JPH0557215B2 - - Google Patents
Info
- Publication number
- JPH0557215B2 JPH0557215B2 JP63308896A JP30889688A JPH0557215B2 JP H0557215 B2 JPH0557215 B2 JP H0557215B2 JP 63308896 A JP63308896 A JP 63308896A JP 30889688 A JP30889688 A JP 30889688A JP H0557215 B2 JPH0557215 B2 JP H0557215B2
- Authority
- JP
- Japan
- Prior art keywords
- glass
- cladding
- glass layer
- base material
- optical fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000011521 glass Substances 0.000 claims description 248
- 238000005253 cladding Methods 0.000 claims description 121
- 239000013307 optical fiber Substances 0.000 claims description 105
- 239000000463 material Substances 0.000 claims description 93
- 238000004519 manufacturing process Methods 0.000 claims description 43
- 238000000034 method Methods 0.000 claims description 42
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 36
- 238000000227 grinding Methods 0.000 claims description 35
- 230000010287 polarization Effects 0.000 claims description 22
- 238000005245 sintering Methods 0.000 claims description 16
- 239000010419 fine particle Substances 0.000 claims description 15
- 239000002245 particle Substances 0.000 claims description 12
- 238000012545 processing Methods 0.000 claims description 10
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 9
- 229910052731 fluorine Inorganic materials 0.000 claims description 9
- 239000011737 fluorine Substances 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 7
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium oxide Inorganic materials O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 claims description 6
- 238000003754 machining Methods 0.000 claims description 6
- PVADDRMAFCOOPC-UHFFFAOYSA-N oxogermanium Chemical compound [Ge]=O PVADDRMAFCOOPC-UHFFFAOYSA-N 0.000 claims description 4
- 238000000151 deposition Methods 0.000 claims description 3
- 238000007790 scraping Methods 0.000 claims description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 20
- 229910005793 GeO 2 Inorganic materials 0.000 description 16
- 230000008569 process Effects 0.000 description 12
- 238000010586 diagram Methods 0.000 description 8
- 238000009826 distribution Methods 0.000 description 8
- 239000002019 doping agent Substances 0.000 description 7
- 239000000835 fiber Substances 0.000 description 7
- 239000005373 porous glass Substances 0.000 description 5
- 235000012239 silicon dioxide Nutrition 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 4
- 230000008033 biological extinction Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000001427 coherent effect Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 239000004071 soot Substances 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 description 1
- 208000025174 PANDAS Diseases 0.000 description 1
- 208000021155 Paediatric autoimmune neuropsychiatric disorders associated with streptococcal infection Diseases 0.000 description 1
- 240000000220 Panda oleosa Species 0.000 description 1
- 235000016496 Panda oleosa Nutrition 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000005357 flat glass Substances 0.000 description 1
- 239000005337 ground glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000004017 vitrification Methods 0.000 description 1
- 238000005491 wire drawing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/01205—Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
- C03B37/01211—Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
- C03B37/01217—Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of polarisation-maintaining optical fibres
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01466—Means for changing or stabilising the diameter or form of tubes or rods
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01486—Means for supporting, rotating or translating the preforms being formed, e.g. lathes
- C03B37/01493—Deposition substrates, e.g. targets, mandrels, start rods or tubes
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C13/00—Fibre or filament compositions
- C03C13/04—Fibre optics, e.g. core and clad fibre compositions
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/10—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
- G02B6/105—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type having optical polarisation effects
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2203/00—Fibre product details, e.g. structure, shape
- C03B2203/10—Internal structure or shape details
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2203/00—Fibre product details, e.g. structure, shape
- C03B2203/10—Internal structure or shape details
- C03B2203/22—Radial profile of refractive index, composition or softening point
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2203/00—Fibre product details, e.g. structure, shape
- C03B2203/30—Polarisation maintaining [PM], i.e. birefringent products, e.g. with elliptical core, by use of stress rods, "PANDA" type fibres
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geochemistry & Mineralogy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、コアが楕円断面形状の偏波面保存光
フアイバの製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a polarization-maintaining optical fiber whose core has an elliptical cross-section.
[従来の技術]
コヒーレント光通信用の伝送路として偏波面保
存光フアイバの利用が考えられている。[Prior Art] The use of polarization-maintaining optical fibers as transmission lines for coherent optical communications is being considered.
偏波面保存光フアイバは直交する2つの主軸方
向に偏光したHE11モードの光を伝播し、曲げや
圧力等の外乱によつて偏光状態が保たれる様に2
つのHE11モード間の伝搬定数差を大きくし、モ
ード結合を抑えている。伝搬定数差を与えるに
は、コア形状を非円形にする、コアの周囲に
応力付与部を設けるの2種類の方法が代表的であ
る。 Polarization-maintaining optical fiber propagates HE 11 mode light polarized in two orthogonal principal axes, and the polarization state is maintained by bending, pressure, and other disturbances.
The difference in propagation constant between the two HE 11 modes is increased to suppress mode coupling. There are two typical methods for providing a difference in propagation constant: making the core shape non-circular and providing a stress-applying portion around the core.
第16図に従来の各種の偏波面保存光フアイバ
を示す。同図1はパンダ型、2は蝶タイ型、3は
楕円ジヤケツト型、4はサイドトンネル型、5,
6はフラツトクラツド型、7は楕円コア型であ
る。現在は、コアが真円でストレス付加形のもの
(第16図1〜6が最も多く実用化され、光ICと
の結合性を改善したものとして、クラツドを偏平
にした第16図5,6が考えられている。 FIG. 16 shows various conventional polarization-maintaining optical fibers. 1 is a panda type, 2 is a bow tie type, 3 is an oval jacket type, 4 is a side tunnel type, 5,
6 is a flat clad type, and 7 is an elliptical core type. At present, stress-applied types with a perfectly round core (Figures 1 to 6 in Figure 16 are most commonly put into practical use, and Figures 5 and 6 in Figure 16 with a flat cladding that improve connectivity with optical ICs) is considered.
楕円コア型の偏波面保存光フアイバ(第16図
7)は、の方法を用いているため、母材の大型
化が可能であり長尺で良好な偏光特性が得られる
ものであるが、現在は余り検討されていない。そ
の理由は、楕円コア型のものは低損失性を保持し
たままで非円形状を実現することが工業的に困難
であるためである。 The elliptical core type polarization-maintaining optical fiber (Fig. 16, 7) uses the method shown in Fig. 16, so it is possible to make the base material larger and to obtain good polarization characteristics over a long length. has not been considered much. The reason for this is that it is industrially difficult to realize a non-circular shape while maintaining low loss with the elliptical core type.
[発明が解決しようとする課題]
しかし、第16図5,6の偏波面保存光フアイ
バにおいても、外径をフラツトに加工するだけで
なく、コアにストレスを付加する工程があるた
め、一般に製造工程が複雑でかつ、製造装置が大
掛りとなり、偏波面保存光フアイバの低コスト化
に難点がある。従つて、母材の大型化が可能で長
尺で良好な偏光特性の偏波面保存光フアイバが得
られる楕円コア型のものの容易な製造方法の提供
が望まれる。[Problems to be Solved by the Invention] However, even in the polarization-maintaining optical fibers shown in FIGS. 5 and 6 of FIG. 16, there is a process that not only processes the outer diameter to be flat but also applies stress to the core, so it is generally difficult to manufacture. The process is complicated and the manufacturing equipment is large-scale, making it difficult to reduce the cost of polarization-maintaining optical fibers. Therefore, it is desired to provide an easy manufacturing method for an elliptical core type optical fiber, which allows the base material to be large-sized and allows for obtaining a long polarization-maintaining optical fiber with good polarization characteristics.
本発明の目的は、前記した従来技術の欠点を解
消し、楕円コア型の偏波面保存光フアイバを比較
的容易に製造でき、量産性に優れた偏波面保存光
フアイバの製造方法を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a polarization-maintaining optical fiber, which eliminates the drawbacks of the prior art described above, makes it possible to manufacture an elliptical-core polarization-maintaining optical fiber with relative ease, and is excellent in mass production. It is in.
[課題を解決するための手段]
本発明の偏波面保存光フアイバの製造方法のう
ち、特に3層構造の光フアイバを得る製造方法と
しては、コア用ガラス層の外周囲にそれより軟化
点の高いクラツド用ガラス層を有するガラスロツ
ドを形成し、このガラスロツドの両側面を軸方向
に沿つて機械加工により除去して断面非円形の加
工ロツドを形成し、この加工ロツドの外周に石英
ガラス微粒子を外付けし焼結して上記クラツド用
ガラス層より軟化点の高いサポート用ガラス層を
形成し、得られたガラス母材を光フアイバ母材と
して線引きする。[Means for Solving the Problems] Among the methods of manufacturing the polarization-maintaining optical fiber of the present invention, in particular, as a method of manufacturing an optical fiber having a three-layer structure, a layer having a softening point lower than that of the core glass layer is added to the outer periphery of the core glass layer. A glass rod with a high glass layer for cladding is formed, and both sides of this glass rod are removed by machining along the axial direction to form a processed rod with a non-circular cross section, and quartz glass particles are removed around the outer periphery of this processed rod. A support glass layer having a higher softening point than the cladding glass layer is formed by applying and sintering, and the obtained glass base material is drawn as an optical fiber base material.
2層構造の光フアイバを得る場合、酸化ゲルマ
ニウムを含有するコア用ガラス層及びこれを囲む
ふつ素を含むクラツド用ガラス層から成るガラス
ロツドを形成し、このガラスロツドの両側面を軸
方向に沿つて機械加工により除去して断面非円形
の加工ロツドを形成し、この加工ロツドの外周部
にクラツド用ガラス層より粘化温度の高いガラス
組成のガラス微粒子を堆積させると共にこれを焼
結してサポートガラス層を形成した後、このサポ
ートガラス層を削り取ることにより断面円形状の
ガラス母材を作製し、このガラス母材の外周囲に
上記クラツド用ガラス層と同一組成のガラス層を
形成し、得られたガラス母材を光フアイバ母材と
して線引きすることで得られる。 When obtaining an optical fiber with a two-layer structure, a glass rod consisting of a core glass layer containing germanium oxide and a fluorine-containing glass layer surrounding it is formed, and both sides of this glass rod are machined along the axial direction. It is removed by processing to form a processed rod with a non-circular cross section, and glass fine particles having a glass composition with a higher viscosity temperature than the glass layer for the cladding are deposited on the outer periphery of the processed rod, and this is sintered to form a support glass layer. After forming the support glass layer, a glass base material having a circular cross section was prepared by scraping off this support glass layer, and a glass layer having the same composition as the glass layer for the cladding was formed around the outer periphery of this glass base material. It is obtained by drawing a glass base material as an optical fiber base material.
また、線引時の内部歪を低減させるには、コア
用ガラス層の外周囲にそれより軟化点の高い第1
クラツド用ガラス層を有するガラスロツドを形成
し、このガラスロツドの両側面を軸方向に沿つて
機械加工により除去して断面非円形の加工ロツド
を形成し、この加工ロツドの外周に石英ガラス微
粒子を外付けし焼結して第1クラツド用ガラス層
より軟化点の高い中間クラツド用ガラス層を形成
し、中間クラツド用ガラス層の外周に石英ガラス
微粒子を外付けし焼結して中間クラツド用ガラス
層より軟化点の高い第2クラツド用ガラス層を形
成し、得られた4層構造のガラス母材を光フアイ
バ母材として線引きする方法によるのが好まし
い。 In addition, in order to reduce the internal strain during drawing, a first layer with a higher softening point is added around the outer periphery of the core glass layer.
A glass rod having a glass layer for the cladding is formed, both sides of this glass rod are removed by machining along the axial direction to form a processed rod with a non-circular cross section, and quartz glass fine particles are externally attached to the outer periphery of this processed rod. This is then sintered to form a glass layer for the intermediate cladding which has a higher softening point than the glass layer for the first cladding, and fine quartz glass particles are attached externally to the outer periphery of the glass layer for the intermediate cladding and then sintered to form a glass layer for the intermediate cladding. It is preferable to form a second cladding glass layer having a high softening point, and then draw the resulting four-layered glass base material as an optical fiber base material.
更に、楕円度を上げる方法としては、酸化ゲル
マニウムを含有するコア用ガラス層及びフツ素を
含有するクラツド用ガラス層からなる断面円形状
のガラスロツドの両側面部を軸方向に研削した
後、該ガラスロツドの外周部にサポートとなる石
英ガラス微粒子を堆積させると共にこれを焼結し
てガラス母材を形成し、このガラス母材に対し上
記研削から焼結の工程を少なくとも1回繰返し、
得られたガラス母材を光フアイバ母材として線引
きすることによる。 Furthermore, as a method for increasing the ellipticity, after grinding both side surfaces of a glass rod having a circular cross section in the axial direction, which is made of a glass layer for the core containing germanium oxide and a glass layer for the cladding containing fluorine, the glass rod is ground. Depositing quartz glass fine particles to serve as a support on the outer periphery and sintering them to form a glass base material, repeating the above steps from grinding to sintering on this glass base material at least once,
By drawing the obtained glass base material as an optical fiber base material.
[作用]
請求項1の製造方法は、コア、クラツド及びサ
ポートの3層構造から成る楕円コア型偏波面保存
光フアイバを得る方法であり、上記のように特に
光フアイバの外形を限定したものではない。軟化
点は、コア用ガラス層、クラツド用ガラス層、ク
ラツド用ガラス層の順に高くなつている。このた
め、加工ロツドの外周に外付けした石英ガラス微
粒子を焼結する工程において、クラツド用ガラス
層が溶融して外側の粘性の高いクラツド用ガラス
層に抗して円形化しようとする際、既に溶融して
いるコア用ガラス層が一緒に引張られて偏平化す
る。従つて、コア用ガラス層及びクラツド用ガラ
ス層はそれぞれ楕円断面となり、それらの長軸が
互いに直交する形状(第2図e、第6図、第9
図)となる。このガラス母材を線引きすると、そ
の断面構造と相似の断面構造の光フアイバが容易
に実現できる。[Function] The manufacturing method according to claim 1 is a method for obtaining an elliptical core polarization maintaining optical fiber having a three-layer structure of a core, a cladding, and a support, and does not particularly limit the outer shape of the optical fiber as described above. do not have. The softening point increases in the order of the core glass layer, the cladding glass layer, and the cladding glass layer. For this reason, in the process of sintering the quartz glass particles externally attached to the outer periphery of the processing rod, when the cladding glass layer melts and tries to form a circular shape against the outer cladding glass layer with high viscosity, The molten core glass layers are pulled together and flattened. Therefore, the glass layer for the core and the glass layer for the cladding each have an elliptical cross section, and their long axes are perpendicular to each other (Fig. 2e, Fig. 6, Fig. 9).
Figure). By drawing this glass base material, an optical fiber with a cross-sectional structure similar to that of the glass base material can be easily produced.
一般に、楕円コア型偏波面保存光フアイバのモ
ード複屈折率Bは導波構造性複屈折率Bgと応力
誘起複屈折率Bsの和で表わされ、それぞれ第3
図、第4図に示すようにコアの比屈折率差Δ及び
楕円度εに依存することが知られている。このた
め、高いモード複屈折率Bを得るためには、コア
楕円率を制御するための製造条件を限定する必要
がある。 Generally, the mode birefringence B of an elliptical core type polarization-maintaining optical fiber is expressed as the sum of the waveguide structure birefringence Bg and the stress-induced birefringence Bs, each of which has a third
As shown in FIG. 4, it is known that it depends on the relative refractive index difference Δ and the ellipticity ε of the core. Therefore, in order to obtain a high mode birefringence B, it is necessary to limit the manufacturing conditions for controlling the core ellipticity.
詳述するに、上記した如くコア用ガラス層の楕
円化はロツドガラスと外付けした石英ガラスの粘
度差によつて起こるため、コアロツドの粘性、す
なわちGeO2及びFの添加量は重要な因子である。
ガラスロツドのF添加量が少なく、クラツド用ガ
ラス層の石英に対する比屈折率差Δ-が−0.1%以
上の場合はコア用ガラス層はほとんど楕円化しな
い。コアのGeO2の添加量が少なく、コア用ガラ
ス層のクラツド用ガラス層に対する比屈折率差
Δ+が0.4%以下の場合も同様に楕円化しない。ま
た、GeO2の添加量は大きなほどモード複屈折率
は高まるが、Δ+>4%では、ガラスロツド研削
時にクラツクが発生し易くなる。 In detail, as mentioned above, the ellipticalization of the core glass layer is caused by the difference in viscosity between the rod glass and the external quartz glass, so the viscosity of the core rod, that is, the amount of GeO 2 and F added is an important factor. .
When the amount of F added to the glass rod is small and the relative refractive index difference Δ - of the glass layer for the cladding with respect to quartz is -0.1% or more, the glass layer for the core hardly becomes ovalized. Similarly, when the amount of GeO2 added to the core is small and the relative refractive index difference Δ + of the glass layer for the core with respect to the glass layer for the cladding is 0.4% or less, no ovalization occurs. Furthermore, the mode birefringence increases as the amount of GeO 2 added increases, but if Δ + >4%, cracks are likely to occur during glass rod grinding.
種々の寸法の加工ロツド、即ち研削ロツドを用
いて試作を行つた結果、光フアイバ化後のコア楕
円度εcpreは、研削ロツドのクラツド用ガラス層の
楕円度εclad及び研削ロツドの大きさに依存するこ
とが分つた。さらに、研削後のガラスロツドの短
径が5mm以下では、外付け石英スート焼結時にガ
ラスロツドがねじれ、またεclad>0.8では焼結後
ガラスロツドと外付け石英ガラス界面に気泡が発
生するという問題がある。更に、光フアイバのレ
ーリ散乱損失を考慮した上でB>5×10-5を得る
ためには、第5図からεcpreは0.4以上が望ましい。 As a result of prototyping using processing rods of various dimensions, that is, grinding rods, we found that the core ellipticity ε cpre after making into an optical fiber depends on the ellipticity ε clad of the glass layer for the cladding of the grinding rod and the size of the grinding rod. I found out that it depends. Furthermore, if the short diameter of the glass rod after grinding is less than 5 mm, the glass rod will be twisted when the external quartz soot is sintered, and if ε clad > 0.8, bubbles will be generated at the interface between the glass rod and the external quartz glass after sintering. . Further, in order to obtain B>5×10 -5 in consideration of the Rayleigh scattering loss of the optical fiber, as shown in FIG. 5, ε cpre is preferably 0.4 or more.
なお、前記したクラツド用ガラス層の楕円度及
びガラスロツドの長径は研削直後の形状を示し、
このような形状の研削ロツドを延伸外径調整した
後次工程に進めるようにしてもよい。 Note that the ellipticity of the glass layer for the cladding and the major axis of the glass rod shown above indicate the shape immediately after grinding.
The grinding rod having such a shape may be subjected to the next step after the stretched outer diameter is adjusted.
次に、請求項2の製造方法について述べる。 Next, the manufacturing method according to claim 2 will be described.
これは、製造歩留り、損失及びクロストークを
大幅に向上させることができる楕円コア型偏波面
保存光フアイバの製造方法である。 This is a method of manufacturing an elliptical core polarization maintaining optical fiber that can significantly improve manufacturing yield, loss, and crosstalk.
上記請求項1の代表的な製造方法は、例えば、
GeO2及びFを添加したコア用ガラス層、Fを添
加したクラツド用ガラス層からなる断面円形状の
ガラスロツドの両側面を平行研削し断面矩形状と
した後、その外周部に石英ガスラ微粒子をVAD
法により外付け焼結しサポート用ガラス層を形成
するという工程から光フアイバ母材を得る方法で
あり、コア用ガラス層の楕円形状は、外付けガラ
ス微粒子の焼結時にコア用ガラス層、クラツド用
ガラス層とサポート用ガラス層の粘性差によつて
形成される。 The typical manufacturing method according to claim 1 is, for example,
After parallel grinding both sides of a glass rod with a circular cross section consisting of a glass layer for the core doped with GeO 2 and F and a glass layer for the cladding doped with F to form a rectangular cross section, fine silica glass particles are VADed on the outer periphery.
In this method, the optical fiber base material is obtained from the process of externally sintering and forming a support glass layer using the sintering method. It is formed by the difference in viscosity between the support glass layer and the support glass layer.
ここに得られる楕円コア型偏波面保存光フアイ
バ母材は第6図に示すように、コア11、クラツ
ド12及びサポート13の3層構造をなし(第6
図)、それぞれの屈折率n1、n2及びn3は、n1>n3
>n2の関係にあり、W型構造となる。このW型構
造は、楕円コアの長軸側と短軸側とで異なつてい
るため、カツトオフ波長の設計が難しく歩留りが
悪いという問題がある。また、クラツド12とサ
ポート13は粘性が大きく異なることや、矩形状
ロツドに外付けを行なうことから、クラツド・サ
ポート界面に不整が発生しやすく、その結果、構
造不整損失の増加、クロストークの劣化が起こ
る。 The elliptical core type polarization-maintaining optical fiber base material obtained here has a three-layer structure of a core 11, a cladding 12, and a support 13, as shown in FIG.
), the respective refractive indices n 1 , n 2 and n 3 are n 1 > n 3
> n 2 , resulting in a W-shaped structure. This W-shaped structure has a problem in that the long axis and short axis of the elliptical core are different, making it difficult to design the cutoff wavelength and resulting in poor yield. Furthermore, since the cladding 12 and the support 13 have significantly different viscosities and are attached externally to a rectangular rod, irregularities are likely to occur at the cladding/support interface, resulting in increased structural irregularity loss and deterioration of crosstalk. happens.
そこで、請求項2の方法では、コア楕円化のた
めにクラツド用ガラス層の外周に1度形成したサ
ポートガラスを研削により取り除き、それによつ
て屈折率分布をマツチドクラツド型としてカツト
オフ波長の設計を容易にし、かつ、製造不整の大
きなクラツド・サポート界面を無くし、損失及び
クロストーク特性を向上させる。 Therefore, in the method of claim 2, the support glass once formed on the outer periphery of the cladding glass layer for core ellipticalization is removed by grinding, thereby making the refractive index distribution into a matched cladding type and facilitating the design of the cutoff wavelength. , and eliminates the clad/support interface with large manufacturing irregularities, improving loss and crosstalk characteristics.
次に、請求項3の製造方法について説明する。 Next, the manufacturing method according to claim 3 will be explained.
得ようとする楕円コア型偏波面保存光フアイバ
母材は、例えば第9図に示す様に、中心より楕円
のコア41、コアの楕円方向と直交する方向の楕
円をもつ第1クラツド42、外周が円形の第2ク
ラツド43の3層構造である。 The elliptical core type polarization-maintaining optical fiber base material to be obtained is, for example, as shown in FIG. This is a three-layer structure with a circular second cladding 43.
製造方法は、上述した請求項1の方法に従え
ば、第10図に示す様に、VAD法で作成したガ
ラスロツド8(第10図a,b)を機械的に研
削、研磨する(第10図c)。その後この矩形の
加工ロツド9の外周に第2クラツドとなるSiO2
ガラス微粒子10を必要に応じて1回又は2回以
上外付し(第10図d)、焼結(第10図e)し
て楕円コア型の偏波面保存光フアイバ母材14を
得る。外付後の焼結時にガラスの粘性差つまり軟
化温度差を利用して、コア41、第1クラツド4
2が互いに直交する様な楕円となる。 According to the method of claim 1, the manufacturing method is as shown in FIG. c). After that, SiO 2 which becomes the second cladding is placed on the outer periphery of this rectangular processing rod 9.
Glass particles 10 are applied externally once or twice or more as necessary (FIG. 10d) and sintered (FIG. 10e) to obtain an elliptical core type polarization-maintaining optical fiber base material 14. During sintering after external attachment, the core 41 and the first cladding 4 are
2 form an ellipse that is perpendicular to each other.
従つて、各ガラス層の軟化温度はコア41、第
1クラツド42、第2クラツド43の順に高くな
つている。この結果、図示していないが次の線引
工程では、加熱により加熱、延伸されてフアイバ
となる際、軟化温度の高い第2クラツド43、第
1クラツド42、コア41の順にガラス層が固化
されていくことになる。 Therefore, the softening temperature of each glass layer increases in the order of core 41, first cladding 42, and second cladding 43. As a result, in the next drawing process (not shown), when heated and drawn to form a fiber, the glass layers are solidified in the order of second cladding 43, first cladding 42, and core 41, which have a higher softening temperature. I'm going to go there.
しかしながら、上記の方法では、ドーパントを
含まない第2クラツド用ガラス層と、ドーパント
を含む第1クラツド、コア用ガラス層との間の軟
化温度差が大きくなつていまい、固化時に内部歪
が生じ、レーリ散乱損失や構造不整損失の増加に
より伝送損失が大きくなつてしまう。 However, in the above method, the difference in softening temperature between the second cladding glass layer that does not contain a dopant and the first cladding and core glass layer that contains a dopant becomes large, and internal strain occurs during solidification. Transmission loss increases due to increases in Rayleigh scattering loss and structural irregularity loss.
この対策として線引温度を下げ高張力でガラス
母材を線引きすることで、レーリ散乱損失や構造
不整損失を低減できる。しかしこの様な条件では
ガラス母材を無理に引つ張つてフアイバ化するた
め、母材のキズ等の欠陥が加熱により充分埋めら
れないまま光フアイバになつてしまい、十分な強
度が保障されない。 As a countermeasure to this problem, Rayleigh scattering loss and structural irregularity loss can be reduced by lowering the drawing temperature and drawing the glass base material under high tension. However, under these conditions, the glass base material is forcibly stretched to form an optical fiber, and defects such as scratches in the base material are not sufficiently filled up by heating before the optical fiber is formed, and sufficient strength is not guaranteed.
そこで、請求項3の製造方法では、第1クラツ
ド用ガラス層と第2クラツド用ガラス層との間に
これらのガラスに対して中間の軟化温度をもつ中
間ガラス層を設け、それによつて線引時に生ずる
内部歪を低減させる。これにより、低損失、低消
光比の楕円コア型の偏波面保存光フアイバが提供
される。 Therefore, in the manufacturing method of claim 3, an intermediate glass layer having a softening temperature intermediate to those of these glasses is provided between the first cladding glass layer and the second cladding glass layer. Reduces internal distortion that sometimes occurs. This provides an elliptical core type polarization maintaining optical fiber with low loss and low extinction ratio.
次に、請求項4の製造方法について述べる。 Next, the manufacturing method according to claim 4 will be described.
上記請求項1の方法は、例えば、GeO2及びF
をドープしたコア用ガラス層、Fをドープしたク
ラツド用ガラス層からなる断面円形状のガラスロ
ツドの両側面を平行研削し断面矩形状とした後、
その外周部に石英ガラス微粒子をVAD法により
外付け後、焼結することにより楕円コア型偏波面
保存光フアイバ母材を得るものであり、コア用ガ
ラス層の楕円形状は、焼結時におけるガラスロツ
ドと外付けしたサポート用ガラス層の粘性差によ
つて形成される。 The method according to claim 1 above includes, for example, GeO 2 and F
After parallel grinding both sides of a glass rod with a circular cross section consisting of a glass layer for the core doped with F and a glass layer for the cladding doped with F to form a rectangular cross section,
The elliptical core type polarization preserving optical fiber base material is obtained by externally attaching silica glass particles to the outer periphery using the VAD method and then sintering. It is formed due to the difference in viscosity between the support glass layer and the external support glass layer.
そしてコア用ガラス層のクラツド用ガラス層に
対する比屈折率差は0.4%〜4%、サポート用ガ
ラス層のクラツド用ガラス層に対する比屈折率差
は0.1%以下、研削ロツドの長径は18mm以上、研
削ロツドの楕円度(1−短軸/長軸)は0.5〜0.8
となる。 The relative refractive index difference of the core glass layer with respect to the cladding glass layer is 0.4% to 4%, the relative refractive index difference of the support glass layer with respect to the cladding glass layer is 0.1% or less, and the major axis of the grinding rod is 18 mm or more. Rod ellipticity (1-minor axis/major axis) is 0.5 to 0.8
becomes.
しかし、楕円コア型偏波面保存光フアイバのモ
ード複屈折率を3×10-4以上とするためには、コ
ア用ガラス層とフラツド用ガラス層の比屈折率差
を1%とした時、コア用ガラス層の楕円度は0.8
以上必要である。 However, in order to make the mode birefringence of the elliptical core type polarization-maintaining optical fiber 3×10 -4 or more, when the relative refractive index difference between the core glass layer and the flat glass layer is 1%, the core The ellipticity of the glass layer is 0.8
The above is necessary.
コア用ガラス層の楕円度と研削ロツドの楕円度
は一致することが実験的に確められている。コア
用ガラス層とクラツド用ガラス層の比屈折率差
は、1%以上にすると、レーリ散乱損が増え低損
失化が難しい。現状ではコア用ガラス層のクラツ
ド用ガラス層に対する比屈折率差を約1%、コア
用ガラス層の楕円度を0.8としているが、コア用
ガラス層近くまで研削するため、構造不整損が生
じ、同じガラス母材を研削せずにSM光フアイバ
化した時よりも、5/100dB/Km程度の損失増とな
つている。従つて、モード複屈折率を大きくする
ため楕円度を0.8以上とすると、損失が増えると
いう問題があつた。 It has been experimentally confirmed that the ellipticity of the core glass layer and the grinding rod match. If the relative refractive index difference between the core glass layer and the cladding glass layer is 1% or more, Rayleigh scattering loss increases and it is difficult to reduce the loss. Currently, the relative refractive index difference between the core glass layer and the cladding glass layer is approximately 1%, and the ellipticity of the core glass layer is 0.8, but since the core glass layer is ground close to the core glass layer, structural irregularities occur. The loss is about 5/100dB/Km higher than when the same glass base material is made into SM optical fiber without grinding. Therefore, when the ellipticity is set to 0.8 or more in order to increase the mode birefringence, there is a problem that loss increases.
そこで、請求項4の製造方法は、ガラスロツド
の研削、焼結の工程を2回以上とし、それによつ
て構造不整損をなくし、楕円度を0.8以上とする
ことを可能としたものである。従つて、低損失で
偏波保存特性が良好な楕円コア型偏波面保存光フ
アイバが提供される。 Therefore, in the manufacturing method of claim 4, the steps of grinding and sintering the glass rod are performed two or more times, thereby eliminating structural irregularities and making it possible to obtain an ellipticity of 0.8 or more. Therefore, an elliptical core type polarization-maintaining optical fiber with low loss and good polarization-maintaining characteristics is provided.
[実施例] 以下、本発明の実施例を図面により説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.
実施例 1
第1図は低損失性を保持したままで非円形状を
実現する本発明の偏波面保存光フアイバの製造工
程例を示す。Example 1 FIG. 1 shows an example of a manufacturing process for a polarization-maintaining optical fiber of the present invention that achieves a non-circular shape while maintaining low loss.
第1図aにおいて、8はコアとなるガラスロツ
ドで、Geを約10mol%ドープしたシリカ系ガラ
スからなり、VAD法にて作成したものである。
このガラスロツド8の対向位置の両側面を第1図
bに示すようにロツド軸方向に研削し、両側面を
研磨して加工ロツド9を形成する。9a,9bは
研磨面である。 In FIG. 1a, 8 is a glass rod serving as a core, which is made of silica-based glass doped with about 10 mol% of Ge, and is made by the VAD method.
Both side surfaces of the glass rod 8 at opposing positions are ground in the axial direction of the rod as shown in FIG. 1b, and both side surfaces are polished to form a processed rod 9. 9a and 9b are polished surfaces.
次に、この加工ロツド9に、外付けCVD法又
はVAD法にて、石英ガラス微粒子いわゆるスー
トを外付し、これをガラス化して、その外付石英
ガラス15をクラツドとする(第1図c)。この
焼結ガラス化工程により、中心層の加工ロツド9
はクラツド用ガラスとの粘性差に基づき非円化
し、長方形に近い楕円形コア16となる。 Next, quartz glass fine particles, so-called soot, are externally attached to this processed rod 9 by an external CVD method or a VAD method, and this is vitrified, and the externally attached quartz glass 15 is used as a cladding (Fig. 1 c ). Through this sintering and vitrification process, the processed rod 9 of the center layer
The core 16 becomes non-circular due to the difference in viscosity from the glass for the cladding, and becomes an elliptical core 16 that is close to a rectangle.
その後、中心層の長方形に近い楕円形コア16
とほぼ同じ断面形状となるように、第1図dに示
す如く、外付石英ガラス15の両側面を研削、研
磨して、プリフオーム即ち光フアイバ母材とす
る。15a,15bは研磨面である。 After that, the elliptical core 16 close to a rectangle in the center layer
As shown in FIG. 1d, both sides of the external quartz glass 15 are ground and polished so as to have approximately the same cross-sectional shape as the preform, that is, the optical fiber base material. 15a and 15b are polished surfaces.
次に、この光フアイバ母材を、線引張力50〜60
gで初期形状を保ちながら線引し、シリコーン、
紫外線硬化樹脂等をコーテイングすることによつ
て、光ICとの結合が容易な非円形断面の外形を
もつ楕円コア型偏波面保存光フアイバ素線が出来
る。線引する場合には、基本モードがシングルモ
ード条件となるように外径調整を行う。 Next, this optical fiber base material is drawn at a drawing tension of 50 to 60%.
G to draw a line while maintaining the initial shape, silicone,
By coating with an ultraviolet curable resin or the like, an elliptical core type polarization maintaining optical fiber with a non-circular cross-section that can be easily coupled to an optical IC can be obtained. When drawing, the outer diameter is adjusted so that the basic mode is a single mode condition.
なお、上記実施例において、外付石英ガラス1
5にもF等のドーパントが含まれる構造としても
よい。 In addition, in the above embodiment, the external quartz glass 1
5 may also include a dopant such as F.
実施例 2
第2図は、コア用ガラス層及びそれより軟化点
の高いクラツド用ガラス層を有するガラスロツド
を用いた実施例であり、コア用ガラス層の楕円化
の制御に重要な、GeO2、Fの添加量及びガラス
ロツドの研削量を限定することによつて、高いモ
ード複屈折率を得る。Example 2 Figure 2 shows an example using a glass rod having a core glass layer and a cladding glass layer with a higher softening point than the core glass layer. A high modal birefringence can be obtained by limiting the amount of F added and the amount of grinding of the glass rod.
第2図において、まず、コア用バーナ1から
GeO2及びSiO2を、クラツド用バーナ2からSiO2
を供給し、VAD法により、ガラス微粒子を堆積
させてコア部3及びクラツド部4からなる多孔質
母材5を形成する(第2図a)。なお、コア部3
のGeO2は比屈折率差で1.2%分添加した。次に、
この多孔質母材5をF雰囲気中で焼結ガラス化
し、コア用ガラス層6及びクラツド用ガラス層7
からなるガラスロツド8を形成した(第2図b)。
このとき、Fの添加量はクラツド用ガラス層7の
比屈折率差がSiO2に対し0.3%低下するようにし
た。また、ここではクラツド用ガラス層厚/コア
用ガラス層半径比δをδ=5としたが、低損失化
を狙うにはδ≧3とすることが望ましい。 In Fig. 2, first, start with core burner 1.
GeO 2 and SiO 2 are extracted from the burner 2 for the cladding.
A porous base material 5 consisting of a core portion 3 and a cladding portion 4 is formed by depositing glass particles using the VAD method (FIG. 2a). In addition, core part 3
GeO 2 was added in an amount of 1.2% based on the relative refractive index difference. next,
This porous base material 5 is sintered and vitrified in an F atmosphere to form a core glass layer 6 and a cladding glass layer 7.
A glass rod 8 was formed (Fig. 2b).
At this time, the amount of F added was such that the relative refractive index difference of the glass layer 7 for the cladding was reduced by 0.3% with respect to SiO2 . Further, here, the ratio δ of the glass layer thickness for the cladding/the radius of the glass layer for the core was set to δ=5, but it is desirable to set δ≧3 in order to aim at low loss.
さらに、ガラスロツド8を直径25mmに延伸する
と共に、クラツド用ガラス層7の両側部を軸方向
に並行研削し、表面を鏡面仕上げした。研削後の
加工ロツド9の寸法は長径25mm、短径8mmとした
(第2図c)。その後、VAD法により、この加工
ロツド9の外周部にサポート用の石英ガラス微粒
子10を外付けし(第2図d)、これを焼結ガラ
ス化する(第2図e)。かくして、第2図eに示
すようなコア11、クラツド12及びサポート1
3からなる光フアイバ母材14が形成された。こ
こで、石英ガラス微粒子10の焼結時にコア用ガ
ラス層6及びクラツド用ガラス層7に収縮力が作
用し、コア11及びクラツド12は互いに直交す
る向きに楕円形状となり、コア11の楕円度は
0.8となつた。 Furthermore, the glass rod 8 was stretched to a diameter of 25 mm, and both sides of the glass layer 7 for cladding were ground in parallel in the axial direction to give a mirror finish to the surface. The dimensions of the processed rod 9 after grinding were 25 mm in the major axis and 8 mm in the minor axis (Fig. 2c). Thereafter, quartz glass fine particles 10 for support are attached externally to the outer periphery of this processed rod 9 by the VAD method (FIG. 2 d), and this is sintered into glass (FIG. 2 e). Thus, the core 11, the cladding 12 and the support 1 as shown in FIG.
An optical fiber preform 14 consisting of 3 was formed. Here, when the silica glass particles 10 are sintered, a contraction force acts on the core glass layer 6 and the cladding glass layer 7, so that the core 11 and the cladding 12 become elliptical in the direction perpendicular to each other, and the ellipticity of the core 11 is
It became 0.8.
尚、上記サポート13の外付工程は、2回に分
けて行ない、外径をほぼ30mmに仕上げたが、1回
ごとの外付量を減らし、数回に分けて行うことが
好ましい。 Note that the step of externally attaching the support 13 was carried out in two steps to achieve an outer diameter of approximately 30 mm, but it is preferable to reduce the amount of externally attached each time and carry out the step in several steps.
この光フアイバ母材14(第6図)をフアイバ
外径125μmに加熱線引きして、条長40Kmの偏波
面保存光フアイバを作成した。この光フアイバは
母材と対応する構造のコア、クラツド、サポート
の3層から成り、それぞれの屈折率n1、n2、n3
は、n1>n3>n2の関係にあつて、W型構造となつ
ている。この光フアイバの波長1.55μmにおける
光損失は0.25dB/Km、消光比は−35dB/Km、モ
ード複屈折率は2×10-4であつた。このモード複
屈折率Bは初期目標B>5×10-5を満足してい
る。 This optical fiber base material 14 (FIG. 6) was heated and drawn to a fiber outer diameter of 125 μm to produce a polarization preserving optical fiber with a length of 40 km. This optical fiber consists of three layers, a core, a cladding, and a support, each having a structure corresponding to the base material, each with a refractive index of n 1 , n 2 , and n 3 .
has a W-shaped structure with the relationship n 1 > n 3 > n 2 . This optical fiber had an optical loss of 0.25 dB/Km at a wavelength of 1.55 μm, an extinction ratio of −35 dB/Km, and a mode birefringence of 2×10 −4 . This mode birefringence B satisfies the initial target B>5×10 −5 .
実施例 3
次に、屈折率分布をマツチドクラツド型とした
偏波面保存光フアイバ母材(第7図)を得る製造
方法の一例を、第8図を参照しながら説明する。Example 3 Next, an example of a manufacturing method for obtaining a polarization-maintaining optical fiber base material (FIG. 7) having a matched-clad refractive index distribution will be described with reference to FIG. 8.
コア用バーナ1からGeO2及びSiO2、クラツド
用バーナ35からSiO2を供給し、VAD法により
ガラス微粒子を堆積させてコア部3及びクラツド
部4からなる多孔質母材5を形成する(第8図
a)。なおコア部3のGeO2は比屈折率差で1.0%
分添加した。 GeO 2 and SiO 2 are supplied from the core burner 1 and SiO 2 is supplied from the cladding burner 35, and glass fine particles are deposited by VAD method to form a porous base material 5 consisting of a core part 3 and a cladding part 4. Figure 8a). Note that GeO 2 in core part 3 has a relative refractive index difference of 1.0%.
minutes were added.
この多孔質母材5ふつ素含有雰囲気中で焼結ガ
ラス化し、コア用ガラス層6及びクラツド用ガラ
ス層7からなるガラスロツド8を形成した(第8
図b)。このとき、ふつ素の流量はクラツド用ガ
ラス層7の比屈折率差がSiO2に対して0.3%低下
するような値とした。また、クラツド用ガラス層
径/コア用ガラス層径比は12とした。 This porous base material 5 was sintered and vitrified in a fluorine-containing atmosphere to form a glass rod 8 consisting of a core glass layer 6 and a cladding glass layer 7 (No. 8
Figure b). At this time, the flow rate of fluorine was set to such a value that the relative refractive index difference of the glass layer 7 for the cladding was reduced by 0.3% with respect to SiO2 . Further, the ratio of the glass layer diameter for the cladding/the diameter of the glass layer for the core was set to 12.
このガラスロツド8を直径30mmに延伸した後、
クラツド用ガラス層7の両側部7a,7aを軸方
向に機械的に研削し、その表面を研磨及びフアイ
アポリツシユする(第8図c)。研削後の加工ロ
ツド9の短径は10mmとした。 After stretching this glass rod 8 to a diameter of 30 mm,
Both sides 7a, 7a of the glass layer 7 for cladding are mechanically ground in the axial direction, and the surfaces thereof are polished and fired (FIG. 8c). The short diameter of the processed rod 9 after grinding was 10 mm.
尚、この第8図cの研削加工は、エツジ部分を
面取りし丸めて、加工ロツド9の形状を小判状ま
たは楕円状としても良い。 Incidentally, in the grinding process shown in FIG. 8c, the edge portion may be chamfered and rounded to give the processing rod 9 an oval or elliptical shape.
この加工ロツド9の外周に、サポート用の
SiO2ガラス微粒子20を外付けし(第8図d)、
これを焼結ガラス化することにより、楕円形のコ
ア用ガラス層21、楕円形のクラツド用ガラス層
22、サポート用ガラス層23から成る3層構造
のガラス母材24を作製した(第8図e)。 On the outer periphery of this processing rod 9, a support
SiO 2 glass particles 20 are attached externally (Fig. 8d),
By sintering and vitrifying this, a glass base material 24 having a three-layer structure consisting of an elliptical core glass layer 21, an elliptical cladding glass layer 22, and a support glass layer 23 was fabricated (Fig. 8). e).
このガラス母材24を周方向に再度研削し、完
全にサポート部23を削り取り、楕円形のコア用
ガラス層21、円形クラツド用ガラス層22aか
ら成る2層構造のガラス母材25を作製した(第
8図f)。ガラス母材25の外径は15mmとなつた。 This glass base material 24 was ground again in the circumferential direction, and the support portion 23 was completely scraped off to produce a glass base material 25 with a two-layer structure consisting of an oval core glass layer 21 and a circular cladding glass layer 22a. Figure 8 f). The outer diameter of the glass base material 25 was 15 mm.
このガラス母材25に、クラツド用ガラス層2
2aと同一の組成のガラス層を、VAD法による
ガラス微粒子の外付けと焼結を繰返し行なうこと
で形成し、楕円コア31、円形クラツド32の2
層構造をもち、線引後の光フアイバのカツトオフ
波長が1.45μmとな光フアイバ母材33を作製し
た(第8図g)。 A glass layer 2 for cladding is added to this glass base material 25.
A glass layer having the same composition as 2a is formed by repeatedly attaching glass fine particles using the VAD method and sintering, thereby forming the elliptical core 31 and the circular clad 32.
An optical fiber base material 33 having a layered structure and having a cut-off wavelength of 1.45 μm after being drawn was prepared (FIG. 8g).
この光フアイバ母材33(第7図)をフアイバ
外径125μmにてフアイバ長10Km線引し、得られ
た楕円コア型偏波面光フアイバの特性を評価した
ところ、波長1.55μmにおける損失は0.25dB/Km、
クロストーク−20dBを得た。 This optical fiber base material 33 (Fig. 7) was drawn with a fiber outer diameter of 125 μm and a fiber length of 10 km, and the characteristics of the obtained elliptical core type polarized optical fiber were evaluated, and the loss at a wavelength of 1.55 μm was 0.25 dB. /Km,
A crosstalk of -20dB was obtained.
上記実施例3の変形として、第8図a及びbの
工程をくり返し行ない、クラツド用ガラス層の
径/コア用ガラス層の径比が40程度のガラスロツ
ド8を作製した後、第8図cからfの工程を行な
い、第8図fの研削により、光フアイバ母材33
の外径を、線引後の光フアイバのカツトオフ波長
が1.45μmになる寸法を得ることができた。 As a modification of Example 3, the steps shown in FIGS. 8a and 8b are repeated to produce a glass rod 8 in which the ratio of the diameter of the glass layer for cladding/the diameter of the glass layer for core is about 40, and then the steps shown in FIG. After performing step f and grinding shown in FIG. 8 f, the optical fiber base material 33 is
It was possible to obtain the outer diameter of the optical fiber such that the cutoff wavelength of the optical fiber after drawing was 1.45 μm.
上記実施例では、クラツド用ガラス層7の加工
(第8図c)及びサポート用ガラス層23の除去
(第8図f)を研削で行つているが、研削の代り
に、フツ化水素酸の腐蝕作用を利用して行なつて
も良い。また、第8図gにおいて外付けするガラ
ス層32は、クラツド用ガラス層22aと屈折率
が同等であればガラス組成が異なつたものでもか
まわない。 In the above embodiment, the processing of the cladding glass layer 7 (FIG. 8c) and the removal of the support glass layer 23 (FIG. 8f) are performed by grinding, but instead of grinding, hydrofluoric acid It may also be carried out by utilizing corrosive action. Further, the glass layer 32 attached externally in FIG. 8g may have a different glass composition as long as it has the same refractive index as the cladding glass layer 22a.
また、この実施例3では、コア用ガラス層21
のガラス組成をGeO2−SiO2−Fとしたが、GeO2
−SiO2でも、更にはF以外のドーパントを加え
ても良い。この形態であつても、得られる楕円コ
ア型偏波面保存光フアイバ母材は第7図のごとく
楕円コア31及びクラツド32の2層構造である
ことから、光フアイバのカツトオフ波長の設計が
容易となり、歩留りが向上する。また、構造不整
の少ない光フアイバ母材が得られ、低損失化及び
低ストローク化できる。 Moreover, in this Example 3, the core glass layer 21
The glass composition was GeO 2 −SiO 2 −F, but GeO 2
-SiO 2 or even a dopant other than F may be added. Even in this form, the resulting elliptical core type polarization maintaining optical fiber base material has a two-layer structure of an elliptical core 31 and a cladding 32 as shown in Figure 7, so it is easy to design the cutoff wavelength of the optical fiber. , yield is improved. In addition, an optical fiber base material with less structural irregularities can be obtained, and loss and stroke can be reduced.
実施例 4
第9図に示す光フアイバ母材44は、第2図と
同様の第10図の製造方法によつて得られるもの
であり、第6図と同様にコア41、第1クラツド
42、第2クラツド43の3層構造を持ち、各層
の軟化温度はこの順序で高くなつている。しか
し、このような光フアイバ母材44においては、
その線引き工程において、光フアイバ母材44の
第2クラツド43と、コア41、第1クラツド4
2とのガラス間の軟化温度差が大きくなり、固化
時に内部歪みが生じる。Example 4 The optical fiber base material 44 shown in FIG. 9 is obtained by the manufacturing method shown in FIG. 10, which is similar to that shown in FIG. 2, and includes a core 41, a first cladding 42, It has a three-layer structure of the second cladding 43, and the softening temperature of each layer increases in this order. However, in such an optical fiber base material 44,
In the drawing process, the second cladding 43 of the optical fiber base material 44, the core 41, and the first cladding 4
The difference in softening temperature between the glass and the glass becomes large, causing internal distortion during solidification.
そこで、第11図又は第14図に示すように、
この第1クラツド用ガラス層と第2クラツド用ガ
ラス層との間に、これらに対して中間の軟化点を
持つ中間ガラス層を設けた構造の光フアイバ母材
とする。 Therefore, as shown in FIG. 11 or 14,
The optical fiber base material has a structure in which an intermediate glass layer having a softening point intermediate between the first cladding glass layer and the second cladding glass layer is provided between the first cladding glass layer and the second cladding glass layer.
第12図に、このような構造の光フアイバ母材
65(第11図)を得る製造方法の実施例を示
す。 FIG. 12 shows an example of a manufacturing method for obtaining the optical fiber preform 65 (FIG. 11) having such a structure.
工程としては、VAD法によりコア部(GeO2−
SiO2)3とクラツド部(SiO2)4の多孔質ガラ
ス5を製造し(第12図a)、ふつ素を含むガス
雰囲気中で焼結し透明ガラス化する(第12図
b)。この結果、コア用ガラス層6はGeO2−F−
SiO2、クラツド用ガラス層7はF−SiO2となる。
ここでクラツド用ガラス層7は、楕円コア型の偏
波面保存光フアイバとなつたときに、第1クラツ
ドとなる部分である。 As a process, the core part (GeO 2 −
A porous glass 5 made of SiO 2 ) 3 and a cladding portion (SiO 2 ) 4 is manufactured (FIG. 12a) and sintered in a gas atmosphere containing fluorine to form transparent glass (FIG. 12b). As a result, the core glass layer 6 is GeO 2 −F−
SiO 2 , and the glass layer 7 for the cladding is F-SiO 2 .
Here, the cladding glass layer 7 is a portion that becomes a first cladding when an elliptical core type polarization maintaining optical fiber is formed.
その後、中心からの距離が等しくなる様に両側
から機械的に研削、研磨し(第12図c)、矩形
の加工ロツド9に第2クラツドとなるSiO2多孔
質ガラス50を外付し(第12図d)、ふつ素を
含むガス雰囲気中で焼結、透明ガラス化し、F−
SiO2ガラスから成る中間クラツド用ガラス層5
3とする(第12図e)。次に、得られたガラス
母材54に、第2クラツドとなるSiO2多孔質ガ
ラス60を外付けし(第12図f)、焼結、透明
ガラス化し、SiO2ガラスから成る第2クラツド
用ガラス層64とし、楕円コア型偏波面保存光フ
アイバ母材65(第12図g)を得る。 After that, it is mechanically ground and polished from both sides so that the distances from the center are equal (Fig. 12c), and SiO 2 porous glass 50, which will become the second cladding, is attached externally to the rectangular processing rod 9 (Fig. 12c). Figure 12 d), sintered in a gas atmosphere containing fluorine, turned into transparent glass, and F-
Glass layer 5 for intermediate cladding made of SiO 2 glass
3 (Figure 12e). Next, SiO 2 porous glass 60, which will become a second cladding, is externally attached to the obtained glass base material 54 (FIG. 12f), and the glass is sintered and made into transparent glass to form a second cladding made of SiO 2 glass. A glass layer 64 is used to obtain an elliptical core type polarization maintaining optical fiber base material 65 (FIG. 12g).
第11図に、得られた光フアイバ母材34の断
面及び屈折率分布を示す。コア61、第1クラツ
ド62、中間クラツド63、第2クラツド64の
4層構造をもち、各層の第2クラツド64
(SiO2)に対する比屈折率差は、それぞれコア6
1の比屈折率差Δが0.8%、第1クラツド62の
比屈折率差Δ1が0.3%、中間クラツド63の比屈
折率差Δ2が0.15%で、このような値になる様、
GeO2、Fの量を調節している。また、コア61
の楕円度は0.9であつた。 FIG. 11 shows the cross section and refractive index distribution of the optical fiber preform 34 obtained. It has a four-layer structure consisting of a core 61, a first clad 62, an intermediate clad 63, and a second clad 64, with the second clad 64 of each layer
The relative refractive index difference with respect to (SiO 2 ) is
The relative refractive index difference Δ of the first clad 62 is 0.8%, the relative refractive index difference Δ1 of the first clad 62 is 0.3%, and the relative refractive index difference Δ2 of the intermediate clad 63 is 0.15%.
The amounts of GeO 2 and F are adjusted. Also, core 61
The ellipticity of was 0.9.
さらに、この光フアイバ母材34を加熱線引し
て、外径150μmの偏波面保存光フアイバを作成
した。この光フアイバを長さ1000mでサンプリン
グして、その損失波長特性を測定したところ、第
13図に示す様な特性が得られた。即ち、カツト
オフ波長が1.40μm、波長1.54μmにおいて伝送損
失0.24dB/Km、消光比−30dB/Km、モード複屈
折率3.0×10-4であつた。 Furthermore, this optical fiber base material 34 was heated and drawn to produce a polarization preserving optical fiber having an outer diameter of 150 μm. When this optical fiber was sampled at a length of 1000 m and its loss wavelength characteristics were measured, the characteristics shown in FIG. 13 were obtained. That is, the cutoff wavelength was 1.40 μm, the transmission loss was 0.24 dB/Km, the extinction ratio was −30 dB/Km, and the mode birefringence was 3.0×10 −4 at a wavelength of 1.54 μm.
第12図の実施例では、ドーパントとしてFを
用いて軟化温度を変えたが、波長1.54μmにおい
て吸収ピークのないGeO2やP2O5を用いてもよ
い。この変形例によつて得られる光フアイバ母材
65の屈折率分布は、例えば第14図の様にな
る。 In the embodiment shown in FIG. 12, F was used as a dopant to change the softening temperature, but GeO 2 or P 2 O 5 , which do not have an absorption peak at a wavelength of 1.54 μm, may also be used. The refractive index distribution of the optical fiber base material 65 obtained by this modification is as shown in FIG. 14, for example.
この実施例4によれば第2クラツドが、線引工
程で軟化後固化する際に生ずる内部歪の緩衝層の
働きをして、コアに加わる内部歪が低減され、レ
ーリ散乱損失、構造不整損失が低くなる。また、
従来のものと同じ線引温度で線引しても、ドーパ
ントを多く含むため、低張力になる。従つて、母
材の欠陥が覆われてフアイバの強度が充分に保た
れる。 According to Example 4, the second cladding acts as a buffer layer for internal strain that occurs when the wire is softened and solidified in the drawing process, and the internal strain applied to the core is reduced, resulting in Rayleigh scattering loss and structural irregularity loss. becomes lower. Also,
Even if it is drawn at the same drawing temperature as conventional wires, it will have low tension because it contains a large amount of dopant. Therefore, defects in the base material are covered and the strength of the fiber is maintained sufficiently.
実施例 5
次に、構造不整損をなくし、楕円度を0.8以上
とすることを可能にした楕円コア型偏波面保存光
フアイバの製造方法について説明する。Example 5 Next, a method for manufacturing an elliptical core type polarization-maintaining optical fiber that eliminates structural irregularities and makes it possible to have an ellipticity of 0.8 or more will be described.
第15図にこの製造工程の概略を示す。 FIG. 15 shows an outline of this manufacturing process.
まず、VADによりコア部(GeO2−SiO2)3と
クラツド部(SiO2)4の多孔質母材5を作り、
これをフツ素雰囲気で焼結する(第15図a,
b)。これにより、コア用ガラス層6がGeO2−F
−SiO2、クラツド用ガラス層7がF−SiO2であ
るガラスロツド8が得られる。このガラスロツド
8の外径は25mmで、クラツド用ガラス層7に対す
るコア用ガラス層6の比屈折率差Δ+は1%、ク
ラツドの石英サポートに対する比屈折率差は+
0.1%である。 First, a porous base material 5 of a core part (GeO 2 -SiO 2 ) 3 and a clad part (SiO 2 ) 4 is made by VAD,
This is sintered in a fluorine atmosphere (Fig. 15a,
b). As a result, the core glass layer 6 becomes GeO 2 −F
-SiO 2 , and a glass rod 8 is obtained in which the glass layer 7 for the cladding is F-SiO 2 . The outer diameter of this glass rod 8 is 25 mm, the relative refractive index difference Δ + of the core glass layer 6 with respect to the cladding glass layer 7 is 1%, and the relative refractive index difference of the cladding with respect to the quartz support is +
It is 0.1%.
次に、このガラスロツド8の両側を、軸方向に
平行に研削し加工ロツド79とする(第15図
c)。寸法は25mm×10mmとした。この1回目の研
削寸法の目安は、短軸のクラツド厚が構造不整損
を低減させるには十分な幅がとれるように、楕円
率を落としたものとする点にある。 Next, both sides of the glass rod 8 are ground parallel to the axial direction to form a processed rod 79 (FIG. 15c). The dimensions were 25 mm x 10 mm. The standard for this first grinding dimension is to reduce the ellipticity so that the short axis cladding thickness has a sufficient width to reduce structural irregularities.
この研削後、サポートとなる石英ガラス微粒子
80をVAD法により外付した後、これを焼結す
る(第15図d,e)。この時、ガラスロツド7
9とサポート石英ガラス83の粘性差により、コ
ア用ガラス層81とクラツド用ガラス層82は両
方とも楕円形状となる。焼結後のガラス母材は、
コア用ガラス層81の楕円度が約0.6で、母材外
径は40mmである。このガラス母材84を外径25mm
のガラス母材85に延伸する(第15図f)。 After this grinding, quartz glass fine particles 80 serving as supports are attached externally by the VAD method, and then sintered (FIGS. 15d and 15e). At this time, glass rod 7
Due to the difference in viscosity between the core glass layer 81 and the support quartz glass 83, both the core glass layer 81 and the cladding glass layer 82 have an elliptical shape. The glass base material after sintering is
The ellipticity of the core glass layer 81 is about 0.6, and the outer diameter of the base material is 40 mm. This glass base material 84 has an outer diameter of 25 mm.
(FIG. 15f).
次に、このガラス母材85をまた平行研削し加
工ロツド89とする(第15図g)。寸法は25×
10mmとした。この2回目の研削は、上記1回目の
研削で楕円率を落としたので、当該2回目の研削
で、更に楕円率を上げるためのものである。研削
後の加工ロツド89に、サポートとなる石英ガラ
ス微粒子90をVAD法により外付けし、焼結す
る(第15図h,i)。これにより、第15図に
示すように、楕円コア91、楕円の第1クラツド
92、楕円の第2クラツド93、円形のサポート
94から成る光フアイバ母材95が得られる。 Next, this glass base material 85 is parallel-ground again to form a processed rod 89 (FIG. 15g). Dimensions are 25×
It was set to 10mm. The purpose of this second grinding is to further increase the ellipticity since the ellipticity was lowered in the first grinding. After grinding, quartz glass fine particles 90 serving as supports are externally attached to the processed rod 89 by the VAD method and sintered (FIG. 15h, i). As a result, as shown in FIG. 15, an optical fiber preform 95 is obtained which is composed of an elliptical core 91, an elliptical first clad 92, an elliptical second clad 93, and a circular support 94.
このようにして得られた光フアイバ母材95
は、コア91の楕円度が0.9で、母材外径は40mm
であつた。 Optical fiber base material 95 obtained in this way
The ellipticity of core 91 is 0.9, and the outer diameter of the base material is 40 mm.
It was hot.
本光フアイバ母材95を、カツトオフ波長が
1.45μmとなるよう、更に外付けあるいは外径調
整し線引した後、得られた光フアイバの特性を評
価したところ、損失は0.25dB/Km、モード複屈
折率は5×10-4であつた。なお損失値は最初のガ
ラスロツドをSMフアイバ化して得られた値と同
じであつた。すなわち、研削による構造不整損を
零にすることができ、同時にコアの楕円度0.9で
モード複屈折率5×10-4を達成した。 The optical fiber base material 95 has a cutoff wavelength of
After further adjusting the external diameter or adjusting the outer diameter to 1.45 μm and drawing, the characteristics of the obtained optical fiber were evaluated, and the loss was 0.25 dB/Km and the mode birefringence was 5 × 10 -4 . Ta. The loss value was the same as that obtained by converting the initial glass rod into an SM fiber. That is, the structural irregularity loss due to grinding could be reduced to zero, and at the same time, a mode birefringence of 5×10 -4 was achieved with a core ellipticity of 0.9.
このように、上部実施例5の製造方法において
は、1回目の研削では短軸のクラツド厚が構造不
整損を低減させるに十分な幅がとれるように、楕
円率を落とし、2回目の研削で更に楕円率を上げ
るものであるため、低損失で高複屈折率を有する
楕円コア型偏波面保存光フアイバが得られる。従
つて、この光フアイバを用いることにより、回転
角速度センサやコヒーレント通信システムの大幅
な性能向上が期待できる。 In this way, in the manufacturing method of Upper Example 5, the ellipticity is lowered in the first grinding so that the short axis cladding thickness has a width sufficient to reduce structural irregularities, and the second grinding is performed by reducing the ellipticity. Furthermore, since the ellipticity is increased, an elliptical core type polarization-maintaining optical fiber having low loss and high birefringence can be obtained. Therefore, by using this optical fiber, it is expected that the performance of rotational angular velocity sensors and coherent communication systems will be significantly improved.
[発明の効果]
本発明は上述のとおり構成されているので、次
に記載する効果を奏する。[Effects of the Invention] Since the present invention is configured as described above, it produces the following effects.
請求項1、3、4の製造方法においては、コア
及びクラツドが非円の断面形状の偏波面保存光フ
アイバが容易かつ安定に製造出来る。また、
VAD法等の化学蒸着法と機械加工法を併用して
いるため、母材の大型化が出来、その結果、低コ
スト化が可能であり、さらに、機械加工による手
段を用いていることからコアの楕円率を非常に大
きくとれるため、複屈折率が大きく(モードビー
ト長が長く)出来、その結果良好な偏波面保存性
が期待できる。 In the manufacturing method of claims 1, 3, and 4, a polarization-maintaining optical fiber having a core and a cladding having a non-circular cross-section can be easily and stably manufactured. Also,
Because chemical vapor deposition methods such as the VAD method are used in combination with machining methods, it is possible to increase the size of the base material, resulting in lower costs. Since the ellipticity can be very large, the birefringence can be large (mode beat length is long), and as a result, good polarization preservation can be expected.
請求項2の製造方法においては、楕円コア及び
クラツドの2層構造の楕円コア型偏波面保存光フ
アイバ母材が得られることから、カツトオフ波長
の設計が容易となり、歩留りが向上する。また、
構造不整の少ない母材を得られ、低損失化及び低
ストローク化できる。 In the manufacturing method of claim 2, since an elliptical core type polarization maintaining optical fiber base material having a two-layer structure of an elliptical core and a cladding is obtained, the cutoff wavelength can be easily designed and the yield can be improved. Also,
A base material with less structural irregularities can be obtained, resulting in lower losses and lower strokes.
請求項3の製造方法においては、第1、第2の
クラツド用ガラス層の間に中間クラツド用ガラス
層が存在する4層構造の楕円コア型偏波面保存光
フアイバ母材が得られることから、中間クラツド
用ガラス層が、線引工程で軟化後固化する際に生
ずる内部歪の緩衝層の働きをし、コア用ガラス層
に加わる内部歪が低減され、レーリ散乱損失、構
造不整損失が低くなる。また、従来のものと同じ
線引温度で線引しても、ドーパントを多く含むた
め低張力になる。従つて、光フアイバ母材の欠陥
が覆われて光フアイバの強度が充分に保たれる。 In the manufacturing method of claim 3, an elliptical core type polarization-maintaining optical fiber base material having a four-layer structure in which an intermediate cladding glass layer is present between the first and second cladding glass layers is obtained. The glass layer for the intermediate cladding acts as a buffer layer for the internal strain that occurs when it hardens after softening in the wire drawing process, reducing the internal strain applied to the glass layer for the core, reducing Rayleigh scattering loss and structural irregularity loss. . Furthermore, even if drawn at the same drawing temperature as conventional wires, the tension will be low because it contains a large amount of dopant. Therefore, defects in the optical fiber base material are covered and the strength of the optical fiber is maintained sufficiently.
請求項4の製造方法においては、1回目の研削
では短軸のクラツド厚が構造不整損を低減させる
に十分な幅がとれるように楕円率を落とし、2回
目の研削で更に楕円率を上げるため、低損失で高
複屈折率を有する楕円コア型偏波面保存光フアイ
バが得られる。従つて、このフアイバを用いた回
転角速度センサやコヒーレント通信システムの大
幅な性能向上が期待できる。 In the manufacturing method according to claim 4, in the first grinding, the ellipticity is reduced so that the short axis cladding thickness has a width sufficient to reduce structural irregularities, and in the second grinding, the ellipticity is further increased. , an elliptical core type polarization-maintaining optical fiber having low loss and high birefringence can be obtained. Therefore, it is expected that the performance of rotational angular velocity sensors and coherent communication systems using this fiber will be significantly improved.
第1図は本発明の第1実施例に係る楕円コア型
偏波面保存光フアイバの製造工程を示す断面図、
第2図は本発明の第2実施例に係る3層構造の楕
円コア型偏波面保存光フアイバの製造工程を示す
断面図、第3図及び第4図はそれぞれ楕円コア型
偏波面保存光フアイバのBg及びBsの計算値を示
す特性図、第5図は研削ガラスロツドのクラツド
楕円度とフアイバ化した後のコア楕円度の関係を
示す特性図、第6図は第2実施例で得られる3層
構造の楕円コア型偏波面保存光フアイバ母材の屈
折率分布の形状を示す説明図、第7図は本発明の
第3実施例で得られる楕円コア型偏波面保存光フ
アイバ母材の屈折率分布の形状を示す説明図、第
8図は本発明の第3実施例に係る2層構造の楕円
コア型偏波面保存光フアイバの製造工程を示す断
面図、第9図は第10図の製造方法により得られ
る3層構造の偏波面保存光フアイバ母材の断面
図、第10図は第2図と同様の製造工程を示す断
面図、第11図は本発明の製造方法の第4の実施
例により得られる4層構造の偏波面保存光フアイ
バ母材の屈折率分布の形状を示す説明図、第12
図は本発明の第4の実施例に係る偏波面保存光フ
アイバ母材の製造工程を示す断面図、第13図は
第4の実施例で得られる偏波面保存光フアイバの
損失波長特性図、第14図は本発明の第4の実施
例で得られる他の偏波面保存光フアイバ母材の屈
折率分布の形状を示す説明図、第15図は本発明
の第5の実施例に係る楕円コア型偏波面保存光フ
アイバ母材の製造工程を示す図、第16図は従来
の各種偏波面保存光フアイバの断面図である。
図中、5は多孔質母材、6はコア用ガラス層、
7はクラツド用ガラス層、8はガラスロツド、9
は加工ロツド、10は石英ガラス微粒子、11は
コア、12はクラツド、13はサポート、14は
光フアイバ母材、15は外付け石英ガラス、16
は楕円形コア、20はガラス微粒子、21はコア
用ガラス層、22はクラツド用ガラス層、23は
サポート用ガラス層、24は3層構造のガラス母
材、25は2層構造のガラス母材、31は楕円コ
ア、32は円形クラツド、33は光フアイバ母
材、50は多孔質ガラス、53はクラツド用ガラ
ス層、54はガラス母材、60は多孔質ガラス、
61はコア、62は第1クラツド、63は中間ク
ラツド、64は第2クラツド、65は光フアイバ
母材、79は加工ロツド、80は石英ガラス微粒
子、81はコア用ガラス層、82はクラツド用ガ
ラス層、83はサポート石英ガラス、84はガラ
ス母材、85はガラス母材、89は加工ロツド、
90は石英ガラス微粒子、91は楕円コア、92
は第1クラツド、93は第2クラツド、94はサ
ポート、95は光フアイバ母材である。
FIG. 1 is a cross-sectional view showing the manufacturing process of an elliptical core type polarization-maintaining optical fiber according to a first embodiment of the present invention;
FIG. 2 is a cross-sectional view showing the manufacturing process of a three-layer structure elliptical core type polarization maintaining optical fiber according to a second embodiment of the present invention, and FIGS. Fig. 5 is a characteristic diagram showing the relationship between the clad ellipticity of the ground glass rod and the core ellipticity after fiberization, and Fig. 6 is the characteristic diagram showing the calculated values of Bg and Bs of the An explanatory diagram showing the shape of the refractive index distribution of the layered structure of the elliptical core type polarization preserving optical fiber base material. Fig. 7 shows the refraction of the elliptical core type polarization preserving optical fiber base material obtained in the third embodiment of the present invention. FIG. 8 is a cross-sectional view showing the manufacturing process of a two-layer structure elliptical core type polarization-maintaining optical fiber according to the third embodiment of the present invention, and FIG. 9 is an explanatory diagram showing the shape of the polarization distribution. A cross-sectional view of a polarization-maintaining optical fiber base material having a three-layer structure obtained by the manufacturing method, FIG. 10 is a cross-sectional view showing the same manufacturing process as FIG. 2, and FIG. Explanatory diagram showing the shape of the refractive index distribution of the polarization-maintaining optical fiber base material with the four-layer structure obtained in the example, No. 12
The figure is a cross-sectional view showing the manufacturing process of a polarization-maintaining optical fiber base material according to the fourth embodiment of the present invention, and FIG. 13 is a loss wavelength characteristic diagram of the polarization-maintaining optical fiber obtained in the fourth embodiment. FIG. 14 is an explanatory diagram showing the shape of the refractive index distribution of another polarization-maintaining optical fiber base material obtained in the fourth embodiment of the present invention, and FIG. 15 is an ellipse according to the fifth embodiment of the present invention. FIG. 16, which is a diagram showing the manufacturing process of a core-type polarization-maintaining optical fiber base material, is a cross-sectional view of various conventional polarization-maintaining optical fibers. In the figure, 5 is a porous base material, 6 is a glass layer for the core,
7 is a glass layer for cladding, 8 is a glass rod, 9
10 is a processed rod, 10 is a quartz glass particle, 11 is a core, 12 is a cladding, 13 is a support, 14 is an optical fiber base material, 15 is an external quartz glass, 16
20 is an oval core, 20 is a glass particle, 21 is a core glass layer, 22 is a cladding glass layer, 23 is a support glass layer, 24 is a three-layer glass base material, and 25 is a two-layer glass base material , 31 is an elliptical core, 32 is a circular cladding, 33 is an optical fiber base material, 50 is a porous glass, 53 is a glass layer for the cladding, 54 is a glass base material, 60 is a porous glass,
61 is a core, 62 is a first cladding, 63 is an intermediate cladding, 64 is a second cladding, 65 is an optical fiber base material, 79 is a processed rod, 80 is a quartz glass fine particle, 81 is a glass layer for the core, 82 is for a cladding. Glass layer, 83 is support quartz glass, 84 is glass base material, 85 is glass base material, 89 is processed rod,
90 is a quartz glass fine particle, 91 is an elliptical core, 92
93 is a first cladding, 93 is a second cladding, 94 is a support, and 95 is an optical fiber base material.
Claims (1)
高いクラツド用ガラス層を有するガラスロツドを
形成し、このガラスロツドの両側面を軸方向に沿
つて機械加工により除去して断面非円形の加工ロ
ツドを形成し、この加工ロツドの外周に石英ガラ
ス微粒子を外付けし焼結して上記クラツド用ガラ
ス層より軟化点の高いサポート用ガラス層を形成
し、得られたガラス母材を光フアイバ母材として
線引きすることを特徴とする楕円コア型偏波面保
存光フアイバの製造方法。 2 酸化ゲルマニウムを含有するコア用ガラス層
及びこれを囲むふつ素を含むクラツド用ガラス層
から成るガラスロツドを形成し、このガラスロツ
ドの両側面を軸方向に沿つて機械加工により除去
して断面非円形の加工ロツドを形成し、この加工
ロツドの外周部にクラツド用ガラス層より粘化温
度の高いガラス組成のガラス微粒子を堆積させる
と共にこれを焼結してサポートガラス層を形成し
た後、このサポートガラス層を削り取ることによ
り断面円形状のガラス母材を作製し、このガラス
母材の外周囲に上記クラツド用ガラス層と同一組
成のガラス層を形成し、得られたガラス母材を光
フアイバ母材として線引きすることを特徴とする
楕円コア型偏波面保存光フアイバの製造方法。 3 コア用ガラス層の外周囲にそれより軟化点の
高い第1クラツド用ガラス層を有するガラスロツ
ドを形成し、このガラスロツドの両側面を軸方向
に沿つて機械加工により除去して断面非円形の加
工ロツドを形成し、この加工ロツドの外周に石英
ガラス微粒子を外付けし焼結して第1クラツド用
ガラス層より軟化点の高い中間クラツド用ガラス
層を形成し、中間クラツド用ガラス層の外周に石
英ガラス微粒子を外付けし焼結して中間クラツド
用ガラス層より軟化点の高い第2クラツド用ガラ
ス層を形成し、得られたガラス母材を光フアイバ
母材として線引きすることを特徴とする楕円コア
型偏波面保存光フアイバの製造方法。 4 酸化ゲルマニウムを含有するコア用ガラス層
及びフツ素を含有するクラツド用ガラス層からな
る断面円形状のガラスロツドの両側面部を軸方向
に研削した後、該ガラスロツドの外周部にサポー
トとなる石英ガラス微粒子を堆積させると共にこ
れを焼結してガラス母材を形成し、このガラス母
材に対し上記研削から焼結の工程を少なくとも1
回繰返し、得られたガラス母材を光フアイバ母材
として線引きすることを特徴とする楕円コア型偏
波面保存光フアイバの製造方法。[Claims] 1. A glass rod having a glass layer for the cladding having a higher softening point is formed around the outer periphery of the glass layer for the core, and both sides of the glass rod are removed by machining along the axial direction to form a cross section. A non-circular processed rod is formed, and quartz glass fine particles are attached externally to the outer periphery of this processed rod and sintered to form a supporting glass layer having a higher softening point than the above-mentioned cladding glass layer. 1. A method for producing an elliptical core type polarization preserving optical fiber, which comprises drawing the optical fiber as an optical fiber base material. 2. A glass rod is formed from a core glass layer containing germanium oxide and a cladding glass layer containing fluorine surrounding it, and both sides of this glass rod are removed by machining along the axial direction to form a core with a non-circular cross section. After forming a processing rod and depositing glass fine particles having a glass composition having a higher viscosity temperature than that of the glass layer for the cladding on the outer periphery of the processing rod and sintering this, a support glass layer is formed. A glass base material with a circular cross section is prepared by scraping off the glass base material, a glass layer having the same composition as the glass layer for the cladding is formed around the outer periphery of this glass base material, and the obtained glass base material is used as an optical fiber base material. A method for manufacturing an elliptical core polarization maintaining optical fiber, which comprises drawing. 3 A glass rod having a first cladding glass layer having a higher softening point is formed around the outer periphery of the core glass layer, and both sides of this glass rod are removed by machining along the axial direction to form a non-circular cross section. A rod is formed, and quartz glass fine particles are attached externally to the outer periphery of this processed rod and sintered to form a glass layer for the intermediate cladding which has a higher softening point than the glass layer for the first cladding. The method is characterized in that quartz glass fine particles are attached externally and sintered to form a second cladding glass layer having a higher softening point than the intermediate cladding glass layer, and the obtained glass base material is drawn as an optical fiber base material. A method for manufacturing an elliptical core polarization maintaining optical fiber. 4 After grinding both side surfaces of a glass rod having a circular cross section in the axial direction, consisting of a glass layer for the core containing germanium oxide and a glass layer for the cladding containing fluorine, fine silica glass particles are placed on the outer periphery of the glass rod to serve as a support. is deposited and sintered to form a glass base material, and the glass base material is subjected to at least one of the steps from grinding to sintering.
1. A method for producing an elliptical core type polarization-maintaining optical fiber, the method comprising repeatedly drawing the obtained glass preform as an optical fiber preform.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63308896A JPH02157133A (en) | 1988-12-08 | 1988-12-08 | Production of elliptic core type polarization plane maintaining optical fiber |
CA000600684A CA1320634C (en) | 1988-05-27 | 1989-05-25 | Method of producing elliptic core type polarization-maintaining optical fiber |
GB8912209A GB2221903B (en) | 1988-05-27 | 1989-05-26 | Method of producing elliptic core type polarization-maintaining optical fiber |
US08/068,645 US5482525A (en) | 1988-05-27 | 1993-05-28 | Method of producing elliptic core type polarization-maintaining optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63308896A JPH02157133A (en) | 1988-12-08 | 1988-12-08 | Production of elliptic core type polarization plane maintaining optical fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02157133A JPH02157133A (en) | 1990-06-15 |
JPH0557215B2 true JPH0557215B2 (en) | 1993-08-23 |
Family
ID=17986570
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63308896A Granted JPH02157133A (en) | 1988-05-27 | 1988-12-08 | Production of elliptic core type polarization plane maintaining optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02157133A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1636619B1 (en) * | 2003-06-19 | 2009-08-19 | Corning Incorporated | Single polarization optical fiber and system |
JP2008287280A (en) * | 2008-07-28 | 2008-11-27 | Sumitomo Electric Ind Ltd | Optical transmission module |
WO2012132908A1 (en) * | 2011-03-31 | 2012-10-04 | 国立大学法人大阪大学 | Optical fiber, fiber laser, and method for manufacturing optical fiber |
-
1988
- 1988-12-08 JP JP63308896A patent/JPH02157133A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPH02157133A (en) | 1990-06-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5482525A (en) | Method of producing elliptic core type polarization-maintaining optical fiber | |
CA2008451C (en) | Polarization-maintaining optical fiber | |
US3737292A (en) | Method of forming optical waveguide fibers | |
CA1061565A (en) | Method of making glass optical waveguide | |
US3775075A (en) | Method of forming optical waveguide fibers | |
EP0149645B1 (en) | Method of fabricating high birefringence fibers | |
EP0032390A2 (en) | Method of producing a preform rod for an optical fiber | |
US4415230A (en) | Polarization retaining single-mode optical waveguide | |
US4360371A (en) | Method of making polarization retaining single-mode optical waveguide | |
JP2959877B2 (en) | Optical fiber manufacturing method | |
US4664473A (en) | Optical fiber formed of MgO--Al2 O3 --SiO2 glass | |
USRE28029E (en) | Method of forming optical waveguide fibers | |
JPS5838370B2 (en) | Method for manufacturing high-strength optical preforms | |
JPS61191543A (en) | Quartz base optical fiber | |
JPH037613B2 (en) | ||
JP2988524B2 (en) | Optical fiber and method for manufacturing the same | |
JPH0557215B2 (en) | ||
JP2616087B2 (en) | Manufacturing method of elliptical core type polarization maintaining optical fiber | |
JPH0236535B2 (en) | ||
JPS6328857B2 (en) | ||
JPH0662310B2 (en) | Method of manufacturing elliptical core type polarization-maintaining optical fiber | |
JPH0439605A (en) | Elliptic core type polarization plane maintaining optical fiber and optical fiber polarizer | |
JPH024540B2 (en) | ||
KR100795217B1 (en) | Method of manufacturing optical fiber for distributed control | |
JPH03248103A (en) | Optical fiber for image fiber |