[go: up one dir, main page]

JPH05339761A - Ecr plasma etching method - Google Patents

Ecr plasma etching method

Info

Publication number
JPH05339761A
JPH05339761A JP15078792A JP15078792A JPH05339761A JP H05339761 A JPH05339761 A JP H05339761A JP 15078792 A JP15078792 A JP 15078792A JP 15078792 A JP15078792 A JP 15078792A JP H05339761 A JPH05339761 A JP H05339761A
Authority
JP
Japan
Prior art keywords
microwaves
etching
magnetic field
pulse
pulse magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15078792A
Other languages
Japanese (ja)
Other versions
JP2590393B2 (en
Inventor
Kazuo Oba
和夫 大場
Yoshinori Shima
好範 嶋
Akira Oba
章 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAKAE DENSHI KOGYO KK
Original Assignee
SAKAE DENSHI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAKAE DENSHI KOGYO KK filed Critical SAKAE DENSHI KOGYO KK
Priority to JP4150787A priority Critical patent/JP2590393B2/en
Publication of JPH05339761A publication Critical patent/JPH05339761A/en
Application granted granted Critical
Publication of JP2590393B2 publication Critical patent/JP2590393B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To enable etching with high anisotropy and low damage by executing the etching while applying specific pulse magnetic fields in the direction parallel with the progressing direction of microwaves and perpendicular to the progressing direction of the microwaves with respect to an ion source to stabilize plasma MHD. CONSTITUTION:The ECR plasma etching is executed by utilizing an electron cyclotron resonance (ECR) phenomenon. The etching is executed by applying >=0.08T pulse magnetic fields applied in parallel with the progressing direction of the microwaves. The etching is executed by applying >=0.08T pulse magnetic fields in the progressing direction of the microwaves with respect to the ion source to stabilize the plasma MHD. Pulse currents of 0.01 to 500ms pulse width are energized to a coil to apply the pulse magnetic fields in the direction perpendicular to the progressing direction of the microwaves. As a result, the efficiency of confining plasma is improved and the ion temp. is lowered. The anisotropic etching by the parallel pulse magnetic fields is thus executed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、異方性ECRプラズマ
エッチング加工方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an anisotropic ECR plasma etching processing method.

【0002】[0002]

【従来の技術】従来のECRプラズマエッチング方法
は、永久磁石を使用して一定磁界(0.0875T)中
で電子が磁力線の周りで円運動をし、その角振動数ωC
とマイクロ波の角振動数ωが一致してECR現象が生
じ、これをエッチング加工に応用している。
2. Description of the Related Art In the conventional ECR plasma etching method, an electron makes a circular motion around a line of magnetic force in a constant magnetic field (0.0875T) using a permanent magnet, and its angular frequency ω C
And the angular frequency ω of the microwave coincide with each other to generate an ECR phenomenon, which is applied to etching processing.

【0003】[0003]

【発明が解決しようとする課題】従来のECRプラズマ
エッチング加工では、一定磁場中でECR現象を利用し
ているため、プラズマ中のイオン温度が高く、しかもイ
オンエネルギーが低いため、異方性のあるECRプラズ
マエッチング形状が得られなかった。
In the conventional ECR plasma etching process, since the ECR phenomenon is utilized in a constant magnetic field, the ion temperature in the plasma is high and the ion energy is low, so that there is anisotropy. No ECR plasma etching profile was obtained.

【0004】ECRプラズマエッチング加工において反
応を誘起するイオン温度を低くすることは、イオン衝撃
によるダメージの低減の点において重要である。イオン
温度を低温化すれば、イオンの方向性が向上できる。イ
オン温度はほぼ中性分子温度に等しいと考えられる。質
量の違う電子とイオンの運動に大きなずれを生じさせ、
したがって磁化プラズマ中では常に荷電分離した状態と
なり、荷電分離がもたらす電界によって、電子とイオン
が結合された状態で、この電界が速やかに中和されず、
磁界との相互作用などにより荷電分離が進行する場合、
プラズマが不安定となり、イオンを加熱する主原因とな
る。
Reducing the ion temperature that induces a reaction in ECR plasma etching is important in terms of reducing damage due to ion bombardment. If the ion temperature is lowered, the directionality of ions can be improved. The ion temperature is considered to be approximately equal to the neutral molecule temperature. Causing a large shift in the motion of electrons and ions with different masses,
Therefore, in the magnetized plasma, it is always in the state of charge separation, and the electric field caused by the charge separation does not promptly neutralize the electric field in the state where electrons and ions are combined,
When charge separation progresses due to interaction with a magnetic field,
The plasma becomes unstable and is the main cause of heating the ions.

【0005】本発明はこの欠点を改良し、プラズマを安
定させ、異方性エッチング処理を可能にするものであ
る。
The present invention remedies this deficiency, stabilizes the plasma, and enables anisotropic etching processes.

【0006】[0006]

【課題を解決するための手段】本発明は、電子サイクロ
トロン共鳴(ECR)現象を利用したECRプラズマエ
ッチング加工方法において、マイクロ波の進行方向と平
行に0.08T以上のパルス磁界を与え、しかもイオン
源に対してマイクロ波の進行方向と直角方向に0.08
T以上のパルス磁界を与えてプラズマMHDを安定化さ
せて加工するECRプラズマエッチング加工方法であ
る。本発明は又、ECRプラズマエッチング加工方法に
おいて、マイクロ波の進行方向と平行に0.08T以上
のパルス磁界を与え、しかもイオン源に対してマイクロ
波の進行方向と直角方向にパルス幅0.01〜500m
sのパルス電流をコイルに通電してパルス磁界を与え、
プラズマMHDを安定化させて加工するECRプラズマ
エッチング加工方法である。すなわち、マイクロ波の進
行方向と平行に0.08T以上のパルス磁界を与えるこ
とにより、パルスオンタイム時の瞬時には平均して従来
の一定磁界の0.0875Tを越える磁界が生じ、電
子、イオンの旋回曲率と速度は小さくなり、方向が真直
となって、異方性処理効果が大となり、試料の裏面への
回り込みがなく、正確な加工ができる。又、イオン源に
対してマイクロ波の進行方向と直角方向に0.08T以
上のパルス磁界を与えることにより、イオン温度を低温
化させることができた。その結果、正確なエッチング加
工を高速に行うことができる。又、平行パルス磁界のパ
ルス幅を大きくすることにより、イオンのまわり込みが
多くなり、側面エッチングも効率良くできる。
According to the present invention, in an ECR plasma etching method utilizing an electron cyclotron resonance (ECR) phenomenon, a pulse magnetic field of 0.08 T or more is applied in parallel with the traveling direction of microwaves, 0.08 in the direction perpendicular to the direction of microwave transmission to the source
This is an ECR plasma etching method in which a pulse magnetic field of T or more is applied to stabilize and process the plasma MHD. The present invention also provides, in the ECR plasma etching method, a pulse magnetic field of 0.08 T or more in parallel with the direction of propagation of microwaves, and a pulse width of 0.01 in the direction perpendicular to the direction of microwave propagation with respect to the ion source. ~ 500m
a pulse current of s is applied to the coil to give a pulse magnetic field,
This is an ECR plasma etching method for stabilizing and processing plasma MHD. That is, by applying a pulse magnetic field of 0.08 T or more parallel to the traveling direction of the microwave, a magnetic field exceeding 0.0875 T, which is a conventional constant magnetic field on average, is generated at the moment of the pulse on-time, so that electrons, ions The turning curvature and speed of the sample become small, the direction becomes straight, the effect of anisotropic treatment becomes large, and the sample does not wrap around to the back surface, and accurate processing can be performed. Moreover, the ion temperature could be lowered by applying a pulse magnetic field of 0.08 T or more to the ion source in the direction perpendicular to the traveling direction of the microwave. As a result, accurate etching processing can be performed at high speed. Further, by enlarging the pulse width of the parallel pulse magnetic field, the number of ions wrapping around increases and the side surface etching can be performed efficiently.

【0007】[0007]

【実施例】実施例を図面に基づいて説明する。Embodiments will be described with reference to the drawings.

【0008】図1、図2において、1は被加工材で、2
はマイクロ波の進行方向に平行なパルス磁界を発生させ
るコイル、3はイオン源においてマイクロ波の進行方向
に垂直なパルス磁界を発生させるコイル、4はヨーク、
5はイオン源であり、6は2.45GHzのマイクロ波
の進行方向を示す。7は反応ガス導入口で8は排気系で
ある。イオン引出し電源としてDC200〜1000V
を与える。
In FIGS. 1 and 2, reference numeral 1 is a material to be processed, 2
Is a coil for generating a pulse magnetic field parallel to the traveling direction of the microwave, 3 is a coil for generating a pulse magnetic field perpendicular to the traveling direction of the microwave in the ion source, 4 is a yoke,
Reference numeral 5 is an ion source, and 6 is a traveling direction of a microwave of 2.45 GHz. Reference numeral 7 is a reaction gas inlet, and 8 is an exhaust system. DC200-1000V as ion extraction power source
give.

【0009】次に具体的な加工例について説明する。例
えば多結晶Siを被加工材とした場合、エッチングガス
としてCF4+O2を流し、0.05Torrの雰囲気中
で高電離プラズマを生成させるため、マイクロ波の進行
方向に平均磁界0.0875Tとなるパルス磁界を与え
た。さらにイオン濃度を低温化させるための閉じ込め磁
場として、コイル3に平均磁界0.0875以上0.1
2Tの磁界を与えた。その結果、0.86μm/min
の高速エッチングを行うことができた。従来の方法の4
倍以上のエッチング速度が得られ、従来のまわり込み角
15°に対して0.1°であり、極めて優れた異方性が
得られた。この時のパルス幅条件と結果を表1〜4に示
す。又、被加工材として、Si34、SiO2、Al2
3についても加工をしたところ、パルス磁界によりイオ
ン温度の低温度化と異方性エッチングが可能であること
がわかった。これらについても表1に併記する。なお、
まわり込み角とは、図3に示す如く、試料側面のエッチ
ングによるへこみ角度θを示す。
Next, a specific processing example will be described. For example, when polycrystalline Si is used as a material to be processed, CF 4 + O 2 is flown as an etching gas to generate high-ionization plasma in an atmosphere of 0.05 Torr, so that the average magnetic field is 0.0875 T in the traveling direction of microwaves. A pulsed magnetic field was applied. Further, as a confining magnetic field for lowering the ion concentration, an average magnetic field of 0.0875 or more and 0.1 is applied to the coil 3.
A magnetic field of 2T was applied. As a result, 0.86 μm / min
It was possible to carry out high speed etching. Conventional method 4
The etching rate more than doubled was obtained, and it was 0.1 ° with respect to the conventional wrap angle of 15 °, and extremely excellent anisotropy was obtained. The pulse width conditions at this time and the results are shown in Tables 1 to 4. Further, as a work material, Si 3 N 4 , SiO 2 , Al 2 O
When 3 was also processed, it was found that the pulsed magnetic field could lower the ion temperature and anisotropic etching. These are also shown in Table 1. In addition,
As shown in FIG. 3, the wrap-around angle indicates a dent angle θ due to etching on the side surface of the sample.

【0010】[0010]

【表1】 [Table 1]

【0011】[0011]

【表2】 [Table 2]

【0012】[0012]

【表3】 [Table 3]

【0013】[0013]

【表4】 [Table 4]

【0014】[0014]

【発明の効果】本発明によれば、パルス磁界のτONを種
々変えることによりプラズマ閉じ込めも効率良くなり、
その上イオン温度が低下し、さらに平行パルス磁界によ
り異方性エッチングを行うことができる。超LSIの加
工精度においても、高異方性、低損傷のエッチング加工
を施すことができる。
According to the present invention, the plasma confinement becomes efficient by variously changing τ ON of the pulse magnetic field,
In addition, the ion temperature is lowered, and anisotropic etching can be performed by the parallel pulse magnetic field. Also with respect to the processing accuracy of VLSI, highly anisotropic and low damage etching processing can be performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施する装置の説明図である。FIG. 1 is an explanatory diagram of an apparatus for carrying out the present invention.

【図2】図1のA−A’断面図である。FIG. 2 is a cross-sectional view taken along the line A-A ′ of FIG.

【図3】まわり込み角θの説明図である。FIG. 3 is an explanatory diagram of a turning angle θ.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大場 和夫 埼玉県東村山市松葉町4丁目2番3号 (72)発明者 嶋 好範 神奈川県川崎市麻生区王禅寺768番地15 (72)発明者 大場 章 埼玉県朝霧市浜崎1丁目9番地の3−205 ─────────────────────────────────────────────────── --- Continuation of the front page (72) Inventor Kazuo Oba 4-chome 2-3, Matsuba-cho, Higashimurayama, Saitama (72) Inventor Yoshinori Shima 768, Ozenji, Aso-ku, Kawasaki-shi, Kanagawa 15 (72) Inventor Oba Chapter 3-205, 1-9 Hamasaki, Asagiri, Saitama Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電子サイクロトロン共鳴(ECR)現象
を利用したECRプラズマエッチング加工方法におい
て、マイクロ波の進行方向と平行に0.08T以上のパ
ルス磁界を与え、しかもイオン源に対してマイクロ波の
進行方向と直角方向に0.08T以上のパルス磁界を与
えてプラズマMHDを安定化させて加工することを特徴
とするECRプラズマエッチング加工方法。
1. In an ECR plasma etching method using an electron cyclotron resonance (ECR) phenomenon, a pulse magnetic field of 0.08 T or more is applied in parallel with the traveling direction of microwaves, and the microwaves propagate toward an ion source. An ECR plasma etching method, characterized in that a plasma magnetic field (HD) is stabilized by applying a pulse magnetic field of 0.08 T or more in a direction perpendicular to the direction.
【請求項2】 ECRプラズマエッチング加工方法にお
いて、マイクロ波の進行方向と平行に0.08T以上の
パルス磁界を与え、しかもイオン源に対してマイクロ波
の進行方向と直角方向にパルス幅0.01〜500ms
のパルス電流をコイルに通電してパルス磁界を与え、プ
ラズマMHDを安定化させて加工することを特徴とする
ECRプラズマエッチング加工方法。
2. In the ECR plasma etching processing method, a pulse magnetic field of 0.08 T or more is applied in parallel with the traveling direction of microwaves, and the pulse width is 0.01 in the direction perpendicular to the traveling direction of microwaves with respect to the ion source. ~ 500 ms
The ECR plasma etching method, wherein the pulse current is applied to the coil to give a pulse magnetic field to stabilize the plasma MHD for processing.
JP4150787A 1992-06-10 1992-06-10 ECR plasma etching method Expired - Lifetime JP2590393B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4150787A JP2590393B2 (en) 1992-06-10 1992-06-10 ECR plasma etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4150787A JP2590393B2 (en) 1992-06-10 1992-06-10 ECR plasma etching method

Publications (2)

Publication Number Publication Date
JPH05339761A true JPH05339761A (en) 1993-12-21
JP2590393B2 JP2590393B2 (en) 1997-03-12

Family

ID=15504428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4150787A Expired - Lifetime JP2590393B2 (en) 1992-06-10 1992-06-10 ECR plasma etching method

Country Status (1)

Country Link
JP (1) JP2590393B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6566272B2 (en) 1999-07-23 2003-05-20 Applied Materials Inc. Method for providing pulsed plasma during a portion of a semiconductor wafer process

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6379986A (en) * 1986-09-25 1988-04-09 Canon Inc Plasma controller
JPH0222486A (en) * 1988-07-12 1990-01-25 Anelva Corp Microwave plasma treating equipment
JPH0277123A (en) * 1988-06-24 1990-03-16 Tokyo Electron Ltd Dry etching
JPH02312227A (en) * 1989-05-29 1990-12-27 Hitachi Ltd Plasma processing and plasma processor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6379986A (en) * 1986-09-25 1988-04-09 Canon Inc Plasma controller
JPH0277123A (en) * 1988-06-24 1990-03-16 Tokyo Electron Ltd Dry etching
JPH0222486A (en) * 1988-07-12 1990-01-25 Anelva Corp Microwave plasma treating equipment
JPH02312227A (en) * 1989-05-29 1990-12-27 Hitachi Ltd Plasma processing and plasma processor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6566272B2 (en) 1999-07-23 2003-05-20 Applied Materials Inc. Method for providing pulsed plasma during a portion of a semiconductor wafer process

Also Published As

Publication number Publication date
JP2590393B2 (en) 1997-03-12

Similar Documents

Publication Publication Date Title
JPH0834208B2 (en) Plasma processing apparatus and method thereof
JPH05339761A (en) Ecr plasma etching method
Hershkowitz et al. Presheath environment in weakly ionized single and multispecies plasmas
JPS6058794B2 (en) plasma processing equipment
JP2837556B2 (en) Plasma reactor and substrate processing method using the same
JP2584389B2 (en) ECR plasma etching method
JP2584396B2 (en) ECR plasma processing method
JPH06124796A (en) Processing of ecr plasma
JPS62290054A (en) Gas ionizing method and ion source device using microwave
JPH01264141A (en) Ion source
JPS6357502B2 (en)
Fruchtman et al. Mass Separaton by Oscillating Electromagnetic Fields
JPH0425022A (en) Apparatus and method for microwave plasma etching
JPH03158471A (en) Microwave plasma treating device
JPH11340200A (en) Plasma processing equipment
JP6391734B2 (en) Semiconductor manufacturing method
JP2827660B2 (en) Microwave plasma processing method
Samukawa Advanced electron cyclotron resonance plasma etching technology for precise ultra‐large‐scale integration patterning
JP2749264B2 (en) Plasma processing equipment
JP2738809B2 (en) Plasma processing method
JPS63299338A (en) Plasma treatment equipment
JPS63148619A (en) plasma processing equipment
JP3460953B2 (en) Method of controlling the amount and energy of ions extracted from plasma
JPH04354124A (en) Method and apparatus for etching
JPH0547710A (en) Ecr plasma etching device