JPH0243690B2 - - Google Patents
Info
- Publication number
- JPH0243690B2 JPH0243690B2 JP56112137A JP11213781A JPH0243690B2 JP H0243690 B2 JPH0243690 B2 JP H0243690B2 JP 56112137 A JP56112137 A JP 56112137A JP 11213781 A JP11213781 A JP 11213781A JP H0243690 B2 JPH0243690 B2 JP H0243690B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- thin film
- film layer
- tube
- ellipticity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Description
【発明の詳細な説明】
本発明は光フアイバの製造方法、更に詳しく言
えば光フアイバの光伝送の要部をなすコアに複屈
折を生ぜしめる光フアイバを製造する工程で使用
する光フアイバ母材、即ちプレホームロツドの製
造方法に係る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an optical fiber, and more specifically, to an optical fiber base material used in the process of manufacturing an optical fiber that produces birefringence in the core that forms the essential part of optical transmission of the optical fiber. , namely, a method of manufacturing a preformed rod.
光フアイバの一つの用途として、偏波面を乱れ
なく伝送し、光集積回路との結合、測定装置、光
スイツチ等の利用が考えられる。このように光の
偏波面を乱すことなく(偏波面を保存)伝播でき
る円形状光フアイバとしては光フアイバを形成す
るコアの直交主軸方向の伝播位相定数の差が大き
いことが必要となる。このような伝相伝播定数差
を得るため、コアに加わる熱応力歪の差を形成す
る方法が考えられている。 One possible use of optical fibers is to transmit polarized waves without disturbance, to connect them to optical integrated circuits, to use them in measurement devices, optical switches, and the like. In order for a circular optical fiber to be able to propagate light without disturbing the plane of polarization (maintaining the plane of polarization), it is necessary that the difference in the propagation phase constants in the orthogonal principal axis directions of the core forming the optical fiber is large. In order to obtain such a difference in phase conduction propagation constants, a method of creating a difference in thermal stress strain applied to the core has been considered.
しかし従来知られている方法は、ガラス管内壁
に化学的気相沈積(CVD)法によつて、コア、
クラツドとなるガラス層を形成した後、ガラス管
内を少なくとも減圧をしないで、中実化してロツ
ドを作り、これを1部研磨等によつて削り非円形
の光フアイバ母材(プレホームロツド)を形成し
た後、細い光フアイバとするため加熱線引する。
これによつて、プレホームロツトの非円、なら
び、ガラス管と内壁に形成されるガラス層の材質
の熱膨張係数の差等によつてコアに複屈折を生ぜ
しめる方法である。 However, the conventionally known method uses chemical vapor deposition (CVD) to deposit the core on the inner wall of the glass tube.
After forming a glass layer to serve as a cladding, the inside of the glass tube was solidified to form a rod without reducing the pressure at least, and a portion of this was ground by polishing to form a non-circular optical fiber preform (preformed rod). After that, it is heated and drawn to make a thin optical fiber.
This method produces birefringence in the core due to the non-circularity of the preformed rod and the difference in coefficient of thermal expansion between the materials of the glass tube and the glass layer formed on the inner wall.
しかし、この方法では中実化したロツドの一部
を非円とする研磨工程等を必要とし、更に十分大
きな複屈折を生ぜしめることができない。特にコ
アに複屈折を生ぜしめるためには、クラツドある
いは外周のジヤケツトを楕円形とすることが望ま
しいが、それらの形状を任意に制御することが困
難である。 However, this method requires a polishing step to make a part of the solid rod non-circular, and it is not possible to produce sufficiently large birefringence. In particular, in order to produce birefringence in the core, it is desirable that the cladding or outer jacket be elliptical, but it is difficult to control their shape arbitrarily.
したがつて、本発明の目的は、円形の石英ガラ
ス管の内壁に少なくとも上記ガラス管の材質と異
なるガラス薄膜を形成し、これを加熱溶着し中実
の光フアイバ用母材、すなわちプレホームロツド
を作る方法において経済的、簡易な方法で、上記
ガラス薄膜部の少なくとも一部が楕円となる製造
方法を実現することである。 Therefore, an object of the present invention is to form at least a glass thin film different from the material of the glass tube on the inner wall of a circular quartz glass tube, and heat and weld this to create a solid optical fiber base material, that is, a preform rod. It is an object of the present invention to realize a manufacturing method in which at least a portion of the glass thin film portion has an elliptical shape using an economical and simple method.
本発明の他の目的は、研磨工程や最初のガラス
管を変形する工程を要することなく、円形の中心
層と上記中心層外周に形成されその外周が楕円と
なる中間層と、上記中間層外周に形成された最外
周層からなり、上記中間層の外周の楕円率が任意
に設定できる光フアイバ用母材の製造方法を実現
することである。 Another object of the present invention is to provide a circular center layer, an intermediate layer formed on the outer periphery of the center layer and having an elliptical outer periphery, and a circular center layer and an elliptical outer periphery of the intermediate layer, without requiring a polishing step or a step of deforming the initial glass tube. It is an object of the present invention to realize a method for manufacturing an optical fiber base material, which is composed of an outermost peripheral layer formed in the middle layer and in which the ellipticity of the outer periphery of the intermediate layer can be arbitrarily set.
本発明は上記目的を達成するため、基材となる
ガラス管の内壁にガラス薄膜を形成し、これを加
熱溶着し、中実の光フアイバ用母材(プレホー
ム)を製造する方法において、上記ガラス薄膜が
形成された管の一端を加熱して潰し、上記一端を
潰されたガラス管の内部の圧力を外記圧より低く
して回転しながら上記潰された1端から加熱部を
漸時移動して中実化することを特徴とする。 In order to achieve the above object, the present invention provides a method for manufacturing a solid optical fiber preform by forming a glass thin film on the inner wall of a glass tube serving as a base material and heat welding the thin film. One end of the tube on which the glass thin film has been formed is heated and crushed, and the heating section is gradually turned on from the crushed one end while rotating with the pressure inside the glass tube with the crushed glass tube lower than the external pressure. It is characterized by moving and becoming solid.
特に、本発明では、本発明によつて得られたプ
レホームロツトの断面構造が中心層が円形で、中
間層はその外周が楕円となり、最外周層が円形又
は円形に近い形状の層からなるように、上記方法
において、上記中間層の一部の材質は上記基材と
なるガラス管の軟化点より低い軟化点を有する材
質で形成され、上記コア部を形成する材質は上記
低い軟化点を有する材質より高い軟化点を有する
材質で形成される。 In particular, in the present invention, the cross-sectional structure of the preformed rod obtained by the present invention is such that the central layer is circular, the intermediate layer has an elliptical outer periphery, and the outermost layer is a layer having a circular or nearly circular shape. In the above method, a part of the material of the intermediate layer is formed of a material having a softening point lower than that of the glass tube serving as the base material, and a material forming the core part is formed of a material having a lower softening point than the softening point of the glass tube serving as the base material. It is made of a material that has a higher softening point than that of the other materials.
なお、中心層、中間層は実施例において説明す
る如く単一の層に限定される必要はなく複数の層
で形成してもよい。又楕円とは本発明では楕円の
長軸をC1、短軸をC2としたとき、楕円率γ
(C1−C2/C1+C2×100)が3%以上のものを言う。 Note that the center layer and the intermediate layer are not necessarily limited to a single layer as described in the embodiments, and may be formed of a plurality of layers. In addition, in the present invention, an ellipse is defined as the ellipticity γ, where the major axis of the ellipse is C 1 and the minor axis is C 2 .
(C 1 −C 2 /C 1 +C 2 ×100) is 3% or more.
それ以下を円形とする。 Anything below that is circular.
本発明の方法によれば、ガラス管の半径、厚
み、減圧度、ガラス薄膜の材質、量を特定するこ
とによつて中心層、又は中間層の楕円率を任意に
設定でき、かつ再現性よく光フアイバ母材を実現
することができる。 According to the method of the present invention, the ellipticity of the center layer or intermediate layer can be set arbitrarily by specifying the radius, thickness, degree of vacuum of the glass tube, material and amount of the glass thin film, and with good reproducibility. An optical fiber base material can be realized.
特に、中心層を円形、中間層を楕円形とすると
きは、中心層の直交する軸方向の屈折率を異なつ
たものとすることが容易に実現でき、偏波面を保
存し易い光フアイバを実現することができる。 In particular, when the central layer is circular and the intermediate layer is elliptical, it is easy to make the central layer have different refractive indexes in the perpendicular axes, resulting in an optical fiber that can easily preserve the plane of polarization. can do.
なお、最終的光フアイバは上記方法によつて得
られたプレホームロツトを単に加熱しながら線引
すれば上記断面構造と相似の断面構造の光フアイ
バが容易に実現できる。 Incidentally, the final optical fiber can be easily produced by simply drawing the preformed lot obtained by the above method while heating it, and having a cross-sectional structure similar to the above-described cross-sectional structure.
以下本発明を図面を用いて詳細に説明する。 The present invention will be explained in detail below using the drawings.
第1図は本発明による光フアイバの製造方法の
工程を示す図である。 FIG. 1 is a diagram showing the steps of a method for manufacturing an optical fiber according to the present invention.
まず、(1)光フアイバの基材となる石英ガラス管
1が用意される。このガラス管の径が大きく、厚
みが薄いときは後の減圧工程(3)にいて所定の形状
が得られ難いため必要によつては径を小さくする
工程が含まれる。望ましくは外径5mm〜50mm、厚
さ0.3mm〜5mmである。 First, (1) a quartz glass tube 1, which will be the base material of the optical fiber, is prepared. If this glass tube has a large diameter and a small thickness, it will be difficult to obtain a predetermined shape in the subsequent pressure reduction step (3), so a step of reducing the diameter may be included if necessary. Desirably, the outer diameter is 5 mm to 50 mm and the thickness is 0.3 mm to 5 mm.
上記ガラス管1の内壁に化学的堆積(CVD)
法によつて、光フアイバの中間層となるガラス薄
膜2および中心層となるガラス薄膜3が形成され
る。中間層は光フアイバのクラツド、あるいはジ
ヤケツトとクラツト機能を持つ場合がある。又中
心層は光フアイバのコアのみ、あるいはコアとク
ラツト(すなわち、光伝送部を形成する)を形成
する場合が有る。 Chemical deposition (CVD) on the inner wall of the glass tube 1 above
By this method, a thin glass film 2 serving as the intermediate layer of the optical fiber and a thin glass film 3 serving as the central layer are formed. The intermediate layer may have a fiber optic cladding or jacket and cladding function. Further, the central layer may form only the core of the optical fiber, or the core and the crack (that is, form the optical transmission section).
これらの材質、厚みについてを後に詳細に説明
する。上記工程によつて得られたガラス薄膜を有
するガラス管は両端をガラス旋盤台に取付け、一
定の回転速度で回転する(3)。図は取付台に取付ら
れた管の端部を加熱バーナ4で加熱して潰す。そ
してガラス管の他の開口部に排気タンク5を設
け、排気管6より排気調節弁7を調整しながら管
内の気圧を減圧して一定の圧力に保つ。減圧量は
一方の端が石英管内部8に挿入されたU字管9で
液10の液面の違いで測定される。この状態で加
熱源(バーナ)4を漸時移動して中実のプレホー
ムロツドを形成する。この減圧の程度は第3図で
示すように1mmH2O〜20mmH2O程度に設定する。
プレホームロツドは加熱バーナ4によつて溶融
し、一方から線引すれば、内層の一部が楕円形と
なる光フアイバが実現される。 These materials and thicknesses will be explained in detail later. The glass tube with the glass thin film obtained by the above process is attached at both ends to a glass lathe table and rotated at a constant rotational speed (3). In the figure, the end of the tube attached to the mount is heated with a heating burner 4 to crush it. Then, an exhaust tank 5 is provided at the other opening of the glass tube, and while adjusting the exhaust control valve 7 through the exhaust pipe 6, the pressure inside the tube is reduced and maintained at a constant pressure. The amount of pressure reduction is measured by the difference in the liquid level of the liquid 10 using a U-shaped tube 9 whose one end is inserted into the interior 8 of the quartz tube. In this state, the heating source (burner) 4 is gradually moved to form a solid preformed rod. The degree of this pressure reduction is set to about 1 mmH 2 O to 20 mmH 2 O as shown in FIG.
The preformed rod is melted by a heating burner 4 and drawn from one side to produce an optical fiber in which part of the inner layer is elliptical.
第2図a,b,cおよびdは上記方法によつて
作つたプレホームの断面の写真をトレースして示
したもので、各々の製造条件は次の通りである。 Figures 2a, b, c and d are traced photographs of cross sections of preforms made by the above method, and the manufacturing conditions for each are as follows.
最初の石英管の外径は20mm、厚さ1.5mmで全て
同じである。 The initial quartz tubes have the same outer diameter of 20 mm and thickness of 1.5 mm.
次に示すようなガラス薄膜を形成した後速度毎
分50回転で回転しながら、酸水素バーナ2を漸時
0.17mm/secの速さで移動した。 After forming a glass thin film as shown below, gradually turn on the oxyhydrogen burner 2 while rotating at a speed of 50 revolutions per minute.
It moved at a speed of 0.17mm/sec.
aはコアとしてゲルマをドープしたシリカガラ
スよりなり減圧量は水の高さで9mm(以下mm
H2Oと表わす)のものであり約50%の楕円率の
中心層が得られる。b図は管の減圧量を27mm
H2Oと大きくしたもので中空のプレホームのコ
アにドープされたゲルマ層の厚めは約15μmと厚
いものである。cとdは、コア(中心層)にシリ
カガラスを、クラツデイング(中間層)に硼素
(B2O3)をドープしたシリカガラスを形成したも
ので、コアを円形に、クラツデイングを楕円にし
た図cと、逆にコアを楕円にクラツデイングを円
形にした図dを示したものである。これらの作製
法は前記したように出発石英管を楕円軸が回転し
ないようにある程度収縮させるが、この収縮量と
コア層、クラツデイング層の厚みを最適に選ぶ事
で成しとげられる。 A is made of silica glass doped with germa as a core, and the amount of pressure reduction is 9 mm at the height of the water (hereinafter mm).
H 2 O), and a central layer with an ellipticity of about 50% is obtained. Figure b shows the amount of pressure reduction in the pipe at 27mm.
The thickness of the germanium layer doped in the core of the hollow preform is approximately 15 μm. In c and d, the core (center layer) is made of silica glass and the cladding (intermediate layer) is made of silica glass doped with boron (B 2 O 3 ).The core is circular and the cladding is oval. Figure d shows the core in an elliptical shape and the cladding in a circular shape. In these manufacturing methods, as described above, the starting quartz tube is shrunk to a certain extent so that the ellipse axis does not rotate, and this can be accomplished by optimally selecting the amount of shrinkage and the thicknesses of the core layer and cladding layer.
第3図は、石英管の厚さと、減圧度を変えたと
きの楕円率の測定結果を示すもので、各曲線の実
施条件は次の通りである。曲線11,12,13
においてはコアにゲルマをドープしたシリカガラ
スを用い第2図a,bに示すように2層構造であ
る。ゲルマの濃度は約15mol%である。各曲線共
に出発石英管の外径は20mm、内径17mmのもので共
通であり、中空プレホームのゲルム層の厚みは約
10μmである。加熱溶着(カラツプス)する前に
13.5mm、12.8mm、9.7mmの外径まで収縮させた後減
圧を行つて得られた中実のプレフオームのコアの
楕円率を示したもので、曲線11,12,13は
それぞれ13.5mm、12.8mm、9.7mmの実験例である。
曲線12はコアにシリカを、クラツデイングに硼
素をドープしたシリカガラスを用いてフアイバで
第2図c,dのように3層構造となつている。硼
素は約12mol%ドープされており、中空プレフオ
ームにおいては18μmの厚みを有していた。コア
となるシリカ層は約8μm厚みをもつているもの
で、出発石英管は前記と同じ外径20mm、内径17mm
のものである。この管にクラツデイング層とコア
層を作製した後約13.1mmに収縮させた。その後減
圧量を変えてコラツプスし、得られたクラツデイ
ングの楕円率を減圧量の関数として示したのが1
2の曲線である。 FIG. 3 shows the measurement results of the ellipticity when the thickness of the quartz tube and the degree of vacuum were changed, and the operating conditions for each curve are as follows. Curves 11, 12, 13
The core is made of silica glass doped with germa, and has a two-layer structure as shown in FIGS. 2a and 2b. The concentration of germa is approximately 15 mol%. For each curve, the outer diameter of the starting quartz tube is 20 mm and the inner diameter is 17 mm, and the thickness of the gel layer of the hollow preform is approximately
It is 10 μm. Before heat welding (calaps)
Curves 11, 12, and 13 show the ellipticity of the core of the solid preform obtained by shrinking the core to an outer diameter of 13.5 mm, 12.8 mm, and 9.7 mm and then decompressing it. Curves 11, 12, and 13 are 13.5 mm and 12.8 mm, respectively. This is an experimental example of 9.7 mm.
Curve 12 has a three-layered fiber structure as shown in FIGS. 2c and d, using silica for the core and boron-doped silica glass for the cladding. The boron was doped at approximately 12 mol % and had a thickness of 18 μm in the hollow preform. The silica layer that forms the core has a thickness of approximately 8 μm, and the starting quartz tube has the same outer diameter of 20 mm and inner diameter of 17 mm as above.
belongs to. After forming a cladding layer and a core layer on this tube, it was shrunk to about 13.1 mm. After that, the collapse was performed by changing the amount of decompression, and the ellipticity of the obtained cradle was shown as a function of the amount of decompression.
2 curve.
以上の例より、プレホームロツドの一部に形成
される楕円層の楕円形状は減圧度ならびにドーパ
ントの材質、出発石英管の径および厚さ、中空部
の半径を制御することによつて決定されることが
分る。すなわち、減圧度が高い程楕円率は増大
し、中空の管の厚さが厚い程楕円率が低くなる。
上記例から分るように、石英ガラス管の厚さは
0.3mm〜5mm、外径は5mm〜50mm、、外気圧と管内
の圧力との差は1mmH2O〜30mmH2Oで、溶着温
度1700℃〜2000℃で本発明の方法は実現される。
次に楕円率γと減圧度P(mmH2O)と各層の厚み
との関係を定量的に説明する。 From the above example, the elliptical shape of the elliptical layer formed in a part of the preformed rod is determined by controlling the degree of vacuum, the material of the dopant, the diameter and thickness of the starting quartz tube, and the radius of the hollow part. I understand. That is, the higher the degree of pressure reduction, the greater the ellipticity, and the thicker the hollow tube, the lower the ellipticity.
As can be seen from the above example, the thickness of the quartz glass tube is
The method of the present invention is realized at a welding temperature of 0.3 mm to 5 mm, an outer diameter of 5 mm to 50 mm, a difference between the external pressure and the pressure inside the tube of 1 mmH 2 O to 30 mm H 2 O, and a welding temperature of 1700° C. to 2000° C.
Next, the relationship between the ellipticity γ, the degree of reduced pressure P (mmH 2 O), and the thickness of each layer will be quantitatively explained.
第4図は本発明の方法によつて得られたプレホ
ームロツドの最外周層の内径(中心又は中間層の
外周と同じ)の楕円率を、中実化前の各層と中実
化後の各層の厚さとの関係を示すもので、縦軸は
プレホームの楕円層の楕円率を示し、横軸は
(b′/a′)×(d′/c′)を示し、これらは第5図及
び
第6図に示すように中実化前の石英管の外径b′内
径a′、プレホームの外径d′、楕円層の平均半径
c′(=√1、2)を示すもので、製造条件を、溶
着温度1800℃、減圧度8mmH2O加熱バーナの移
動速度0.8mm/sec、ガラス薄膜はGeO2とB2O3を
ドーパントとして含むシリカガラスである。図
中、●,〇,△は最初の石英管径を14、18および
20mmとしたものをそれぞれ表す。 Figure 4 shows the ellipticity of the inner diameter of the outermost layer (same as the outer circumference of the center or middle layer) of the preform rod obtained by the method of the present invention, for each layer before solidification and for each layer after solidification. This shows the relationship between the thickness and the vertical axis shows the ellipticity of the elliptical layer of the preform, and the horizontal axis shows (b'/a') x (d'/c'), which are shown in Figures 5 and 5. As shown in Figure 6, the outer diameter b′ and inner diameter a′ of the quartz tube before solidification, the outer diameter d′ of the preform, and the average radius of the elliptical layer.
c′ (=√ 1 , 2 ), and the manufacturing conditions were: welding temperature 1800℃, degree of vacuum 8mmH 2 O heating burner moving speed 0.8mm/sec, glass thin film doped with GeO 2 and B 2 O 3 . It is silica glass containing as. In the figure, ●, 〇, △ indicate the initial quartz tube diameter of 14, 18 and
Each represents a value of 20mm.
第4図より楕円率γは γ=100e-A(X-1)2〔%〕 x=(b′/a′)×(d′/c′) …(1) の関係があることが分る。 From Figure 4, we can see that the ellipticity γ is γ=100e -A(X-1)2 [%] x=(b'/a')×(d'/c')...(1) Ru.
上記(1)式は溶着温度(1700〜2000℃)、加熱源
4の移動速度(0.02〜0.2mm/sec)、堆積ガラスの
組成を現実的に光フアイバの製造に実施する範囲
で変えても成立する。なお、上記(1)式中Aは減圧
度によつて定まる定数であつて、第7図は上記楕
率と減圧度Pとの関係を実験的に求めたもので、
同図より
A=0.344/P …(2)
が求まる。 Equation (1) above can be applied even if the welding temperature (1700 to 2000°C), the moving speed of the heating source 4 (0.02 to 0.2 mm/sec), and the composition of the deposited glass are changed within the range that is realistically implemented in the production of optical fibers. To establish. In addition, in the above formula (1), A is a constant determined by the degree of pressure reduction, and FIG. 7 shows the relationship between the ellipticity and the degree of pressure reduction P obtained experimentally.
From the same figure, A=0.344/P...(2) can be found.
よつて所定の楕円率γの楕円層を持プレホーム
ロツドを作るためには、基材として、石英管を用
い、溶着温度を1700〜2000℃、加熱源の移動速度
を0.02〜0.2mmH2Oとすれば、減圧度P、各層の
径、厚さを
γ=100e-0.344/P(x−1)2 …(3)
x=(b′/a′)×(d′/c′) …(4)
に基いて設定すれば良い。なお、堆積ガラス層が
一種類でなく複数層になつても、中空時の堆積ガ
ラス層の石英ガラス管の厚さに比べ十分薄い場合
は上記式が常に成立する。 Therefore, in order to make a preform rod having an elliptical layer with a predetermined ellipticity γ, use a quartz tube as the base material, set the welding temperature to 1700 to 2000°C, and set the moving speed of the heating source to 0.02 to 0.2 mmH 2 O. For example, the degree of pressure reduction P, the diameter and thickness of each layer are γ = 100e - 0.344/P(x-1) 2 ...(3) x = (b'/a') x (d'/c') ...(4 ). Note that even if the deposited glass layer is not one type but multiple layers, the above formula always holds true if the deposited glass layer is sufficiently thin compared to the thickness of the quartz glass tube when it is hollow.
本発明の方法の大きな利点の一つは、第2図c
および第8図、第9図に示すように、プレホーム
断面の層構造が最外層が円形に近く、中間最外周
が楕円、中心層が円形に近い形状の光フアイバ母
材が容易に実現できることである。 One of the great advantages of the method of the invention is that FIG.
Also, as shown in FIGS. 8 and 9, it is possible to easily realize an optical fiber base material in which the layer structure of the preform cross section has a shape in which the outermost layer is close to a circle, the outermost middle layer is elliptical, and the center layer is close to a circle. It is.
第8図は中心層3がコア、中間層2がクラツ
ド、最外層1がジヤケツトとなり、コア3とクラ
ツド2で光伝送部を形成し、ジヤケツト3とクラ
ツド2でコアに複屈折を生ぜしめている。第9図
のものは中心層はコア3とクラツト2−2で構成
され、中間層2−1はジヤケツトで、最外層3は
サポート部を形成し外周は円形であるコア3とク
ラツド2−2で光伝送部を形成し、ジヤケツト2
−1と最外層はコア3複屈折を生ぜしめる機能を
持つ。 In Figure 8, the central layer 3 is the core, the intermediate layer 2 is the cladding, and the outermost layer 1 is the jacket.The core 3 and the cladding 2 form an optical transmission part, and the jacket 3 and the cladding 2 cause birefringence in the core. . In the one shown in Fig. 9, the center layer is composed of a core 3 and a clad 2-2, the middle layer 2-1 is a jacket, the outermost layer 3 forms a support part, and the outer periphery is circular. to form the optical transmission part, and the jacket 2
-1 and the outermost layer have the function of producing core 3 birefringence.
このように、中間層の楕円率を中心層のそれよ
り高くするためには中間層の材質としてコアの材
質の軟化点より低い材質とする、これは中間層の
材質にB2O3を加えることによつて実現される。
B2O3の量を増大すると共に軟化点は低くなるが、
熱膨脹係数の差を大きくとるためにはドーパント
B2O3の量は3モル%〜30モル%がが望ましい。
更に、中心層を円形とするためには、プレホーム
母材の中間層の楕円率をγ、上記中間層楕円の短
軸の長さをc2、中心層の円形の径をaとしたとき
c2/a≧200/100−γ−1 …(5)
となるように、ガラス管の内壁に形成されるガラ
ス薄膜の厚さを前もつて設定すれば良い。 In this way, in order to make the ellipticity of the middle layer higher than that of the center layer, the middle layer should be made of a material with a lower softening point than the core material, which is done by adding B 2 O 3 to the middle layer material. This is achieved by
As the amount of B 2 O 3 increases, the softening point decreases, but
Dopants are used to increase the difference in thermal expansion coefficients.
The amount of B 2 O 3 is preferably 3 mol % to 30 mol %.
Furthermore, in order to make the central layer circular, the ellipticity of the intermediate layer of the preform base material is γ, the length of the minor axis of the intermediate layer ellipse is c 2 , and the circular diameter of the central layer is a. The thickness of the glass thin film formed on the inner wall of the glass tube may be set in advance so that c 2 /a≧200/100−γ−1 (5).
これら要件は次の理由による。ガラス薄膜が形
成されたガラス管を減圧しながら加熱溶着すると
温度勾配は始めは外側が高い、又管の厚みがある
ため、外側は減圧の影響が少なく、主として表面
張力によつて円形を維持しようとする。内側は減
圧度によつて主として支配され偏平になろうとす
る。更に加熱が続くと内側の温度も高くなり変形
しやすくなる。したがつて減圧によつて管が平面
となりながら収縮し中空部は少なくなる。この
間、軟化温度が低い中間層は粘性が漸次低下され
る。したがつて、中空部がなくなつたときは粘性
の低下した中間層の中に中心層が浮いた形とな
る。このときは中心部が減圧されないようになる
ため中心層の形状は主として表面張力によつて円
形になろうとする力が働く。そして、冷却の過程
においては上記初期の石英管の内側に形成される
楕円と中心の円形コアの中間に中間層が充てんさ
れた形となつて固化されるからである。 These requirements are due to the following reasons. When a glass tube on which a thin glass film has been formed is heated and welded while reducing pressure, the temperature gradient is initially higher on the outside, and because the tube is thicker, the outer side is less affected by the reduced pressure and maintains its circular shape mainly due to surface tension. shall be. The inside is mainly controlled by the degree of vacuum and tends to become flat. If the heating continues, the temperature inside will also increase, making it easier to deform. Therefore, by reducing the pressure, the tube becomes flat and shrinks, reducing the hollow space. During this time, the viscosity of the intermediate layer having a low softening temperature is gradually reduced. Therefore, when the hollow part disappears, the central layer floats in the intermediate layer with reduced viscosity. At this time, since the central portion is not depressurized, a force acts that tends to shape the central layer into a circular shape mainly due to surface tension. This is because, during the cooling process, the intermediate layer is filled between the ellipse formed inside the initial quartz tube and the circular core at the center and solidified.
したがつて、これらの形状を決定する要因とし
ては、中心層が円形となり易いかどうかは加熱溶
着時の中間層の軟化点、粘性、および中間層と中
心層の相対的厚さの関係および最外層内周(した
がつて中間層外周)の楕円率の関係が考えられ
る。 Therefore, the factors that determine these shapes include the softening point of the intermediate layer during heat welding, the viscosity, the relationship between the relative thicknesses of the intermediate layer and the central layer, and the maximum The relationship between the ellipticity of the inner circumference of the outer layer (and therefore the outer circumference of the middle layer) can be considered.
まず、中間層の外周を楕円とするための条件
は、前述の(1)式の条件によつて決定される。 First, the conditions for making the outer circumference of the intermediate layer into an ellipse are determined by the conditions of the above-mentioned equation (1).
次に、中心層の楕円率γが中間層の外周の楕円
率より小さくなる、すなわち円に近ずくためには
前述の理由によつて溶着時に中実化され固化され
る過程において、軟化された中間層の中で中心層
が表面張力等によつて自由に安定な円形に変化し
やすくする必要があり、このためには中心層、中
間層、最外層の軟化点温度をそれぞれα1、α2およ
びα3とすると
α1>α2、α3>α2 …(6)
であればよい。通常この条件を満すには最外層は
石英ガラスで作られ、又中心部は高い屈折率を持
つ必要があるため、SiO2又はSiO2にGeO2あるい
はP2O5をドーパントとして含むガラスで構成し、
中間層としてはB2O3をドーパントとして3mol%
から30mol%含むSiO2が望ましい。そして、中心
層の真円度を向上するためには上記軟化点の他
に、中間層の楕円率、および中間層と中心層の材
質の量の割合が影響し、これらの間に一定の関係
があることが実験的に求められる。 Next, in order for the ellipticity γ of the center layer to become smaller than the ellipticity of the outer periphery of the middle layer, that is, in order for it to approach a circle, it must be softened in the process of solidifying and solidifying during welding for the reasons mentioned above. Among the intermediate layers, it is necessary for the central layer to easily change freely into a stable circular shape due to surface tension, etc., and for this purpose, the softening point temperatures of the central layer, intermediate layer, and outermost layer must be set to α 1 and α , respectively. 2 and α 3 , it is sufficient if α 1 >α 2 , α 3 >α 2 (6). Usually, to satisfy this condition, the outermost layer is made of quartz glass, and the center part needs to have a high refractive index, so it is made of SiO 2 or SiO 2 with GeO 2 or P 2 O 5 as a dopant. configure,
As the intermediate layer, 3 mol% B 2 O 3 is used as a dopant.
SiO 2 containing 30 mol% is desirable. In order to improve the roundness of the center layer, in addition to the softening point mentioned above, the ellipticity of the middle layer and the ratio of the materials of the middle layer and the center layer are affected, and there is a certain relationship between them. It is experimentally determined that
第10図は石英管(内径6.7mm、外径12mm)の
内壁にCVD法によつてクラツド(中間層)とな
る17モル%B2O3と83モル%SiO2のガラス薄膜を
150μm形成したのち、コア(中心層)となる100
モル%SiO2のガラス薄膜を厚みx〔μm〕を変え
て形成し、減圧度10mmH2Oで溶着中実化した場
合の中間層の楕円率と中心層(コア)の楕円率を
示す。この場合中間層(クラツド)の楕円率は45
%である。なお、図におけるコア径はプレホーム
ロツトとなつた場合の半径を示している。すなわ
ち、楕円率を一定とした場合、中心層(コア)の
楕円率は中間層の厚さと中心層の厚さの相対比に
よつて決定されることが分る。 Figure 10 shows a glass thin film of 17 mol% B 2 O 3 and 83 mol% SiO 2 which will become the cladding (intermediate layer) formed by CVD on the inner wall of a quartz tube (inner diameter 6.7 mm, outer diameter 12 mm).
After forming 150 μm, 100 μm becomes the core (center layer).
The ellipticity of the intermediate layer and the ellipticity of the center layer (core) are shown when glass thin films of mol % SiO 2 are formed with varying thicknesses x [μm] and welded and solidified at a reduced pressure of 10 mm H 2 O. In this case, the ellipticity of the middle layer (clad) is 45
%. In addition, the core diameter in the figure shows the radius when it becomes a preformed lot. That is, it can be seen that when the ellipticity is constant, the ellipticity of the center layer (core) is determined by the relative ratio of the thickness of the intermediate layer and the thickness of the center layer.
第11図は、第10図のように中間層の楕円率
が変つたとき中心層の楕円率が5%以下となると
きの中間層(クラツド)の短軸径と中心層(コ
ア)の径の比を実験的に求めたものである。同図
において横軸はクラツドの外周の楕円率γを、縦
軸にはクラツドの短軸径c2とコアの径aの比c2/a
を示す。この測定結果より、コアが円形となる境
界では
c2/a=200/(100−γ)−1
の関係があることが分る。よつてc2/aが200/100−γ
−1より大きいときは当然コアが表面張力によつ
て円形になりやすいので、中間層の楕円率がγと
設定して、石英管の厚さ、径、減圧度を設定する
とき、中心層を円形とするためにはプレホーム状
態でc2/a200/100−γ−1となるようにCVD法によ
るガラス薄膜の層の厚さを設定すればよい。 Figure 11 shows the minor axis diameter of the intermediate layer (cladding) and the diameter of the central layer (core) when the ellipticity of the central layer becomes 5% or less when the ellipticity of the intermediate layer changes as shown in Figure 10. This is an experimentally determined ratio. In the figure, the horizontal axis shows the ellipticity γ of the outer periphery of the cladding, and the vertical axis shows the ratio c 2 /a between the short axis diameter c 2 of the cladding and the core diameter a. From this measurement result, it can be seen that there is a relationship of c 2 /a=200/(100−γ)−1 at the boundary where the core is circular. Therefore, when c 2 /a is larger than 200/100−γ −1, the core tends to become circular due to surface tension, so the ellipticity of the intermediate layer is set as γ, and the thickness of the quartz tube is When setting the diameter and depressurization degree, in order to make the center layer circular, the thickness of the glass thin film layer by CVD method should be set so that c 2 / a 200 / 100 - γ - 1 in the preformed state. good.
上記説明は第8図の断面構造の場合について説
明したが、第9図の断面構造の光フアイバ母材を
製造する場合についても同様の関係が成立する。 Although the above description has been made regarding the case of the cross-sectional structure shown in FIG. 8, the same relationship holds true when manufacturing an optical fiber base material having the cross-sectional structure shown in FIG. 9.
次に、本発明による製造方法による具体的実施
例を例示する。 Next, specific examples of the manufacturing method according to the present invention will be illustrated.
実施例 1
石英管(外径18mmφ、中径15mmφ)の内壁面に
SiO2−B2O3−GeO2のガラス薄膜を50μm堆積
(この堆積量は加熱溶着後外径(2d′)7mmφ、堆
積ガラス層の平均径(2c′)3.1mmφに相当する。
なお溶着時加熱によつて石英外壁面から石英微粉
が飛散するため、プレホームの外径はやや小さく
なつている)する。ここで堆積ガラス層の楕円率
γを50%とするため、(1)式を用いて、減圧度を8
mmH2O、x=5.0を得た。したがつて、b′/a′=
5.0×3.1/7=2.21とすれば楕円率γ=50%が得られ
る。このため2a′(溶着前の管内径)を5.1mmφ、
2b′(溶着前の管外径)を11.2mmφとして、溶着し
た結果によると中間層の楕円率51%のプレホーム
が得られた。Example 1 On the inner wall of a quartz tube (outer diameter 18 mmφ, middle diameter 15 mmφ)
A glass thin film of SiO 2 −B 2 O 3 −GeO 2 was deposited to a thickness of 50 μm (this amount of deposition corresponded to an outer diameter (2d′) of 7 mmφ after heat welding and an average diameter (2c′) of the deposited glass layer of 3.1 mmφ.
Note that the outer diameter of the preform is slightly smaller because fine quartz powder is scattered from the outer quartz wall surface due to heating during welding. Here, in order to set the ellipticity γ of the deposited glass layer to 50%, using equation (1), the degree of vacuum is set to 8.
mmH2O , x=5.0 was obtained. Therefore, b′/a′=
If 5.0×3.1/7=2.21, ellipticity γ=50% can be obtained. Therefore, 2a′ (pipe inner diameter before welding) is 5.1mmφ,
2b' (tube outside diameter before welding) was set to 11.2 mmφ, and according to the welding results, a preform with an intermediate layer ellipticity of 51% was obtained.
実施例 2
石英管(外径18mmφ、内径15mmφ)の内壁面に
順に、15モル%B2O3+85モル%SiO2ガラスを
180μm、100ル%SiO2ガラスを3.5μmCVD法によ
つて堆積し、加熱して、内径5mm、外径11mmの石
英管にする。次に管内部を大気圧に比べ水の高さ
で8mmH2Oに減圧しながら溶着しプレホームロ
ツドを形成した。得られたプレホームロツドの外
径は9.9mmφ、コアは10.3mmφの円形で、クラツ
ドは楕円率40%の楕円形で、短軸の径は1.5mmφ
であつた。Example 2 15 mol% B 2 O 3 + 85 mol% SiO 2 glass was sequentially applied to the inner wall surface of a quartz tube (outer diameter 18 mmφ, inner diameter 15 mmφ).
A 180 μm, 100% SiO 2 glass is deposited by 3.5 μm CVD method and heated to form a quartz tube with an inner diameter of 5 mm and an outer diameter of 11 mm. Next, the inside of the tube was welded while reducing the pressure to 8 mmH 2 O at the height of the water compared to atmospheric pressure to form a preformed rod. The outer diameter of the obtained preformed rod was 9.9 mmφ, the core was circular with a diameter of 10.3 mm, and the cladding was an ellipse with an ellipticity of 40%, and the minor axis diameter was 1.5 mmφ.
It was hot.
実施例 3
実施例2記載と同じ石英管の内壁面に順に15モ
ル%B2O3+85モル%SiO2ガラスを180μm、100モ
ル%SiO2ガラスを3.2μm、4モル%GeO2+96モ
ル%SiO2ガラスを0.3μmCVD法によつて堆積し
た後加熱して、内径5mmφ、外径11mmφの石英管
とする。次に管内部を大気圧に比べて8mmH2O
減圧しながら加熱溶着し中実化したプレホームロ
ツドを得た。得られたプレホームロツドは外径
9.9mmφ、中心層SiO2層とSiO2+GeO2層は同心状
の円形でそれぞれ0.32mm、0.095mmの半径を持ち、
SiO2+B2O3層の外周は楕円率27%であつた。Example 3 On the inner wall surface of the same quartz tube as described in Example 2, 15 mol% B 2 O 3 + 85 mol% SiO 2 glass was applied to 180 μm, 100 mol% SiO 2 glass was applied to 3.2 μm, and 4 mol% GeO 2 + 96 mol% SiO 2 glass is deposited to a thickness of 0.3 μm by CVD and then heated to form a quartz tube with an inner diameter of 5 mmφ and an outer diameter of 11 mmφ. Next, the pressure inside the tube is 8mmH 2 O compared to atmospheric pressure.
A solid preform rod was obtained by heating and welding under reduced pressure. The resulting preformed rod has an outer diameter of
9.9mmφ, the central SiO 2 layer and SiO 2 +GeO 2 layer are concentric circles with radii of 0.32mm and 0.095mm, respectively.
The outer circumference of the three SiO 2 +B 2 O layers had an ellipticity of 27%.
以上の各実施例で得られたプレホームロツドを
用いて周知の加熱線引を行なうことにより、上記
断面構造と相似の断面構造を有する光フアイバを
得る。 By performing well-known heating drawing using the preform rods obtained in each of the above Examples, an optical fiber having a cross-sectional structure similar to the above-mentioned cross-sectional structure is obtained.
第1図は本発明の製造方法のステツプを示す
図、第2図は本発明の製造方法によつて得られた
光フアイバ母材の断面構成図、第3図は本発明の
工程におけるガラス管内の減圧度と光フアイバ母
材の楕円層の楕円率との関係を示す図、第4図は
光フアイバ母材を構成する層の厚さと楕円層の楕
円率の関係を示す図、第5図及び第6図は、第4
図の説明のためのガラス管断面図及びプレホーム
の断面図、第7図はガラス管内の減圧度と楕円層
の楕円率の関係を示す図、第8図および第9図は
本発明によつて得られるプレホームの断面図、第
10図は本発明による製造方法によるプレホーム
のコア径とコア楕円率の関係を示す図、第11図
は本発明によるプレホームのクラツド短軸径とコ
ア径の比とクラツド楕円率の関係を示す図であ
る。
1……石英ガラス管(最外層)、2……クラツ
ド(中間層)、3……コア(中心層)、4……加熱
源、5……排気タンク、6……排気口、7……排
気調節弁、8……石英管内部、9……U字管、1
0……水。
FIG. 1 is a diagram showing the steps of the manufacturing method of the present invention, FIG. 2 is a cross-sectional diagram of the optical fiber base material obtained by the manufacturing method of the present invention, and FIG. 3 is a diagram showing the inside of a glass tube in the process of the present invention. Figure 4 is a diagram showing the relationship between the degree of pressure reduction and the ellipticity of the elliptic layer of the optical fiber base material, Figure 4 is a diagram showing the relationship between the thickness of the layers constituting the optical fiber base material and the ellipticity of the elliptical layer, and Figure 5 and Figure 6 is the fourth
A cross-sectional view of the glass tube and a cross-sectional view of the preform for explanation of the figures, FIG. 7 is a diagram showing the relationship between the degree of vacuum in the glass tube and the ellipticity of the ellipsoidal layer, and FIGS. 8 and 9 are according to the present invention. 10 is a diagram showing the relationship between the core diameter and core ellipticity of the preform obtained by the manufacturing method according to the present invention, and FIG. 11 is a diagram showing the relationship between the clad minor axis diameter and the core of the preform according to the present invention. FIG. 3 is a diagram showing the relationship between diameter ratio and cladding ellipticity. 1... Quartz glass tube (outermost layer), 2... Clad (middle layer), 3... Core (center layer), 4... Heat source, 5... Exhaust tank, 6... Exhaust port, 7... Exhaust control valve, 8... Inside of quartz tube, 9... U-shaped tube, 1
0...Water.
Claims (1)
形成された第2の薄膜層とを有する基材管内の圧
力を外気圧より低くして加熱溶着によつて中実化
して母材を形成する工程を有し、上記第1の薄膜
層を上記第2の薄膜層及び上記基材管を構成する
材料より低い軟化点温度を有する材料で構成し、
かつ上記第1の薄膜層の外周の楕円率をr、長軸
径及び短軸径をそれぞれc1及びc2、上記第2の薄
膜層の径をaとしたとき、 c2/a≧200/(100−r)−1 但し、r≡(c1−c2)/(c1+c2)×100 の関係を満足するように上記母材を形成して線引
きすることを特徴とする光フアイバの製造方法。 2 特許請求の範囲第1項に記載の光フアイバの
製造方法において、前記第1の薄膜層の形成は
B2O3を含むシリカガラスを堆積することによる
光フアイバの製造方法。 3 特許請求の範囲第1項に記載の光フアイバの
製造方法において、前記基材管として石英ガラス
管を選択する光フアイバの製造方法。 4 特許請求の範囲第1項に記載の光フアイバの
製造方法において、前記第2の薄膜層の形成は
GeO2を含むシリカガラスを堆積することによる
光フアイバの製造方法。 5 特許請求の範囲第1項に記載の光フアイバの
製造方法において、前記第2の薄膜層の形成は異
なる組成を有する複数の薄膜層を堆積することに
よる光フアイバの製造方法。[Scope of Claims] 1. The pressure inside the base material tube having the first thin film layer formed on the inner wall and the second thin film layer further formed on the inner wall thereof is lowered to lower than the external pressure, and the pressure is reduced by heat welding. the first thin film layer is made of a material having a lower softening point temperature than the materials constituting the second thin film layer and the base material tube;
And when the ellipticity of the outer circumference of the first thin film layer is r, the major axis diameter and minor axis diameter are c 1 and c 2 respectively, and the diameter of the second thin film layer is a, c 2 /a≧200 /(100-r)-1 However, the above-mentioned base material is formed and drawn so as to satisfy the relationship r≡( c1 - c2 )/( c1 + c2 )×100. Method of manufacturing fiber. 2. In the method for manufacturing an optical fiber according to claim 1, the formation of the first thin film layer comprises:
A method for producing optical fibers by depositing silica glass containing B2O3 . 3. The method for manufacturing an optical fiber according to claim 1, wherein a quartz glass tube is selected as the base tube. 4. In the method for manufacturing an optical fiber according to claim 1, the formation of the second thin film layer comprises:
A method of manufacturing optical fibers by depositing silica glass containing GeO2 . 5. The method of manufacturing an optical fiber according to claim 1, wherein the second thin film layer is formed by depositing a plurality of thin film layers having different compositions.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56112137A JPS5815041A (en) | 1981-07-20 | 1981-07-20 | Production of base material for optical fiber |
DE8282302773T DE3275591D1 (en) | 1981-05-29 | 1982-05-28 | Polarization plane maintaining optical fiber and fabricating method therefor |
EP82302773A EP0067017B1 (en) | 1981-05-29 | 1982-05-28 | Polarization plane maintaining optical fiber and fabricating method therefor |
US06/883,456 US4828592A (en) | 1981-05-29 | 1986-07-08 | Polarization plane maintaining optical fiber fabricating method |
JP2855390A JPH02239129A (en) | 1981-07-20 | 1990-02-09 | Production of optical fiber base material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56112137A JPS5815041A (en) | 1981-07-20 | 1981-07-20 | Production of base material for optical fiber |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2855390A Division JPH02239129A (en) | 1981-07-20 | 1990-02-09 | Production of optical fiber base material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5815041A JPS5815041A (en) | 1983-01-28 |
JPH0243690B2 true JPH0243690B2 (en) | 1990-10-01 |
Family
ID=14579134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56112137A Granted JPS5815041A (en) | 1981-05-29 | 1981-07-20 | Production of base material for optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5815041A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02239129A (en) * | 1981-07-20 | 1990-09-21 | Hitachi Ltd | Production of optical fiber base material |
JPS60260442A (en) * | 1984-06-06 | 1985-12-23 | Sumitomo Electric Ind Ltd | Preparation of fixed polarisation fiber |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5248329A (en) * | 1975-10-15 | 1977-04-18 | Hitachi Ltd | Method for preparation of optical fibers |
JPS5669235A (en) * | 1979-11-09 | 1981-06-10 | Nippon Telegr & Teleph Corp <Ntt> | Preparation of optical fiber |
JPS56125233A (en) * | 1980-03-07 | 1981-10-01 | Hitachi Ltd | Manufacture of optical fiber |
-
1981
- 1981-07-20 JP JP56112137A patent/JPS5815041A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5248329A (en) * | 1975-10-15 | 1977-04-18 | Hitachi Ltd | Method for preparation of optical fibers |
JPS5669235A (en) * | 1979-11-09 | 1981-06-10 | Nippon Telegr & Teleph Corp <Ntt> | Preparation of optical fiber |
JPS56125233A (en) * | 1980-03-07 | 1981-10-01 | Hitachi Ltd | Manufacture of optical fiber |
Also Published As
Publication number | Publication date |
---|---|
JPS5815041A (en) | 1983-01-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4426129A (en) | Optical fiber and method of producing the same | |
US4529426A (en) | Method of fabricating high birefringence fibers | |
US4251251A (en) | Method of making optical devices | |
US3737292A (en) | Method of forming optical waveguide fibers | |
US4360371A (en) | Method of making polarization retaining single-mode optical waveguide | |
JPS5843336B2 (en) | Manufacturing method of clad type optical glass fiber | |
US4230396A (en) | High bandwidth optical waveguides and method of fabrication | |
US4415230A (en) | Polarization retaining single-mode optical waveguide | |
CA1278685C (en) | Method of making polarization preserving optical fiber | |
JP3292889B2 (en) | Fabrication method of polarization-maintaining single-mode optical fiber | |
US4846867A (en) | Method for producing glass preform for optical fiber | |
EP0061901A1 (en) | Optical waveguide fiber, and methods of forming an optical waveguide fiber, and an optical waveguide preform | |
US4834786A (en) | Method of manufacturing a preform for asymmetrical optical fiber | |
USRE28029E (en) | Method of forming optical waveguide fibers | |
EP0067017B1 (en) | Polarization plane maintaining optical fiber and fabricating method therefor | |
US6732549B1 (en) | Multi-pass sintering of a sol-gel body through a hot zone | |
JPH0243690B2 (en) | ||
JPH0577618B2 (en) | ||
JP3491642B2 (en) | Optical fiber preform, optical fiber, and manufacturing method thereof | |
JP3823341B2 (en) | Optical fiber preform, optical fiber and manufacturing method thereof | |
JPS6350291B2 (en) | ||
JPS5939736A (en) | Production of base material for optical fiber retaining plane of polarization | |
JPH0210095B2 (en) | ||
JPH085685B2 (en) | Method for manufacturing base material for dispersion-shifted optical fiber | |
JPH0557215B2 (en) |