[go: up one dir, main page]

JPH06124796A - Processing of ecr plasma - Google Patents

Processing of ecr plasma

Info

Publication number
JPH06124796A
JPH06124796A JP4270485A JP27048592A JPH06124796A JP H06124796 A JPH06124796 A JP H06124796A JP 4270485 A JP4270485 A JP 4270485A JP 27048592 A JP27048592 A JP 27048592A JP H06124796 A JPH06124796 A JP H06124796A
Authority
JP
Japan
Prior art keywords
magnetic field
ion
pulse
rotating magnetic
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4270485A
Other languages
Japanese (ja)
Other versions
JP2706022B2 (en
Inventor
Kazuo Oba
和夫 大場
Yoshinori Shima
好範 嶋
Akira Oba
章 大場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAKAE DENSHI KOGYO KK
Original Assignee
SAKAE DENSHI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAKAE DENSHI KOGYO KK filed Critical SAKAE DENSHI KOGYO KK
Priority to JP4270485A priority Critical patent/JP2706022B2/en
Publication of JPH06124796A publication Critical patent/JPH06124796A/en
Application granted granted Critical
Publication of JP2706022B2 publication Critical patent/JP2706022B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)
  • ing And Chemical Polishing (AREA)
  • Plasma Technology (AREA)

Abstract

PURPOSE:To carry out work or coating of a minimum part accurately and efficiently at high speed by squeezing an ion while giving a rotating magnetic field to focus the ion in plasma. CONSTITUTION:Plural coils 12 are wound round a yoke 11, and a pulse electric current is given to this, so that a rotating magnetic field is generated between the individual coils 12. An ion is passed through the center of this rotating magnetic field, so that an ion current is focused in the central part. Thereby, the center of this pulse magnetic field generating coil is applied to a sample surface, and a pulse magnetic field of not less than 1.7 T is given, and the pulse electric current having pulse width of 0.01-500ms is supplied to the coils 12, and the rotating magnetic field is generated. Thereby, since the rotating magnetic field of not less than several hundred times a DC magnetic field is generated in an instant when a pulse is put on, the ion advances the center vertically, and reaches a material surface to be worked, so that work or coating of a minimum part is carried out accurately at high speed, and when the pulse width is reduced, since ion acceleration is increased, efficiency is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ECRプラズマエッチ
ングおよびコーティング加工方法に関する。
FIELD OF THE INVENTION This invention relates to ECR plasma etching and coating methods.

【0002】[0002]

【従来の技術】従来のECRプラズマ加工方法は、マイ
クロ波の進行方向と平行に一定磁界0.0875Tを与
えて電子の円運動を生じさせ、その角振動数ωCとマイ
クロ波の角振動数ωとが一致するECR現象を利用し
て、電子により試料全面の処理を行う方法である。
2. Description of the Related Art In the conventional ECR plasma processing method, a constant magnetic field of 0.0875 T is applied in parallel with the traveling direction of microwaves to cause circular motion of electrons, and the angular frequency ω C and the angular frequency of microwaves are increased. This is a method of processing the entire surface of the sample with electrons by utilizing the ECR phenomenon in which ω matches.

【0003】[0003]

【発明が解決しようとする課題】従来のECRプラズマ
加工方法では、マイクロ波の角振動数ωと電子の円運動
による角振動数ωCとが一致したECR現象によってイ
オン散乱しているため、加工点が広い面となり目的の部
分のみの精密なプラズマ加工ができなかった。そのた
め、部分処理の時はマスクを使用しなければならなかっ
た。しかしながら、図4に示すように、マスクを使用し
ても、イオン散乱のため試料の加工部分はθ°だけ先拡
がりとなり、しかも加工底面は中心が浅く周辺が深いう
ねりをもつものとなる。又、イオン散乱を少なくするた
めにイオンを集束するには、イオンの質量は電子の質量
の1758倍も大きく、可成りの電磁力が必要である。
In the conventional ECR plasma processing method, since ion scattering is caused by the ECR phenomenon in which the angular frequency ω of the microwave and the angular frequency ω C of the circular motion of the electrons coincide with each other, the processing is performed. Since the points became wide, precise plasma processing could not be performed on only the target part. Therefore, a mask had to be used during the partial processing. However, as shown in FIG. 4, even if the mask is used, the processed portion of the sample is expanded by θ ° due to ion scattering, and the processed bottom surface has a shallow center and a deep undulation. Further, in order to focus the ions in order to reduce the ion scattering, the mass of the ion is 1758 times as large as the mass of the electron, and a considerable electromagnetic force is required.

【0004】そこで本発明は、ECRプラズマ処理によ
る極小部分の加工や被覆を正確に高速に、効率良く実施
することを目的とするものである。
Therefore, the present invention has an object to accurately, rapidly and efficiently carry out processing and coating of a very small portion by ECR plasma processing.

【0005】[0005]

【課題を解決するための手段】本発明は、マイクロ波の
進行方向と平行もしくは垂直又は平行と垂直に磁界を与
えて生じる電子サイクロトロン共鳴(ECR)現象を利
用したECRプラズマ処理方法において、プラズマ中の
イオンを集束するために回転磁界を与え、イオン流を絞
ることを特徴とするECRプラズマ処理方法である。回
転磁界は、例えば図2に示すイオン集束用のパルス磁界
発生コイルを用いて発生させる。すなわち、ヨーク11
に複数のコイル12を巻回したもので、これにパルス電
流を与えることにより、個々のコイル12間に回転磁界
(図中点線と矢印で示す)を発生させる。この回転磁界
の中心にイオン流を通すことによって、イオン流が中心
部に集束される。したがってこのパルス磁界発生コイル
の中心を試料面に当てて、1.7T以上のパルス磁界を
与え、パルス幅は0.01〜500msのパルス電流を
コイルに通電して回転磁界を発生させるとイオンが集束
されて精密な加工ができる。
The present invention provides an ECR plasma processing method utilizing an electron cyclotron resonance (ECR) phenomenon generated by applying a magnetic field parallel or perpendicular to the traveling direction of microwaves or perpendicular to the parallel direction. The method of ECR plasma processing is characterized in that a rotating magnetic field is applied in order to focus the above-mentioned ions to narrow the ion flow. The rotating magnetic field is generated using, for example, a pulse magnetic field generating coil for ion focusing shown in FIG. That is, the yoke 11
A plurality of coils 12 are wound around, and a rotating magnetic field (indicated by a dotted line and an arrow in the drawing) is generated between the individual coils 12 by applying a pulse current thereto. By passing the ion flow through the center of this rotating magnetic field, the ion flow is focused on the central portion. Therefore, when the center of the pulse magnetic field generating coil is applied to the sample surface to give a pulse magnetic field of 1.7 T or more and a pulse current having a pulse width of 0.01 to 500 ms is applied to the coil to generate a rotating magnetic field, ions are generated. Focused for precise processing.

【0006】すなわち、パルスτon時の瞬時には直流磁
界の数百位以上の回転磁界が生じるため、イオンはその
中心を垂直に進み、被加工材表面に達するため、極小部
分の加工や被覆が正確に高速になり、パルス幅を小さく
することにより、イオン加速が大きくなり効率を良くす
ることができる。
That is, at the moment of the pulse τ on, a rotating magnetic field of several hundreds or more of the direct current magnetic field is generated, so that the ions proceed vertically in the center of the ion and reach the surface of the workpiece, so that the machining or coating of the minimal portion is performed. By accurately increasing the speed and reducing the pulse width, the ion acceleration is increased and the efficiency can be improved.

【0007】本発明は又、マイクロ波の進行方向と平行
もしくは垂直又は平行と垂直に与える磁界にもパルス電
圧を印加すると、従来の一定磁界を越える磁界を生じ、
プラズマ閉じ込め効果も良くなり、イオン旋回曲率と速
度の減少とイオン温度の低下によって高異方性処理によ
る正確で高速な低損傷加工を施すことができる。
According to the present invention, when a pulse voltage is applied to a magnetic field applied in parallel or perpendicular to the traveling direction of microwaves or in the direction perpendicular to parallel, a magnetic field exceeding the conventional constant magnetic field is generated,
The plasma confinement effect is also improved, and due to the decrease in ion swirl curvature and velocity and the decrease in ion temperature, it is possible to perform accurate and high-speed, low-damage processing by highly anisotropic treatment.

【0008】[0008]

【実施例】実施例を図面に基づいて説明する。Embodiments will be described with reference to the drawings.

【0009】図1において、1は被加工材で、2はイオ
ン集束用パルス磁界発生コイル、3はマイクロ波の進行
方向に平行なパルス磁界を発生させるコイル、5はイオ
ン源においてマイクロ波の進行方向に垂直なパルス磁界
を発生させるコイル、4はヨーク、6はイオン源であ
り、7は冷却水排水口、8は2.45GHzのマイクロ
波の進行方向を示す。9は反応ガス導入口で、10は冷
却水導入口である。図2における11は、図1のA−
A’断面のヨークで、12はコイルである。
In FIG. 1, 1 is a material to be processed, 2 is a pulse magnetic field generating coil for ion focusing, 3 is a coil for generating a pulse magnetic field parallel to the traveling direction of microwaves, and 5 is a microwave traveling in an ion source. A coil for generating a pulse magnetic field perpendicular to the direction, 4 is a yoke, 6 is an ion source, 7 is a cooling water drainage port, and 8 is a traveling direction of a microwave of 2.45 GHz. Reference numeral 9 is a reaction gas inlet, and 10 is a cooling water inlet. 11 in FIG. 2 is A- in FIG.
Reference numeral 12 is a coil having a cross section of A '.

【0010】次に具体的な加工例について説明する。Next, a concrete processing example will be described.

【0011】例えばSiO2を被加工材とした場合、エ
ッチングガスとして、CF4+20%H2を流し、0.0
5Torrの雰囲気中で高電離プラズマを生成させるた
め、マイクロ波の進行方向と平行方向に一定磁界0.0
875Tとなる磁界を与え、イオン濃度を高め、さらに
イオン濃度を低温化のため、プラズマ安定化の閉じ込め
磁場として垂直方向に一定磁界0.0875Tの磁界を
与えた。そして図2のイオン集束用パルス磁界発生コイ
ルにパルス電流を流し、平均磁界1.7Tの磁界を与え
ることでイオンの集束を計った。
For example, when SiO 2 is used as the material to be processed, CF 4 + 20% H 2 is flown as an etching gas to obtain 0.0
In order to generate highly ionized plasma in an atmosphere of 5 Torr, a constant magnetic field of 0.0 in a direction parallel to the traveling direction of microwaves.
A magnetic field of 875 T was applied to increase the ion concentration, and in order to lower the ion concentration, a constant magnetic field of 0.0875 T was applied in the vertical direction as a confining magnetic field for plasma stabilization. Then, a pulse current was passed through the ion focusing pulse magnetic field generation coil shown in FIG. 2 to give a magnetic field having an average magnetic field of 1.7 T to measure the ion focusing.

【0012】その結果、最高0.4μm/minの高速
エッチングを行うことができた。これは従来方法の8倍
のエッチング速度である。又、回り込み角は、従来の1
4°に対して最低0.8°であり、マスクなしで極めて
優れた部分処理が得られた。この時パルス幅条件と結果
を表1に示す。
As a result, high-speed etching at a maximum of 0.4 μm / min could be performed. This is 8 times as fast as the conventional method. Also, the wrap-around angle is 1
The minimum was 0.8 ° with respect to 4 °, and a very excellent partial treatment was obtained without a mask. Table 1 shows the pulse width conditions and results at this time.

【0013】[0013]

【表1】 [Table 1]

【0014】又、被加工材としてAl23についても加
工したところ、表2に示す如くイオン集束の効果が得ら
れ、マスク無し加工が可能であることが判った。
Further, when Al 2 O 3 was also processed as a material to be processed, it was found that the effect of ion focusing was obtained as shown in Table 2 and maskless processing was possible.

【0015】[0015]

【表2】 [Table 2]

【0016】次にSiを被加工材として、Alの薄膜抵
抗体コーティングを行った。ガスとしてAl(C25
2を流し、1Torrの雰囲気中でコーティング処理を
行った。高電離プラズマ生成のためと異方性効果を高め
るための磁界は平均0.0875Tとした。
Next, a thin film resistor coating of Al was performed using Si as a work material. Al (C 2 H 5 ) as gas
2 was flown, and coating treatment was performed in an atmosphere of 1 Torr. The average magnetic field for generating highly ionized plasma and for enhancing the anisotropic effect was 0.0875T.

【0017】イオン集束用磁界として平均1.7Tの磁
界を与えてコーティングを行った。その結果を表3に示
す。例えばτon0.005msの場合、被覆速度は3.
4μm/min、面粗度は0.08μHmax、厚み差は
0.026μm/mm2であり均一である。
Coating was performed by applying a magnetic field of 1.7 T on average as a magnetic field for focusing ions. The results are shown in Table 3. For example, when τ on is 0.005 ms, the coating speed is 3.
The surface roughness is 4 μm / min, the surface roughness is 0.08 μH max , and the thickness difference is 0.026 μm / mm 2, which are uniform.

【0018】[0018]

【表3】 [Table 3]

【0019】次にSiO2を被加工材とし、エッチング
ガスとしてCF4+20%H2を流し、0.05Torr
の雰囲気中で高電離プラズマを生成させるため、マイク
ロ波の進行方向と平行方向に磁界を与えた場合の試験結
果を表4に示す。又、マイクロ波の進行方向と垂直方向
に磁界を与えた場合の試験結果を表5にそれぞれ示す。
Next, SiO 2 is used as a work material, CF 4 + 20% H 2 is flown as an etching gas, and the pressure is adjusted to 0.05 Torr.
Table 4 shows the test results when a magnetic field was applied in the direction parallel to the traveling direction of the microwave in order to generate high-ionization plasma in the atmosphere. Table 5 shows the test results when a magnetic field was applied in the direction perpendicular to the microwave traveling direction.

【0020】[0020]

【表4】 [Table 4]

【0021】[0021]

【表5】 [Table 5]

【0022】又、前記表1,2,3に対応して、平行コ
イルと垂直コイルにパルス電圧を印加した場合の試験結
果を表6、表7、表8に示す。
Corresponding to Tables 1, 2, and 3, Table 6, Table 7, and Table 8 show test results when a pulse voltage was applied to the parallel coil and the vertical coil.

【0023】[0023]

【表6】 [Table 6]

【0024】[0024]

【表7】 [Table 7]

【0025】[0025]

【表8】 [Table 8]

【0026】[0026]

【発明の効果】本発明によれば、イオン集束用コイルに
パルス電流を流し、パルス磁界を与えることにより、イ
オンを集速して高速化し、マスクなしでの異方性エッチ
ング並びにコーティング処理を行うことができる。した
がって、高密度基板に高異方性ECRプラズマ処理を施
すことができる。
According to the present invention, a pulse current is passed through the ion focusing coil to apply a pulse magnetic field to accelerate and accelerate the ions, and anisotropic etching and coating treatment without a mask are performed. be able to. Therefore, the high-density substrate can be subjected to the highly anisotropic ECR plasma treatment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の説明図である。FIG. 1 is an explanatory diagram of an embodiment of the present invention.

【図2】図1のA−A’断面図である。FIG. 2 is a cross-sectional view taken along the line A-A ′ of FIG.

【図3】プラズマエッチング、コーティング加工におけ
る回り込み角の説明図である。
FIG. 3 is an explanatory diagram of a wraparound angle in plasma etching and coating processing.

【図4】従来のイオン散乱の説明図である。FIG. 4 is an explanatory diagram of conventional ion scattering.

【符号の説明】[Explanation of symbols]

1 被加工材 2 イオン集束用パルス磁界発生コイル 3 マイクロ波と平行なパルス磁界発生コイル 4 ヨーク 5 マイクロ波に垂直なパルス磁界発生コイル 6 イオン源 7 冷却水排水管 8 マイクロ波の進行方向 9 反応ガス導入管 10 冷却水導入管 11 ヨーク 12 コイル 1 Work Material 2 Ion Focusing Pulse Magnetic Field Generating Coil 3 Pulse Magnetic Field Generating Coil Parallel to Microwave 4 Yoke 5 Pulse Magnetic Field Generating Coil Perpendicular to Microwave 6 Ion Source 7 Cooling Water Drain 8 Microwave Propagation 9 Reaction Gas introduction pipe 10 Cooling water introduction pipe 11 Yoke 12 Coil

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大場 和夫 埼玉県東松山市松葉町4丁目2番3号 (72)発明者 嶋 好範 神奈川県川崎市麻生区王禅寺768番地15 (72)発明者 大場 章 埼玉県朝霞市浜崎1丁目9番地の3−205 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuo Oba 4-chome 2-3, Matsuba-cho, Higashimatsuyama-shi, Saitama (72) Inventor Yoshinori Shima 768, Ozenji, Aso-ku, Kawasaki-shi, Kanagawa 15 (72) Inventor Oba Chapter 3-205, 1-9 Hamasaki, Asaka City, Saitama Prefecture

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 マイクロ波の進行方向と平行もしくは垂
直又は平行と垂直に磁界を与えて生じる電子サイクロト
ロン共鳴(ECR)現象を利用したECRプラズマ処理
方法において、プラズマ中のイオンを集束するために回
転磁界を与え、イオン流を絞ることを特徴とするECR
プラズマ処理方法。
1. An ECR plasma processing method utilizing an electron cyclotron resonance (ECR) phenomenon generated by applying a magnetic field parallel to or perpendicular to the traveling direction of microwaves or perpendicular to parallel to the direction of rotation, in order to focus ions in plasma. ECR characterized by applying a magnetic field and narrowing the ion flow
Plasma processing method.
【請求項2】 マイクロ波の進行方向と平行もしくは垂
直又は平行と垂直に与える磁界にパルス電圧を印加する
請求項1記載のECRプラズマ処理方法。
2. The ECR plasma processing method according to claim 1, wherein a pulse voltage is applied to a magnetic field applied parallel or perpendicular to the traveling direction of the microwave or perpendicular to the parallel direction.
JP4270485A 1992-10-08 1992-10-08 ECR plasma processing method Expired - Lifetime JP2706022B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4270485A JP2706022B2 (en) 1992-10-08 1992-10-08 ECR plasma processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4270485A JP2706022B2 (en) 1992-10-08 1992-10-08 ECR plasma processing method

Publications (2)

Publication Number Publication Date
JPH06124796A true JPH06124796A (en) 1994-05-06
JP2706022B2 JP2706022B2 (en) 1998-01-28

Family

ID=17486953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4270485A Expired - Lifetime JP2706022B2 (en) 1992-10-08 1992-10-08 ECR plasma processing method

Country Status (1)

Country Link
JP (1) JP2706022B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022518533A (en) * 2019-01-27 2022-03-15 ライテン・インコーポレイテッド Covetic material

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03229859A (en) * 1990-02-05 1991-10-11 Nippon Steel Corp Plasma treating device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03229859A (en) * 1990-02-05 1991-10-11 Nippon Steel Corp Plasma treating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022518533A (en) * 2019-01-27 2022-03-15 ライテン・インコーポレイテッド Covetic material

Also Published As

Publication number Publication date
JP2706022B2 (en) 1998-01-28

Similar Documents

Publication Publication Date Title
US6819053B2 (en) Hall effect ion source at high current density
US4259145A (en) Ion source for reactive ion etching
JP2004281232A (en) Beam source and beam processing device
KR910005733B1 (en) Plasma treating method and apparatus
JP2693899B2 (en) ECR plasma processing method
JPH088229A (en) Microwave plasma processing method
US20060021968A1 (en) Time continuous ion-ion plasma
JPH06124796A (en) Processing of ecr plasma
JPS59232420A (en) Dry etching apparatus
JP2584396B2 (en) ECR plasma processing method
Ono et al. RF-plasma-assisted fast atom beam etching
JP2584389B2 (en) ECR plasma etching method
JP2590393B2 (en) ECR plasma etching method
JP2634910B2 (en) Microwave plasma processing equipment
JP3229987B2 (en) Neutral particle processing method and device
JPH01179324A (en) Microwave plasma treatment method
JP3223287B2 (en) Neutral particle processing method and device
JPH09275097A (en) Semiconductor manufacturing device and semiconductor manufacturing method
JP2620176B2 (en) Electronic beam small hole drilling method for semiconductor parts
JP3275036B2 (en) Electron beam excited plasma generator
JPS63110638A (en) Semiconductor manufacturing method
JPS647156B2 (en)
JPS6082661A (en) Thin film forming equipment
JPH01230770A (en) Plasma treating device
JPH025523A (en) Plasma film deposition equipment