symbols]

11 機関 13 排気通路 13a 主通路 14 バイパス通路 15 吸着剤 16 開閉弁 17 コントロールユニット 19a プリ三元触媒 19b メイン三元触媒 20a,b 排気温度センサ 21a,b 酸素センサ 22 排気温度センサ 11 engine 13 exhaust passage 13a main passage 14 bypass passage 15 adsorbent 16 on-off valve 17 control unit 19a pre-three-way catalyst 19b main three-way catalyst 20a, b exhaust temperature sensor 21a, b oxygen sensor 22 exhaust temperature sensor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F02D 41/14 310 K 8011−3G 45/00 314 R 7536−3G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location F02D 41/14 310 K 8011-3G 45/00 314 R 7536-3G

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】機関の排気通路に排気浄化用触媒を備える
と共に、該排気浄化用触媒の上流の排気通路の一部を主
通路と該主通路に並列に接続され排気中の未燃HCを低
温時に吸着し高温時に脱離する機能を有した吸着剤を介
装したバイパス通路とで構成し、かつ、前記主通路とバ
イパス通路との排気の流量比を制御する排気流量比制御
手段とを備えた内燃機関の排気浄化装置において、 前記排気浄化用触媒の劣化度を検出する劣化度検出手段
と、 機関の運転状態を検出する運転状態検出手段と、 排気の温度状態を検出する排気温度検出手段と、 劣化度と排気温度を含む条件に基づき機関の運転状態に
応じて排気流量比を設定する排気流量比設定手段と、を
備え、 該排気流量比設定手段により設定された排気流量比が得
られるように前記排気流量比制御手段により制御するよ
うにしたことを特徴とする内燃機関の排気浄化装置。
1. An exhaust gas purification catalyst is provided in an exhaust gas passage of an engine, and a part of an exhaust gas passage upstream of the exhaust gas purification catalyst is connected in parallel with a main passage and unburned HC in the exhaust gas. And an exhaust flow rate ratio control means for controlling an exhaust flow rate ratio between the main passage and the bypass passage, the bypass passage having an adsorbent having a function of adsorbing at a low temperature and desorbing at a high temperature. In an exhaust gas purification apparatus for an internal combustion engine, the deterioration degree detection means for detecting the deterioration degree of the exhaust gas purification catalyst, the operating state detection means for detecting the operating state of the engine, and the exhaust temperature detection for detecting the temperature state of the exhaust gas. Means, and exhaust flow rate ratio setting means for setting the exhaust flow rate ratio according to the operating state of the engine based on conditions including the degree of deterioration and exhaust temperature, the exhaust flow rate ratio set by the exhaust flow rate ratio setting means The above-mentioned elimination as Exhaust purifying apparatus for an internal combustion engine is characterized in that so as to control the flow ratio controller.
【請求項2】前記排気流量比設定手段は、前記劣化度検
出手段により求められた排気浄化用触媒の劣化度に応じ
て、吸着剤に吸着されたHCの脱離開始触媒温度及び単
位時間当りのHC脱離量を設定し、単位脱離量に基づい
て排気流量比の設定と当該設定された排気流量比に維持
する時間とを求めてなり、前記排気流量比制御手段は、
前記脱離開始触媒温度以上で排気流量比を前記設定値に
所定時間維持するように制御してなる請求項1記載の内
燃機関の排気浄化装置。
2. The exhaust gas flow rate ratio setting means, according to the deterioration degree of the exhaust gas purification catalyst obtained by the deterioration degree detecting means, the desorption start catalyst temperature of the HC adsorbed by the adsorbent per unit time. The HC desorption amount is set, and the exhaust flow rate ratio is set based on the unit desorption amount and the time for maintaining the set exhaust flow rate ratio is obtained.
The exhaust gas purification device for an internal combustion engine according to claim 1, wherein the exhaust gas flow ratio is controlled to be maintained at the set value for a predetermined time at a temperature equal to or higher than the desorption start catalyst temperature.
【請求項3】前記劣化度検出手段は、排気浄化用触媒の
上流入口部及び下流出口部の空燃比検出値の変動周期の
比率に基づいて排気浄化用触媒の劣化度を検出する手段
である請求項1記載の内燃機関の排気浄化装置。
3. The deterioration degree detecting means is means for detecting the deterioration degree of the exhaust gas purification catalyst based on the ratio of the fluctuation cycle of the air-fuel ratio detection values at the upstream inlet portion and the downstream outlet portion of the exhaust gas purification catalyst. An exhaust emission control device for an internal combustion engine according to claim 1.
【請求項4】前記劣化度検出手段は、排気浄化用触媒の
上流入口部及び下流出口部の排気温度に基づいて排気浄
化用触媒の劣化度を検出する手段である請求項1記載の
内燃機関の排気浄化装置。
4. The internal combustion engine according to claim 1, wherein the deterioration degree detecting means is a means for detecting a deterioration degree of the exhaust gas purification catalyst based on exhaust gas temperatures at an upstream inlet portion and a downstream outlet portion of the exhaust gas purification catalyst. Exhaust purification device.
JP5000834A 1993-01-06 1993-01-06 Exhaust emission control device for internal combustion engine Pending JPH06200750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5000834A JPH06200750A (en) 1993-01-06 1993-01-06 Exhaust emission control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5000834A JPH06200750A (en) 1993-01-06 1993-01-06 Exhaust emission control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPH06200750A true JPH06200750A (en) 1994-07-19

Family

ID=11484656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5000834A Pending JPH06200750A (en) 1993-01-06 1993-01-06 Exhaust emission control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPH06200750A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111441844A (en) * 2019-01-16 2020-07-24 丰田自动车株式会社 Exhaust purification device for internal combustion engine
CN112682131A (en) * 2020-12-18 2021-04-20 成都信息工程大学 Improved method for purifying ethanol automobile exhaust
CN113266451A (en) * 2020-02-14 2021-08-17 株式会社斯巴鲁 Exhaust gas purification device
JP2021156183A (en) * 2020-03-25 2021-10-07 トヨタ自動車株式会社 Internal combustion engine control device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111441844A (en) * 2019-01-16 2020-07-24 丰田自动车株式会社 Exhaust purification device for internal combustion engine
CN111441844B (en) * 2019-01-16 2022-04-19 丰田自动车株式会社 Exhaust purification device for internal combustion engine
CN113266451A (en) * 2020-02-14 2021-08-17 株式会社斯巴鲁 Exhaust gas purification device
JP2021156183A (en) * 2020-03-25 2021-10-07 トヨタ自動車株式会社 Internal combustion engine control device
CN112682131A (en) * 2020-12-18 2021-04-20 成都信息工程大学 Improved method for purifying ethanol automobile exhaust

Similar Documents

Publication Publication Date Title
US5315824A (en) Cold HC adsorption and removal apparatus for an internal combustion engine
JP2983429B2 (en) Exhaust gas purification device for internal combustion engine
JPH06272542A (en) Apparatus and method for controlling exhaust emission of internal combustion engine
JP3154110B2 (en) Engine emission control device
JP2982440B2 (en) Exhaust gas purification device for internal combustion engine
JP3870749B2 (en) Exhaust gas purification device for internal combustion engine
JP3062710B2 (en) Catalyst deterioration detection device
JPH06200750A (en) Exhaust emission control device for internal combustion engine
JP2803480B2 (en) Adsorbent self-diagnosis device for internal combustion engine
JPH0693845A (en) Exhaust emission control device for engine
JP2000110553A (en) Exhaust gas emission control device of internal combustion engine
JP3413997B2 (en) Degradation diagnosis device for HC adsorbent in internal combustion engine
JP2806170B2 (en) Exhaust gas purification device for internal combustion engine
JP2800579B2 (en) Exhaust gas purification device for internal combustion engine
JPH0693846A (en) Exhaust emission control device for internal combustion engine
JP3500968B2 (en) Exhaust gas purification device for internal combustion engine
JP2950077B2 (en) Exhaust gas purification device for internal combustion engine
JPS62189309A (en) Unburnt fuel purifier for alcohol fuel vehicle
JPH0726947A (en) Exhaust gas purifying device for engine
JPH06173653A (en) Exhaust emission control device for internal combustion engine
JP3216442B2 (en) Adsorbent self-diagnosis device for internal combustion engine
JPH0693847A (en) Exhaust emission control device for internal combustion engine
JPH0693840A (en) Exhaust emission control device for internal combustion engine
JPH05312031A (en) Exhaust emission control device for engine
JPH06123223A (en) Exhaust emission control device for internal combustion engine