JPH0577618B2 - - Google Patents
Info
- Publication number
- JPH0577618B2 JPH0577618B2 JP9028553A JP2855390A JPH0577618B2 JP H0577618 B2 JPH0577618 B2 JP H0577618B2 JP 9028553 A JP9028553 A JP 9028553A JP 2855390 A JP2855390 A JP 2855390A JP H0577618 B2 JPH0577618 B2 JP H0577618B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- ellipticity
- glass
- core
- tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011521 glass Substances 0.000 claims description 49
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 43
- 239000000463 material Substances 0.000 claims description 33
- 239000013307 optical fiber Substances 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 22
- 238000004519 manufacturing process Methods 0.000 claims description 18
- 238000003466 welding Methods 0.000 claims description 16
- 239000010409 thin film Substances 0.000 claims description 15
- 239000007787 solid Substances 0.000 claims description 8
- 239000010410 layer Substances 0.000 description 118
- 239000011162 core material Substances 0.000 description 39
- 239000010453 quartz Substances 0.000 description 22
- 238000005253 cladding Methods 0.000 description 20
- 229910004298 SiO 2 Inorganic materials 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 10
- 238000005229 chemical vapour deposition Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 229910052796 boron Inorganic materials 0.000 description 6
- 229910005793 GeO 2 Inorganic materials 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 4
- 239000002019 doping agent Substances 0.000 description 4
- 238000007711 solidification Methods 0.000 description 4
- 230000008023 solidification Effects 0.000 description 4
- 239000010408 film Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- 239000012792 core layer Substances 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000005234 chemical deposition Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000011796 hollow space material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Landscapes
- Manufacture, Treatment Of Glass Fibers (AREA)
Description
【発明の詳細な説明】
本発明は光フアイバ母材の製造方法、更に詳し
く言えば光フアイバの光伝送の要部をなすコアに
複屈折を生ぜしめる光フアイバを製造する工程で
使用する光フアイバ母材、即ちプレホームロツド
の製造方法に係る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an optical fiber base material, and more specifically, to an optical fiber used in the process of manufacturing an optical fiber that produces birefringence in its core, which is an essential part of optical fiber transmission. The present invention relates to a method of manufacturing a base material, that is, a preform rod.
光フアイバの一つの用途として、偏波面を乱れ
なく伝送し、光集積回路との結合、測定装置、光
スイツチ等の利用が考えられる。このように光の
偏波面を乱すことなく(偏波面を保存)伝播でき
る円形状光フアイバとしては光フアイバを形成す
るコアの直交主軸方向の伝播位相定数の差が大き
いことが必要となる。このような伝相伝播定数差
を得るため、コアに加わる熱応力歪の差を形成す
る方法が考えられている。 One possible use of optical fibers is to transmit polarized waves without disturbance, to connect them to optical integrated circuits, to use them in measurement devices, optical switches, and the like. In order for a circular optical fiber to be able to propagate light without disturbing the plane of polarization (preserving the plane of polarization), it is necessary that the difference in the propagation phase constants in the orthogonal principal axis directions of the core forming the optical fiber is large. In order to obtain such a difference in phase conduction propagation constants, a method of creating a difference in thermal stress strain applied to the core has been considered.
しかし従来知られている方法は、ガラス管内壁
に化学的気相沈積(CVD)法によつて、コア、
クラツドとなるガラス層を形成した後、ガラス管
内を少なくとも減圧をしないで、中実化してロツ
ドを作り、これを1部研磨等によつて削り非円形
の光フアイバ母材(プレホームロツド)を形成し
た後、細い光フアイバとするため加熱線引する。
これによつてプレホームロツトの非円、ならび、
ガラス管と内壁に形成されるガラス層の材質の熱
膨張係数の差等によつてコアに複屈折を生ぜしめ
る方法である。 However, the conventionally known method uses chemical vapor deposition (CVD) to deposit the core on the inner wall of the glass tube.
After forming a glass layer to serve as a cladding, the inside of the glass tube was solidified to form a rod without reducing the pressure at least, and a portion of this was ground by polishing to form a non-circular optical fiber preform (preformed rod). After that, it is heated and drawn to make a thin optical fiber.
This makes the pre-home lot non-circular and
This method produces birefringence in the core due to the difference in thermal expansion coefficient between the materials of the glass tube and the glass layer formed on the inner wall.
しかし、この方法では中実化したロツドの一部
を非円とする研磨工程等を必要とし、更に十分大
きな複屈折を生ぜしめることができない。特にコ
アに複屈折を生ぜしめるためには、クラツドある
いは外周のジヤケツトを楕円形とすることが望ま
しいが、それらの形状を任意に制御することが困
難である。 However, this method requires a polishing step to make a part of the solid rod non-circular, and it is not possible to produce sufficiently large birefringence. In particular, in order to produce birefringence in the core, it is desirable that the cladding or outer jacket be elliptical, but it is difficult to control their shape arbitrarily.
したがつて、本発明の目的は、円形の石英ガラ
ス管の内壁に少なくとも上記ガラス管の材質と異
なるガラス薄膜を形成し、これを加熱溶着し中実
の光フアイバ用母材、すなわちプレホームロツト
を作る方法において経済的、簡易な方法で、上記
ガラス薄膜部の少なくとも一部が楕円となる製造
方法を実現することである。 Therefore, an object of the present invention is to form at least a glass thin film different from the material of the glass tube on the inner wall of a circular quartz glass tube, and heat and weld this to form a solid optical fiber base material, that is, a preformed rod. An object of the present invention is to realize an economical and simple manufacturing method in which at least a portion of the glass thin film portion has an elliptical shape.
本発明の他の目的は、研磨工程や最初のガラス
管を変形する工程を要することなく、円形の中心
層と上記中心層外周に形成されその外周が楕円と
なる中間層と、上記中間層外周に形成された最外
周層からなり、上記中間層の外周の楕円率が任意
に設定できる光フアイバ用母材の製造方法を実現
することである。 Another object of the present invention is to provide a circular center layer, an intermediate layer formed on the outer periphery of the center layer and having an elliptical outer periphery, and an outer periphery of the intermediate layer, without requiring a polishing step or a step of deforming the initial glass tube. It is an object of the present invention to realize a method for manufacturing an optical fiber base material, which is composed of an outermost peripheral layer formed in the intermediate layer and in which the ellipticity of the outer periphery of the intermediate layer can be arbitrarily set.
本発明は上記目的を達成するため、基材となる
ガラス管の内壁にガラス薄膜を形成し、これを加
熱溶着し、中実の光フアイバ用母材(プレホー
ム)を製造する方法において、上記ガラス薄膜が
形成された管の一端を加熱して潰し、上記一端を
潰されたガラス管の内部の圧力を外気圧より低く
して回転しながら上記潰された1端から加熱部を
漸時移動して中実化することを特徴とする。 In order to achieve the above object, the present invention provides a method for manufacturing a solid optical fiber preform by forming a glass thin film on the inner wall of a glass tube serving as a base material and heat welding the thin film. One end of the tube on which the glass thin film has been formed is heated and crushed, and the heating section is gradually moved from the crushed one end while rotating with the pressure inside the glass tube with the crushed one end lowered than the outside pressure. It is characterized by solidification.
特に、本発明では、本発明によつて得られたプ
レホームロツトの断面構造が中心層が円形で、中
間層はその外周が楕円となり、最外周層が円形又
は円形に近い形状の層からなるように、上記方法
において、上記中間層の一部の材質は上記基材と
なるガラス管の軟化点より低い軟化点を有する材
質で形成され、上記コア部を形成する材質は上記
低い軟化点を有する材質より高い軟化点を有する
材質で形成される。 In particular, in the present invention, the cross-sectional structure of the preformed rod obtained by the present invention is such that the central layer is circular, the intermediate layer has an elliptical outer periphery, and the outermost layer is a layer having a circular or nearly circular shape. In the above method, a part of the material of the intermediate layer is formed of a material having a softening point lower than that of the glass tube serving as the base material, and a material forming the core part is formed of a material having a lower softening point than the softening point of the glass tube serving as the base material. It is made of a material that has a higher softening point than that of the other materials.
なお、中心層、中間層は実施例において説明す
る如く単一の層に限定される必要はなく複数の層
で形成してもよい。又楕円とは本発明では楕円の
長軸をC1、短軸をC2としたとき、楕円率γ
(C1−C2/C1+C2×100)が3%以上のものを言う。そ
れ
以下を円形とする。 Note that the center layer and the intermediate layer are not necessarily limited to a single layer as described in the embodiments, and may be formed of a plurality of layers. In addition, in the present invention, an ellipse is defined as the ellipticity γ, where the major axis of the ellipse is C 1 and the minor axis is C 2 .
(C 1 −C 2 /C 1 +C 2 ×100) is 3% or more. Anything below that is circular.
本発明の方法によれば、ガラス管の半径、厚
み、減圧度、ガラス薄膜の材質、量を特定するこ
とによつて中心層、又は中間層の楕円率を任意に
設定でき、かつ再現性よく光フアイバ母材を実現
することができる。 According to the method of the present invention, the ellipticity of the center layer or intermediate layer can be set arbitrarily by specifying the radius, thickness, degree of vacuum of the glass tube, material and amount of the glass thin film, and with good reproducibility. An optical fiber base material can be realized.
特に、中心層を円形、中間層を楕円形とすると
きは、中心層の直交する軸方向の屈折率を異なつ
たものとすることが容易に実現でき、偏波面を保
存し易い光フアイバを実現することができる。 In particular, when the central layer is circular and the intermediate layer is elliptical, it is easy to make the central layer have different refractive indexes in the perpendicular axes, resulting in an optical fiber that can easily preserve the plane of polarization. can do.
なお、最終的光フアイバは上記方法によつて得
られたプレホームロツトを単に加熱しながら線引
すれば上記断面構造と相似の断面構造の光フアイ
バが容易に実現できる。 Incidentally, the final optical fiber can be easily produced by simply drawing the preformed lot obtained by the above method while heating it, and having a cross-sectional structure similar to the above-described cross-sectional structure.
以下本発明を図面を用いて詳細に説明する。 The present invention will be explained in detail below using the drawings.
第1図は本発明による光フアイバ母材の製造方
法の工程を示す図である。 FIG. 1 is a diagram showing the steps of a method for manufacturing an optical fiber preform according to the present invention.
まず、(1)光フアイバの基材となる石英ガラス管
1が用意される。このガラス管の径が大きく、厚
みが薄いときは後の減圧工程(3)にいて所定の形状
が得られ難いため必要によつては径を小さくする
工程が含まれる。望ましくは外径5mm〜50mm、厚
さ0.3mm〜5mmである。 First, (1) a quartz glass tube 1, which will be the base material of the optical fiber, is prepared. If this glass tube has a large diameter and a small thickness, it will be difficult to obtain a predetermined shape in the subsequent pressure reduction step (3), so a step of reducing the diameter may be included if necessary. Desirably, the outer diameter is 5 mm to 50 mm and the thickness is 0.3 mm to 5 mm.
上記ガラス管1の内壁に化学的堆積(CVD)
法によつて、光フアイバの中間層となるガラス薄
膜2および中心層となるガラス薄膜3が形成され
る。中間層は光フアイバのクラツド、あるいはジ
ヤケツトとクラツト機能を持つ場合がある。又中
心層は光フアイバのコアのみ、あるいはコアとク
ラツト(すなわち、光伝送部を形成する)を形成
する場合が有る。 Chemical deposition (CVD) on the inner wall of the glass tube 1 above
By this method, a thin glass film 2 serving as the intermediate layer of the optical fiber and a thin glass film 3 serving as the central layer are formed. The intermediate layer may have a fiber optic cladding or jacket and cladding function. Further, the central layer may form only the core of the optical fiber, or the core and the crack (that is, form the optical transmission part).
これらの材質、厚みについてを後に詳細に説明
する。上記工程によつて得られたガラス薄膜を有
するガラス管は両端をガラス旋盤台に取付け、一
定の回転速度で回転する(3)。図は取付台に取付ら
れた管の端部を加熱バーナ4で加熱して潰す。そ
してガラス管の他の開口部に排気タンク5を設
け、排気管6より排気調節弁7を調節しながら管
内の気圧を減圧して一定の圧力に保つ。減圧量は
一方の端が石英管内部8に挿入されたU字管9で
液10の液面の違いで測定される。この状態で加
熱源(バーナ)4を漸時移動して中実のプレホー
ムロツドを形成する。この減圧の程度は第3図で
示すように1mmH2O〜20mmH2O程度に設定す
る。プレホームロツドは加熱バーナ4によつて溶
融し、一方から線引すれば、内層の一部が楕円形
となる光フアイバが実現される。 These materials and thicknesses will be explained in detail later. The glass tube with the glass thin film obtained by the above process is attached at both ends to a glass lathe table and rotated at a constant rotational speed (3). In the figure, the end of the tube attached to the mount is heated with a heating burner 4 to crush it. Then, an exhaust tank 5 is provided at the other opening of the glass tube, and while adjusting the exhaust control valve 7 through the exhaust pipe 6, the pressure inside the tube is reduced and maintained at a constant pressure. The amount of pressure reduction is measured by the difference in the liquid level of the liquid 10 using a U-shaped tube 9 whose one end is inserted into the interior 8 of the quartz tube. In this state, the heating source (burner) 4 is gradually moved to form a solid preformed rod. The degree of this pressure reduction is set to about 1 mmH 2 O to 20 mmH 2 O, as shown in FIG. The preformed rod is melted by a heating burner 4 and drawn from one side to produce an optical fiber in which part of the inner layer is elliptical.
第2図a,b,cおよびdは上記方法によつて
作つたプレホームの断面の写真をトレースして示
したもので、各々の製造条件は次の通りである。 Figures 2a, b, c and d are traced photographs of cross sections of preforms made by the above method, and the manufacturing conditions for each are as follows.
最初の石英管の外径は20mm、厚さ1.5mmで全て
同じである。 The initial quartz tubes have the same outer diameter of 20 mm and thickness of 1.5 mm.
次に示すようなガラス薄膜を形成した後速度毎
分50回転で回転しながら、酸水素バーナ2を漸時
0.17mm/secの速さで移動した。 After forming a glass thin film as shown below, gradually turn on the oxyhydrogen burner 2 while rotating at a speed of 50 revolutions per minute.
It moved at a speed of 0.17mm/sec.
aはコアとしてゲルマをドープしたシリカガラ
スよりなり減圧量は水の高さで9mm(以下mmH2
Oと表わす)のものであり約50%の楕円率の中心
層が得られる。b図は管の減圧量を27mmH2Oと
大きくしたもので中空のプレホームのコアにドー
プされたゲルマ層の厚めは約15μmと厚いもので
ある。cとdは、コア(中心層)にシリカガラス
を、クラツデイング(中間層)に硼素(B2O3)
をドープしたシリカガラスを形成したもので、コ
アを円形に、クラツデイングを楕円にした図c
と、逆にコアを楕円にクラツデイングを円形にし
た図dを示したものである。これらの作製法は前
記したように出発石英管を楕円軸が回転しないよ
うにある程度収縮させるが、この収縮量とコア
層、クラツデイング層の厚みを最適に選ぶ事で成
しとげられる。 A is made of silica glass doped with germa as a core, and the amount of pressure reduction is 9 mm at the height of water (hereinafter mmH 2
O), and a central layer with an ellipticity of about 50% is obtained. In Figure b, the amount of pressure reduction in the tube is increased to 27 mmH 2 O, and the thickness of the gela layer doped in the core of the hollow preform is approximately 15 μm. For c and d, silica glass is used as the core (center layer) and boron (B 2 O 3 ) is used as the cladding (middle layer).
It is made of silica glass doped with , and the core is circular and the clasp is elliptical.
And, conversely, Figure d shows the core as an ellipse and the cladding as a circle. In these manufacturing methods, as described above, the starting quartz tube is shrunk to a certain extent so that the ellipse axis does not rotate, and this can be accomplished by optimally selecting the amount of shrinkage and the thicknesses of the core layer and cladding layer.
第3図は、石英管の厚さと、減圧度を変えたと
きの楕円率の測定結果を示すもので、各曲線の実
施条件は次の通りである。曲線11,12,13
においてはコアにゲルマをドープしたシリカガラ
スを用い第2図a,bに示すように2層構造であ
る。ゲルマの濃度は約15mol%である。各曲線共
に出発石英管の外径は20mm、内径17mmのもので共
通であり、中空プレフオームのゲルム層の厚みは
約10μmである。加熱溶着(カラツプス)する前
に13.5mm、12.8mm、9.7mmの外径まで収縮させた後
減圧を行なつて得られた中実のプレフオームのコ
アの楕円率を示したもので、曲線11,11,1
3はそれぞれ13.5mm、12.8mm、9.7mmの実験例であ
る。曲線12はコアにシリカを、クラツデイング
に硼素をドープしたシリカガラスを用いてフアイ
バで第2図c,dのように3層構造となつてい
る。硼素は約12mol%ドープされており、中空プ
レフオームにおいては18μmの厚みを有していた。
コアとなるシリカ層は約8μm厚みをもつているも
ので、出発石英管は前記と同じ外径20mm、内径17
mmのものである。この管にクラツデイング層とコ
ア層を作製した後約13.1mmに収縮させた。その後
減圧量を変えてコラツプスし、得られたクラツデ
イングの楕円率を減圧量の関数として示したのが
12の曲線である。 FIG. 3 shows the measurement results of the ellipticity when the thickness of the quartz tube and the degree of vacuum were changed, and the operating conditions for each curve are as follows. Curves 11, 12, 13
The core is made of silica glass doped with germa, and has a two-layer structure as shown in FIGS. 2a and 2b. The concentration of germa is approximately 15 mol%. For each curve, the outer diameter of the starting quartz tube is 20 mm and the inner diameter is 17 mm, and the thickness of the gel layer of the hollow preform is about 10 μm. Curve 11 shows the ellipticity of the core of the solid preform obtained by shrinking it to an outer diameter of 13.5 mm, 12.8 mm, or 9.7 mm before heat welding (calapus) and then reducing the pressure. 11,1
3 are experimental examples of 13.5 mm, 12.8 mm, and 9.7 mm, respectively. Curve 12 has a three-layer structure of fibers using silica for the core and boron-doped silica glass for the cladding as shown in FIGS. 2c and d. Boron was doped at approximately 12 mol% and had a thickness of 18 μm in the hollow preform.
The silica layer that forms the core has a thickness of approximately 8 μm, and the starting quartz tube has the same outer diameter of 20 mm and inner diameter of 17 mm.
mm. After forming a cladding layer and a core layer on this tube, it was shrunk to about 13.1 mm. Thereafter, the collapse was performed while changing the amount of pressure reduction, and curve 12 shows the obtained ellipticity of the cladding as a function of the amount of pressure reduction.
以上の例より、プレホームロツドの一部に形成
される楕円層の楕円形状は減圧度ならびドーパン
トの材質、出発石英管の径および厚さ、中空部の
半径を制御することによつて決定されることが分
る。すなわち、減圧度が高い程楕円率は増大し、
中空の管の厚さが厚い程楕円率が低くなる。上記
例から分かるように、石英ガラス管の厚さは0.3
mm〜5mm、外径は5mm〜50mm、外気圧と管内の圧
力との差は1mmH2O〜30mmH2Oで、溶着温度
1700℃〜2000℃で本発明の方法は実現される。次
に楕円率γと減圧度P(mmH2O)と各層の厚みと
の関係を定量的に説明する。 From the above example, it can be seen that the elliptical shape of the elliptical layer formed in a part of the preformed rod is determined by controlling the degree of vacuum, the material of the dopant, the diameter and thickness of the starting quartz tube, and the radius of the hollow part. I understand. In other words, the higher the degree of decompression, the greater the ellipticity;
The thicker the hollow tube, the lower the ellipticity. As can be seen from the above example, the thickness of the quartz glass tube is 0.3
mm to 5 mm, outer diameter is 5 mm to 50 mm, difference between external pressure and pressure inside the pipe is 1 mm H 2 O to 30 mm H 2 O, welding temperature
The method of the invention is realized at 1700°C to 2000°C. Next, the relationship between the ellipticity γ, the degree of reduced pressure P (mmH 2 O), and the thickness of each layer will be quantitatively explained.
第4図は本発明の方法によつて得られたプレホ
ームロツドの最外周層の内径(中心又は中間層の
外周と同じ)の楕円率と、中実化前の各層と中実
化後の各層の厚さとの関係を示すもので、縦軸は
プレホームの楕円層の楕円率を示し、横軸は
(b′/a′)×(d′/c′)を示し、これらは第5図及
び
第6図に示すように中実化前の石英管の外径b′、
内径a′、プレホームの外径d′、楕円層の平均半径
c′(=√1,2)を示すもので、製造条件を、溶
着温度1800℃、減圧度8mmH2O加熱バーナの移
動速度0.8mm/sec、ガラス薄膜はGeO2とB2O3を
ドーパントとして服務シリカガラスである。図
中、●,○,△は最初の石英管径を14,18および
20mmとしたものをそれぞれ示す。 Figure 4 shows the ellipticity of the inner diameter of the outermost layer (same as the outer circumference of the center or middle layer) of the preformed rod obtained by the method of the present invention, and the ellipticity of each layer before solidification and after solidification. This shows the relationship between the thickness and the vertical axis shows the ellipticity of the elliptical layer of the preform, and the horizontal axis shows (b'/a') x (d'/c'), which are shown in Figures 5 and 5. As shown in Fig. 6, the outer diameter b′ of the quartz tube before solidification is
Inner diameter a′, outer diameter d′ of the preform, average radius of the elliptical layer
c' (=√ 1 , 2 ), and the manufacturing conditions were: welding temperature 1800℃, degree of vacuum 8mmH 2 O heating burner moving speed 0.8mm/sec, glass thin film doped with GeO 2 and B 2 O 3. It is made of silica glass. In the figure, ●, ○, △ indicate the initial quartz tube diameter of 14, 18 and
20mm is shown respectively.
第4図より楕円率γは γ=100e-A(x-1)2〔%〕 }……(1) x=(b′/a′)×(d′/c′) の関係があることが分る。 From Figure 4, the ellipticity γ has the following relationship: γ=100e -A(x-1)2 [%] }...(1) x=(b'/a') x (d'/c') I understand.
上記(1)式は溶着温度(1700〜2000℃)、加熱源
4の移動速度(0.02〜0.2mm/sec)、堆積ガラスの
組成を現実的に光フアイバの製造に実施する範囲
で変えても成立する。なお、上記(1)式中Aは減圧
度によつて定まる定数であつて、第7図は上記楕
円率と減圧度Pとの関係を実験的に求めたもの
で、同図より
A=0.344/P ……(2)
が求まる。 Equation (1) above can be applied even if the welding temperature (1700 to 2000°C), the moving speed of the heating source 4 (0.02 to 0.2 mm/sec), and the composition of the deposited glass are changed within the range that is realistically implemented in the production of optical fibers. To establish. In addition, in the above formula (1), A is a constant determined by the degree of reduced pressure, and Figure 7 shows the relationship between the above ellipticity and the degree of reduced pressure P, which was experimentally determined. From the figure, A = 0.344. /P...(2) is found.
よつて所定の楕円率γの楕円層を持つプレホー
ムロツドを作るためには、基材として、石英管を
用い、溶着温度を1700〜2000℃、加熱源の移動速
度を0.02〜0.2mmH2Oとすれば、減圧度P、各層
の径、厚さを
γ=100e-0.344/P(x−1)2 ……(3)
x=(b′/a′)×(d′/c′) ……(4)
に基いて設定すれば良い。なお、堆積ガラス層が
一種類でなく複数層になつても、中空時の堆積ガ
ラス層の石英ガラス管の厚さに比べ十分薄い場合
は上記式が常に成立する。 Therefore, in order to make a preformed rod having an elliptical layer with a predetermined ellipticity γ, a quartz tube should be used as the base material, the welding temperature should be 1700 to 2000°C, and the moving speed of the heating source should be 0.02 to 0.2 mmH 2 O. For example, the degree of pressure reduction P, the diameter and thickness of each layer are γ=100e - 0.344/P(x-1) 2 ...(3) x=(b'/a')×(d'/c')... It should be set based on (4). Note that even if the deposited glass layer is not one type but multiple layers, the above equation always holds true if the deposited glass layer is sufficiently thin compared to the thickness of the quartz glass tube when it is hollow.
本発明の方法の大きな利点の一つは、第2図c
および第8図、第9図に示すように、プレホーム
断面の層構造が最外層が円形に近く、中間層外周
が楕円、中心層が円形に近い形状の光フアイバ母
材が容易に実現できることである。 One of the great advantages of the method of the invention is that FIG.
And, as shown in FIGS. 8 and 9, it is possible to easily realize an optical fiber base material in which the layer structure of the preform cross section has a nearly circular outermost layer, an elliptical outer circumference of the middle layer, and a nearly circular shape of the center layer. It is.
第8図は中心層3がコア、中間層2がクラツ
ド、最外層1がジヤケツトとなり、コア3とクラ
ツド2で光伝送部を形成し、ジヤケツト3とクラ
ツド2でコアに複屈折を生ぜしめている。第9図
のものは中心層はコア3とクラツド2−2で構成
され、中間層2−1はジヤケツトで、最外層3は
サポート部を形成し外周は円形であるコア3とク
ラツド2−2で光伝送部を形成し、ジヤケツト2
−1と最外層はコア3複屈折を生ぜしめる機能を
持つ。 In Figure 8, the central layer 3 is the core, the intermediate layer 2 is the cladding, and the outermost layer 1 is the jacket.The core 3 and the cladding 2 form an optical transmission part, and the jacket 3 and the cladding 2 cause birefringence in the core. . In the one shown in Fig. 9, the center layer is composed of a core 3 and a cladding 2-2, the middle layer 2-1 is a jacket, the outermost layer 3 forms a support part, and the outer periphery is a circular core 3 and a cladding 2-2. to form the optical transmission part, and the jacket 2
-1 and the outermost layer have the function of producing core 3 birefringence.
このように、中空層の楕円率の中心層のそれよ
り高くするためには中間層の材質としてコアの材
質の軟化点より低い材質とする、これは中間層の
材質にB2O3を加えることによつて実現される。
B2O3の量を増大すると共に軟化点は低くなるが、
熱膨張係数の差を大きくとるためにはドーパント
B2O3の量は3モル%〜30モル%が望ましい。更
に、中心層を円形とするためには、プレホーム母
材の中間層の楕円率をγ、上記中間層楕円の短軸
の長さをc2、中心層の円形の径をaとしたとき
C2/a≧200/100−γ−1 ……(5)
となるように、ガラス管の内壁に形成されるガラ
ス薄膜の厚さを前もつて設定すれば良い。 In this way, in order to make the ellipticity of the hollow layer higher than that of the central layer, the intermediate layer should be made of a material with a lower softening point than the core material.This is done by adding B 2 O 3 to the intermediate layer material. This is achieved by
As the amount of B 2 O 3 increases, the softening point decreases, but
Dopants are used to increase the difference in thermal expansion coefficients.
The amount of B2O3 is preferably 3 mol% to 30 mol%. Furthermore, in order to make the central layer circular, the ellipticity of the intermediate layer of the preform base material is γ, the length of the minor axis of the intermediate layer ellipse is c 2 , and the circular diameter of the central layer is a. The thickness of the glass thin film formed on the inner wall of the glass tube may be set in advance so that C 2 /a≧200/100−γ−1 (5).
これら要件は次の理由による。ガラス薄膜が形
成されたガラス管を減圧しながら加熱溶着すると
温度勾配は始めは外側が高い、又管の厚みがある
ため、外側は減圧の影響が少なく、主として表面
張力によつて円形を維持しようとする。内側は減
圧度によつて主として支配され偏平になろうとす
る。更に加熱が続くと内側の温度も高くなり変形
しやすくなる。したがつて減圧によつて管が平面
となりながら収縮し中空部は少なくなる。この
間、軟化温度が低い中間層は粘性が漸時低下され
る。したがつて、中空部がなくなつたときは粘性
の低下した中間層の中に中心層が浮いた形とな
る。このときは中心部が減圧されないようになる
ため中心層の形状は主として表面張力によつて円
形になろうとする力が働く。そして、冷却の過程
においては上記初期の石英管の内側に形成される
楕円と中心と円形コアの中間に中間層が充てんさ
れた形となつて固化されるからである。 These requirements are due to the following reasons. When a glass tube on which a thin glass film has been formed is heated and welded while reducing pressure, the temperature gradient is initially higher on the outside, and because the tube is thicker, the outer side is less affected by the reduced pressure and maintains its circular shape mainly due to surface tension. shall be. The inside is mainly controlled by the degree of vacuum and tends to become flat. If the heating continues, the temperature inside will also increase, making it easier to deform. Therefore, by reducing the pressure, the tube becomes flat and shrinks, reducing the hollow space. During this time, the viscosity of the intermediate layer having a low softening temperature is gradually reduced. Therefore, when the hollow part disappears, the central layer floats in the intermediate layer with reduced viscosity. At this time, since the central portion is not depressurized, a force acts that tends to shape the central layer into a circular shape mainly due to surface tension. This is because, during the cooling process, the intermediate layer is filled between the ellipse formed inside the initial quartz tube, the center, and the circular core, and is solidified.
したがつて、これらの形状を決定する要因とし
ては、中心層が円形となり易いかどうかは加熱溶
着時の中間層の軟化点、粘性、および中間層と中
心層の相対的厚さの関係および最外層内周(した
がつて中間層外周)の楕円率の関係が考えられ
る。 Therefore, the factors that determine these shapes include the softening point of the intermediate layer during heat welding, the viscosity, the relationship between the relative thicknesses of the intermediate layer and the central layer, and the maximum The relationship between the ellipticity of the inner circumference of the outer layer (and therefore the outer circumference of the middle layer) can be considered.
まず、中間層の外周を楕円とするための条件
は、前述の(1)式の条件によつて決定される。 First, the conditions for making the outer circumference of the intermediate layer into an ellipse are determined by the conditions of the above-mentioned equation (1).
次に、中心層の楕円率γが中間層の外周の楕円
率より小さくなる、すなわち円に近づくために
は、前述の理由によつて溶着時に中実化され固化
される過程において、軟化された中間層の中で中
心層が表面張力等によつて自由に安定な円形に変
化しやすくする必要があり、このためには中心
層、中間層、最外層の軟化点温度をそれぞれα1,
α2およびα3とすると
α1>α2、α3>α2 ……(6)
であればよい。通常この条件を満すには最外層は
石英ガラスで作られ、又中心部は高い屈折率を持
つ必要があるため、SiO2又はSiO2にGeO2あるい
はP2O5をドーパントとして含むガラスで構成し、
中間層としてはB2O3をドーパントとして3mol%
から30mol%含むSiO2が望ましい。そして、中心
層の真円度を向上するためには上記軟化点の他
に、中間層の楕円率、および中間層と中心層の材
質の量の割合が影響し、これらの間に一定の関係
があることが実験的に求められる。 Next, in order for the ellipticity γ of the center layer to become smaller than the ellipticity of the outer periphery of the middle layer, that is, to approach a circle, the process of solidifying and solidifying during welding must be softened for the reasons mentioned above. Among the intermediate layers, it is necessary for the central layer to easily change freely into a stable circular shape due to surface tension, etc., and for this purpose, the softening point temperatures of the central layer, intermediate layer, and outermost layer must be set to α 1 and α 1 , respectively.
If α 2 and α 3 are α 1 >α 2 , α 3 >α 2 ……(6). Usually, to satisfy this condition, the outermost layer is made of quartz glass, and the center part needs to have a high refractive index, so it is made of SiO 2 or SiO 2 with GeO 2 or P 2 O 5 as a dopant. configure,
As the intermediate layer, 3 mol% B 2 O 3 is used as a dopant.
SiO 2 containing 30 mol% is desirable. In order to improve the roundness of the center layer, in addition to the softening point mentioned above, the ellipticity of the middle layer and the ratio of the materials of the middle layer and the center layer are affected, and there is a certain relationship between them. It is experimentally determined that
第10図は石英管(内径6.7mm、外径12mm)の
内壁にCVD法によつてクラツド(中間層)とな
る17モル%B2O3と83モル%SiO2のガラス薄膜を
150μm形成したのち、コア(中心層)となる100
モル%SiO2のガラス薄膜を厚みx〔μm〕を変え
て形成し、減圧度100mmH2Oで溶着中実化した場
合の中間層の楕円率と中心層(コア)の楕円率を
示す。この場合中間層(クラツド)の楕円率は45
%である。なお、図におけるコア径はプレホーム
ロツトとなつた場合の半径を示している。すなわ
ち、楕円率を一定とした場合、中心層(コア)の
楕円率は中間層の厚さと中心層の厚さの相対比に
よつて決定されることが分る。 Figure 10 shows a glass thin film of 17 mol% B 2 O 3 and 83 mol% SiO 2 which will become the cladding (intermediate layer) formed by CVD on the inner wall of a quartz tube (inner diameter 6.7 mm, outer diameter 12 mm).
After forming 150 μm, 100 μm becomes the core (center layer).
The ellipticity of the intermediate layer and the ellipticity of the center layer (core) are shown when glass thin films of mol % SiO 2 are formed with varying thickness x [μm] and welded into a solid at a reduced pressure of 100 mmH 2 O. In this case, the ellipticity of the middle layer (clad) is 45
%. In addition, the core diameter in the figure shows the radius when it becomes a preformed lot. That is, it can be seen that when the ellipticity is constant, the ellipticity of the center layer (core) is determined by the relative ratio of the thickness of the intermediate layer and the thickness of the center layer.
第11図は、第10図のように中間層の楕円率
が変つたとき中心層の楕円率が5%以下となると
きの中間層(クラツド)の短軸径と中心層(コ
ア)の径の比を実験的に求めたものである。同図
において横軸はクラツドの外周の楕円率γを、縦
軸にはクラツドの短軸径c2とコアの径aの比C2/a
を示す。この測定結果より、コアが円形となる境
界では
c2/a=200/(100−γ)−1
の関係があることが分る。よつてc2/aが
200/(100−γ)−1より大きいときは当然コアが表面
張力によつて円形になりやすいので、中間層の楕
円率をγと設定して、石英管の厚さ、径、減圧度
を設定するとき、中心層を円形とするためにはプ
レホーム状態でc2/a200/(100−γ)−1となるよ
う
にCVD法によるガラス薄膜の層の厚さを設定す
ればよい。 Figure 11 shows the minor axis diameter of the intermediate layer (cladding) and the diameter of the central layer (core) when the ellipticity of the central layer becomes 5% or less when the ellipticity of the intermediate layer changes as shown in Figure 10. This is an experimentally determined ratio. In the figure, the horizontal axis shows the ellipticity γ of the outer periphery of the cladding, and the vertical axis shows the ratio C 2 /a between the minor axis diameter c 2 of the cladding and the diameter a of the core. From this measurement result, it can be seen that there is a relationship of c 2 /a=200/(100−γ)−1 at the boundary where the core is circular. Therefore, when c 2 /a is larger than 200/(100-γ)-1, the core tends to become circular due to surface tension, so the ellipticity of the intermediate layer is set as γ, and the thickness of the quartz tube is When setting the thickness, diameter, and degree of vacuum, in order to make the center layer circular, the thickness of the glass thin film layer by CVD method should be set so that c 2 /a200/(100-γ)-1 in the preformed state. All you have to do is set .
上記説明は第8図の断面構造の場合について説
明したが、第9図の断面構造の光フアイバ母材を
製造する場合についても同様の関係が成立する。 Although the above description has been made regarding the case of the cross-sectional structure shown in FIG. 8, the same relationship holds true when manufacturing an optical fiber base material having the cross-sectional structure shown in FIG. 9.
次に、本発明による製造方法による具体的実施
例を例示する。 Next, specific examples of the manufacturing method according to the present invention will be illustrated.
実施例 1
石英管(外径18mmφ、中径15mmφ)の内壁面に
SiO2−B2O3−GeO2のガラス薄膜を50μm堆積
(この堆積量は加熱溶着後外径2d′7mmφ、堆積ガ
ラス層の平均径2c′3.1mmφに相当する。なお溶
着時加熱によつて石英外壁面から石英微粉が飛散
するため、プレホームの外径はやや小さくなつて
いる)する。ここで堆積ガラス層の楕円率γを50
%とするため、(1)式を用いて、減圧度を8mmH2
O、x=5.0を得た。したがつてb′/a′=50×3.1/7
=2.21とすれば楕円率γ=50%が得られる。この
ため2a′(溶着前の管内径)を5.1mmφ、2b′(溶着
前の管外径)を11.2mmφとして、溶着した結果に
よると中間層の楕円率51%のプレホームが得られ
た。Example 1 On the inner wall of a quartz tube (outer diameter 18 mmφ, middle diameter 15 mmφ)
A glass thin film of SiO 2 −B 2 O 3 −GeO 2 is deposited to a thickness of 50 μm (this amount of deposition corresponds to an outer diameter of 2d′7 mmφ after heat welding and an average diameter of the deposited glass layer of 2c′3.1 mmφ. (The outer diameter of the preform is slightly smaller because fine quartz powder is scattered from the outer quartz wall surface.) Here, the ellipticity γ of the deposited glass layer is 50
%, use equation (1) to set the degree of pressure reduction to 8 mmH 2
O, x=5.0 was obtained. Therefore, if b'/a'=50×3.1/7=2.21, ellipticity γ=50% can be obtained. For this reason, 2a' (inner diameter of the tube before welding) was set to 5.1 mmφ, and 2b' (outer diameter of the tube before welding) was set to 11.2 mmφ, and according to the welding results, a preform with an intermediate layer ellipticity of 51% was obtained.
実施例 2
石英管(内径18mmφ、内径15mmφ)の内壁面に
順に、15モル%B2O3+85モル%SiO2ガラス
180μm、100モル%SiO2ガラスを3.5μmCVD法に
よつて堆積し、加熱して、内径5mm、外径11mmの
石英管にする。次に管内部を大気圧に比べ水の高
さで8mmH2Oに減圧しながら溶着しプレホーム
ロツドを形成した。得られたプレホームロツドの
外径は9.9mmφ、コアは10.3mmφの円形で、クラ
ツドは楕円率40%の楕円形で、短軸の径は1.5mm
φであつた。Example 2 15 mol% B 2 O 3 + 85 mol% SiO 2 glass was applied to the inner wall surface of a quartz tube (inner diameter 18 mmφ, inner diameter 15 mmφ) in this order.
A 180 μm, 100 mol% SiO 2 glass is deposited by a 3.5 μm CVD method and heated to form a quartz tube with an inner diameter of 5 mm and an outer diameter of 11 mm. Next, the inside of the tube was welded while reducing the pressure to 8 mmH 2 O at the level of water compared to atmospheric pressure to form a preformed rod. The outer diameter of the obtained preformed rod was 9.9 mmφ, the core was circular with a diameter of 10.3 mm, and the cladding was elliptical with an ellipticity of 40%, and the minor axis diameter was 1.5 mm.
It was φ.
実施例 3
実施例2記載と同じ石英管の内壁面に順に15モ
ル%B2O3+85モル%SiO2ガラスを180μm、100モ
ル%SiO2ガラスを3.2μm、4モル%GeO2+96モ
ル%SiO2ガラスを0.3μmCVD法によつて堆積し
た後加熱して、内径5mmφ、外径11mmφの石英管
とする。次に管内部を大気圧に比べて8mmH2O
減圧しながら加熱溶着し中実化したプレホームロ
ツドを得た。得られたプレホームロツドは外径
9.9mmφ、中心部SiO2層とSiO2+GeO2層は同心状
の円形でそれぞれ0.32mm、0.095mmの半径を持ち、
SiO2+B2O3層の外周は楕円率27%であつた。Example 3 On the inner wall surface of the same quartz tube as described in Example 2, 15 mol% B 2 O 3 + 85 mol% SiO 2 glass was applied to 180 μm, 100 mol% SiO 2 glass was applied to 3.2 μm, and 4 mol% GeO 2 + 96 mol% SiO 2 glass is deposited to a thickness of 0.3 μm by CVD and then heated to form a quartz tube with an inner diameter of 5 mmφ and an outer diameter of 11 mmφ. Next, the pressure inside the tube is 8 mmH 2 O compared to atmospheric pressure.
A solid preform rod was obtained by heating and welding under reduced pressure. The resulting preformed rod has an outer diameter of
9.9mmφ, the central SiO 2 layer and SiO 2 +GeO 2 layer are concentric circles with radii of 0.32mm and 0.095mm, respectively.
The outer circumference of the three SiO 2 +B 2 O layers had an ellipticity of 27%.
第1図は本発明の製造方法のステツプを示す
図、第2図は本発明の製造方法によつて得られた
光フアイバ母材の断面構成図、本発明の工程にお
けるガラス管内の減圧度と光フアイバ母材の楕円
層の楕円率との関係を示す図、第3図は楕円率と
石英管の厚さ及び減圧度の関係を示す図、第4図
は光フアイバ母材を構成する層の厚さと楕円層の
楕円率の関係を示す図、第5図及び第6図は、第
4図の説明のためのガラス管断面図及びプレホー
ムの断面図、第7図はガラス管内の減圧度と楕円
層の楕円率の関係を示す図、第8図および第9図
は本発明によつて得られるプレホームの断面図、
第10図は本発明による製造方法によるプレホー
ムのコア径とコア楕円率の関係を示す図、第11
図は本発明によるプレホームのクラツド短軸径と
コア径の比とクラツド楕円率の関係を示す図であ
る。
1……石英ガラス管(最外層)、2……クラツ
ド(中間層)、3……コア(中心層)、4……加熱
源、5……排気タンク、6……排気口、7……排
気調節弁、8……石英管内部、9……U字管、1
0……水。
Figure 1 is a diagram showing the steps of the manufacturing method of the present invention, Figure 2 is a cross-sectional diagram of the optical fiber base material obtained by the manufacturing method of the present invention, and the degree of vacuum inside the glass tube in the process of the present invention. A diagram showing the relationship between the ellipticity of the elliptic layer of the optical fiber base material, Figure 3 is a diagram showing the relationship between the ellipticity, the thickness of the quartz tube, and the degree of vacuum, and Figure 4 is the layer constituting the optical fiber base material. Figures 5 and 6 are a cross-sectional view of a glass tube and a preform for explaining Figure 4, and Figure 7 is a diagram showing the relationship between the thickness of the glass tube and the ellipticity of the elliptical layer. Figures 8 and 9 are cross-sectional views of preforms obtained by the present invention;
FIG. 10 is a diagram showing the relationship between the core diameter and core ellipticity of the preform produced by the manufacturing method according to the present invention, and FIG.
The figure shows the relationship between the ratio of the short axis diameter of the clad to the core diameter and the ellipticity of the clad of the preform according to the present invention. 1... Quartz glass tube (outermost layer), 2... Clad (middle layer), 3... Core (center layer), 4... Heat source, 5... Exhaust tank, 6... Exhaust port, 7... Exhaust control valve, 8... Inside of quartz tube, 9... U-shaped tube, 1
0...Water.
Claims (1)
層を形成し、その後、上記石英ガラス管を加熱溶
着することによつて中実化された光フアイバ母材
を製造する方法において、上記加熱溶着開始時の
上記石英ガラス管の厚さを0.3mm〜5mm、上記石
英ガラス管の外径を5mm〜50mmとし、上記加熱溶
着時に石英ガラス管内の圧力を外気圧より1mm
H2O〜30mmH2Oだけ低くすることを特徴とする
光フアイバ母材の製造方法。1. A method for manufacturing a solid optical fiber base material by forming a glass thin film layer on the inner wall of a quartz glass tube serving as a base material, and then heat welding the quartz glass tube, wherein the heat welding The thickness of the quartz glass tube at the start is 0.3 mm to 5 mm, the outer diameter of the quartz glass tube is 5 mm to 50 mm, and the pressure inside the quartz glass tube is 1 mm below the external pressure during the heat welding.
A method for producing an optical fiber base material, characterized in that H2O is lowered by 30 mm H2O .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2855390A JPH02239129A (en) | 1981-07-20 | 1990-02-09 | Production of optical fiber base material |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56112137A JPS5815041A (en) | 1981-07-20 | 1981-07-20 | Production of base material for optical fiber |
JP2855390A JPH02239129A (en) | 1981-07-20 | 1990-02-09 | Production of optical fiber base material |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56112137A Division JPS5815041A (en) | 1981-05-29 | 1981-07-20 | Production of base material for optical fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02239129A JPH02239129A (en) | 1990-09-21 |
JPH0577618B2 true JPH0577618B2 (en) | 1993-10-27 |
Family
ID=26366681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2855390A Granted JPH02239129A (en) | 1981-07-20 | 1990-02-09 | Production of optical fiber base material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02239129A (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5669235A (en) * | 1979-11-09 | 1981-06-10 | Nippon Telegr & Teleph Corp <Ntt> | Preparation of optical fiber |
JPS56125233A (en) * | 1980-03-07 | 1981-10-01 | Hitachi Ltd | Manufacture of optical fiber |
JPS5815041A (en) * | 1981-07-20 | 1983-01-28 | Hitachi Ltd | Production of base material for optical fiber |
-
1990
- 1990-02-09 JP JP2855390A patent/JPH02239129A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5669235A (en) * | 1979-11-09 | 1981-06-10 | Nippon Telegr & Teleph Corp <Ntt> | Preparation of optical fiber |
JPS56125233A (en) * | 1980-03-07 | 1981-10-01 | Hitachi Ltd | Manufacture of optical fiber |
JPS5815041A (en) * | 1981-07-20 | 1983-01-28 | Hitachi Ltd | Production of base material for optical fiber |
Also Published As
Publication number | Publication date |
---|---|
JPH02239129A (en) | 1990-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4529426A (en) | Method of fabricating high birefringence fibers | |
US4426129A (en) | Optical fiber and method of producing the same | |
US4274854A (en) | Polarization-preserving optical fiber | |
US4478489A (en) | Polarization retaining single-mode optical waveguide | |
US3737292A (en) | Method of forming optical waveguide fibers | |
CA1277124C (en) | Method of making low loss fiber optic coupler | |
US4561871A (en) | Method of making polarization preserving optical fiber | |
US5482525A (en) | Method of producing elliptic core type polarization-maintaining optical fiber | |
US4360371A (en) | Method of making polarization retaining single-mode optical waveguide | |
US4415230A (en) | Polarization retaining single-mode optical waveguide | |
EP0061901B1 (en) | Optical waveguide fiber, and methods of forming an optical waveguide fiber, and an optical waveguide preform | |
JPS5843336B2 (en) | Manufacturing method of clad type optical glass fiber | |
US4834786A (en) | Method of manufacturing a preform for asymmetrical optical fiber | |
EP0067017B1 (en) | Polarization plane maintaining optical fiber and fabricating method therefor | |
USRE28029E (en) | Method of forming optical waveguide fibers | |
JPS5969438A (en) | Manufacture of base material for optical fiber | |
JPH0243690B2 (en) | ||
JPH0577618B2 (en) | ||
JP3491642B2 (en) | Optical fiber preform, optical fiber, and manufacturing method thereof | |
JPS6350291B2 (en) | ||
JPS5939736A (en) | Production of base material for optical fiber retaining plane of polarization | |
JPS6150887B2 (en) | ||
JPH0557215B2 (en) | ||
JPH0930824A (en) | Method of manufacturing polarization maintaining optical fiber and polarization maintaining optical fiber | |
CA1202507A (en) | Polarization retaining single-mode optical fibers and methods of making |