JPH05280471A - Capacity controller for variable delivery hydraulic pump - Google Patents
Capacity controller for variable delivery hydraulic pumpInfo
- Publication number
- JPH05280471A JPH05280471A JP4102550A JP10255092A JPH05280471A JP H05280471 A JPH05280471 A JP H05280471A JP 4102550 A JP4102550 A JP 4102550A JP 10255092 A JP10255092 A JP 10255092A JP H05280471 A JPH05280471 A JP H05280471A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- pump
- variable
- discharge
- valve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Control Of Positive-Displacement Pumps (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、可変容量型油圧ポンプ
の容量を制御する装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for controlling the displacement of a variable displacement hydraulic pump.
【0002】[0002]
【従来の技術】図1に示すように、可変容量型油圧ポン
プ1(以下可変ポンプ1という)は斜板2を傾転して容
量、つまり1回転当り吐出流量を変化するものであり、
可変ポンプ1の吐出路3に方向制御弁4を介してアクチ
ュエータ5を設けた油圧回路において、前記斜板2を傾
転して容量を制御する装置として可変制御弁6と負荷検
出弁7でポンプ吐出圧P0 を容量可変シリンダ8の大径
受圧室9に供給するものが知られている。すなわち、可
変制御弁6はバネ10とポンプ吐出圧P0 でドレーン位
置Aと圧油供給位置Bに切換えられ、ポンプ吐出圧P0
が高くなると圧油供給位置Bとなってポンプ吐出圧P0
を容量可変シリンダ8の大径受圧室9に供給して小径受
圧室11との受圧面積差でピストン12を左方向に移動
して斜板2を容量小方向に傾転し、可変ポンプ1の1回
転当り吐出流量を減少し、そのピストン12の動き機械
的フィードバック機構13でバネ10にフィードバック
してバネ力を大きくして斜板2をポンプ吐出圧P0 に見
合う位置としてポンプ吐出圧×1回転当り吐出流量を一
定、つまりトルク一定制御する。負荷検出弁7は方向制
御弁4の上流側圧力P0 と負荷圧PLSの差圧△PLS(△
PLS=P0 −PLS)が大きくなると圧油供給位置Bとな
って前述と同様に斜板2を容量小方向に傾転し、その差
圧△PLSが小さくなるとドレーン位置Aとなって方向制
御弁4の開度、つまり操作ストロークに応じて可変ポン
プ1の容量を制御しアクチュエータ5の微操作性、つま
りファインコントロール性を向上している。2. Description of the Related Art As shown in FIG. 1, a variable displacement hydraulic pump 1 (hereinafter referred to as variable pump 1) tilts a swash plate 2 to change its capacity, that is, the discharge flow rate per rotation.
In the hydraulic circuit in which the actuator 5 is provided in the discharge passage 3 of the variable pump 1 via the direction control valve 4, the variable control valve 6 and the load detection valve 7 serve as a device for tilting the swash plate 2 to control the displacement. It is known that the discharge pressure P 0 is supplied to the large diameter pressure receiving chamber 9 of the variable capacity cylinder 8. That is, the variable control valve 6 is switched between the drain position A and the pressure oil supply position B by the spring 10 and the pump discharge pressure P 0 , and the pump discharge pressure P 0.
Becomes higher, it becomes the pressure oil supply position B and the pump discharge pressure P 0
Is supplied to the large-diameter pressure receiving chamber 9 of the variable capacity cylinder 8 and the piston 12 is moved leftward by the pressure receiving area difference from the small diameter pressure receiving chamber 11 to tilt the swash plate 2 in the small capacity direction. The discharge flow rate per rotation is reduced, the movement of the piston 12 is fed back to the spring 10 by the mechanical feedback mechanism 13 to increase the spring force, and the swash plate 2 is set at a position corresponding to the pump discharge pressure P 0. The discharge flow rate per rotation is controlled to be constant, that is, the torque is controlled to be constant. The load detection valve 7 is a differential pressure ΔP LS (Δ) between the upstream pressure P 0 of the directional control valve 4 and the load pressure P LS.
When P LS = P 0 −P LS ) becomes large, the pressure oil supply position becomes B, and the swash plate 2 is tilted in the small capacity direction in the same manner as described above, and when the differential pressure ΔP LS becomes smaller, it becomes the drain position A. The capacity of the variable pump 1 is controlled according to the opening degree of the directional control valve 4, that is, the operation stroke to improve the fine operability of the actuator 5, that is, the fine controllability.
【0003】[0003]
【発明が解決しようとする課題】かかる容量制御装置で
あると、機械的フィードバック機構13が必要であるか
ら、構造が複雑でコスト高となるし、機械的フィードバ
ック機構13のガタなどにより制御精度が悪くなり、し
かも斜板位置を可変制御弁6にフィードバックするか
ら、可変ポンプ1自体の効率低下によって斜板位置によ
る実際の1回転当り吐出流量が理論1回転当り吐出流量
に対して誤差が生じ出力(流量)特性が悪くなる。In such a capacity control device, since the mechanical feedback mechanism 13 is required, the structure is complicated and the cost is high, and the control accuracy is increased due to the looseness of the mechanical feedback mechanism 13 and the like. In addition, since the swash plate position is fed back to the variable control valve 6, the efficiency of the variable pump 1 itself deteriorates, so that the actual discharge flow rate per revolution due to the swash plate position causes an error with respect to the theoretical discharge flow rate per rotation, and the output is generated. (Flow rate) characteristics deteriorate.
【0004】そこで、本発明は前述の課題を解決できる
ようにした可変容量型油圧ポンプの容量制御装置を提供
することを目的とする。Therefore, an object of the present invention is to provide a displacement control device for a variable displacement hydraulic pump, which can solve the above-mentioned problems.
【0005】[0005]
【課題を解決するための手段】可変容量型油圧ポンプ2
0の斜板24を容量大・小方向に傾転する容量可変シリ
ンダ25と、可変容量型油圧ポンプ20の流量変化を検
出する第1の手段と、可変容量型油圧ポンプ20の回転
数変化及びポンプ吐出圧変化を検出する第2の手段と、
前記第1の手段の出力信号と第2の手段の出力信号とに
よって容量可変シリンダ25の大径受圧室28にポンプ
吐出圧を供給する可変制御弁31と、前記可変容量型油
圧ポンプ20の吐出路21に設けた方向切換弁22の上
流側圧力とアクチュエータの負荷圧との差圧と前記第2
の手段の出力信号で容量可変シリンダ25の大径受圧室
28にポンプ吐出圧を供給する負荷検出弁32と、可変
容量型油圧ポンプ20のポンプ吐出圧と他の油圧ポンプ
の吐出圧を比較して高圧の圧力を容量可変シリンダ25
の小径受圧室26に供給する高圧優先弁62より構成し
た可変容量型油圧ポンプの容量制御装置。[Means for Solving the Problems] Variable displacement hydraulic pump 2
A variable capacity cylinder 25 that tilts the swash plate 24 of 0 in the direction of large capacity and a small capacity, first means for detecting a flow rate change of the variable capacity hydraulic pump 20, a rotational speed change of the variable capacity hydraulic pump 20, and Second means for detecting a change in pump discharge pressure;
A variable control valve 31 for supplying pump discharge pressure to the large diameter pressure receiving chamber 28 of the variable capacity cylinder 25 by the output signal of the first means and the output signal of the second means, and the discharge of the variable displacement hydraulic pump 20. The differential pressure between the upstream pressure of the direction switching valve 22 provided in the passage 21 and the load pressure of the actuator, and the second pressure
The load detection valve 32 that supplies the pump discharge pressure to the large diameter pressure receiving chamber 28 of the variable capacity cylinder 25 by the output signal of the means, and the pump discharge pressure of the variable displacement hydraulic pump 20 and the discharge pressure of another hydraulic pump are compared. Variable pressure cylinder 25
A displacement control device for a variable displacement hydraulic pump configured by a high-pressure priority valve 62 supplied to the small diameter pressure receiving chamber 26.
【0006】[0006]
【作 用】可変容量型油圧ポンプ20の流量変化及び
回転数変化、ポンプ吐出圧変化により可変制御弁31を
切換えるから機械的フィードバック機構を用いずにトル
ク一定制御でき、負荷検出弁32を回転数によって切換
えて方向制御弁の通過流量を回転数に応じて増減してア
クチュエータのファインコントロール性を向上できる
し、可変容量型油圧ポンプ20のポンプ吐出圧が斜板作
動圧力以下となった時でもその容量を制御できる。[Operation] Since the variable control valve 31 is switched according to the flow rate change and the rotation speed change of the variable displacement hydraulic pump 20, and the pump discharge pressure change, constant torque control can be performed without using a mechanical feedback mechanism, and the load detection valve 32 can be rotated at the rotation speed. It is possible to improve the fine controllability of the actuator by changing over the flow rate of the directional control valve according to the number of revolutions by changing over by switching by, and even when the pump discharge pressure of the variable displacement hydraulic pump 20 becomes equal to or lower than the swash plate operating pressure. You can control the capacity.
【0007】[0007]
【実 施 例】図2に示すように、可変ポンプ20の吐
出路21には複数の方向切換弁22を介して複数のアク
チュエータ23が接続され、その可変ポンプ20の容
量、つまり1回転当り吐出量qを増減する斜板24は容
量可変シリンダ25で容量大・小方向に傾転され、この
容量可変シリンダ25の小径受圧室26は通路27に接
続し、大径受圧室28は通路29,30で可変制御弁3
1と負荷検出弁32に接続している。前記可変ポンプ2
0とともに駆動される固定ポンプ33の吐出路34には
絞り35が設けてあると共に、その吐出路34における
絞り35前後を短絡するバイパス路36にはバイパス弁
37が設けられ、このバイパス弁37はバネ38で閉じ
方向に押され、受圧部39に作用する可変ポンプ20の
ポンプ吐出圧P0 で開方向に押されてバイパス弁37の
開度はポンプ吐出圧P0 に比例して大きくなる。前記固
定ポンプ33の吐出路34はリリーフ弁60を経てタン
ク61に接続し、この吐出路34の絞り35後流側と吐
出路21との間にシャトル弁又はチェック弁等の高圧優
先弁62が設けられ、その出力側に前記容量可変シリン
ダ25の小径受圧室26に接続した通路27が接続して
ある。前記可変制御弁31はドレーン位置Aと圧油供給
位置Bを備え、弱いバネ40でドレーン位置Aに押され
て可変ポンプ20が停止している時にはドレーン位置A
となるようにしてあり、前記可変制御弁31は第1受圧
部41に作用する圧力で圧油供給位置Bに向けて押さ
れ、第2受圧部42に作用する圧力でドレーン位置Aに
向けて押され、その第1受圧部41は可変ポンプ20の
吐出路21に設けた絞り43の上流側に第1パイロット
通路44で接続し、第2受圧部42は絞り43の下流側
に第2パイロット通路45で接続して可変制御弁31は
絞り43前後の差圧△P(△P=P0 −P1 )に比例し
た第1の力F1 で圧油供給位置Bに向けて押される。前
記可変制御弁31は第3受圧部46に作用する圧力でド
レーン位置Aに向けて押され、第4受圧部47に作用す
る圧力で圧油供給位置Bに向けて押され、その第3受圧
部46は第3パイロット通路48で固定ポンプ33の吐
出路34の絞り35の上流側に接続し、第4受圧部47
は第4パイロット通路49で絞り35の下流側に接続し
て可変制御弁31は絞り35前後の差圧△PC (△PC
=P2−P3 )に比例した第2の力F2 でドレーン位置
Aに向けて押される。前記負荷検出弁32はドレーン位
置Aと圧油供給位置Bを備え、弱いバネ50でドレーン
位置Aに押されて可変ポンプ20が停止している時には
ドレーン位置Aとなるようにしてあり、前記負荷検出弁
32は第1受圧部51に作用する圧力で圧油供給位置B
に向けて押され、第2受圧部52に作用する圧力でドレ
ーン位置Aに向けて押され、その第1受圧部51は方向
制御弁22の上流側に第1パイロット通路54で接続
し、第2受圧部52は各方向切換弁22の負荷圧検出用
の第2パイロット通路56に接続して方向制御弁22の
入口側圧力、つまり絞り43の下流側圧力P1 と最も高
い負荷圧PLSとの差圧△PLS(△PLS=P1 −PLS)に
比例した第1の力F1 で圧油供給位置Bに向けて押され
る。前記負荷検出弁32は第3受圧部57に作用する圧
力でドレーン位置Aに向けて押され、第4受圧部58に
作用する圧力で圧油供給位置Bに向けて押され、その第
3受圧部57は第3パイロット通路59で固定ポンプ3
3の吐出路34の絞り35の上流側に接続し、第4受圧
部58は第4パイロット通路60で絞り35の下流側に
接続して負荷検出弁32は絞り35前後の差圧△P
C (△PC =P2−P3 )に比例した第2の力F2 でド
レーン位置Aに向けて押される。[Example] As shown in FIG. 2, a plurality of actuators 23 are connected to a discharge passage 21 of a variable pump 20 through a plurality of directional switching valves 22. The swash plate 24 for increasing / decreasing the amount q is tilted by the variable capacity cylinder 25 in the directions of large and small capacity, the small diameter pressure receiving chamber 26 of the variable volume cylinder 25 is connected to the passage 27, and the large diameter pressure receiving chamber 28 is connected to the passage 29, Variable control valve 3 at 30
1 and the load detection valve 32. Variable pump 2
The discharge passage 34 of the fixed pump 33 that is driven together with 0 is provided with a throttle 35, and the bypass passage 36 that short-circuits the throttle 35 in the discharge passage 34 is provided with a bypass valve 37. The opening of the bypass valve 37 is increased in proportion to the pump discharge pressure P 0 by being pushed in the closing direction by the spring 38 and pushed in the opening direction by the pump discharge pressure P 0 of the variable pump 20 acting on the pressure receiving portion 39. The discharge passage 34 of the fixed pump 33 is connected to a tank 61 via a relief valve 60, and a high-pressure priority valve 62 such as a shuttle valve or a check valve is provided between the discharge passage 21 and the downstream side of the throttle 35. A passage 27 connected to the small diameter pressure receiving chamber 26 of the variable capacity cylinder 25 is provided on the output side thereof. The variable control valve 31 has a drain position A and a pressure oil supply position B, and when the variable pump 20 is stopped by being pushed to the drain position A by a weak spring 40, the drain position A
The variable control valve 31 is pushed toward the pressure oil supply position B by the pressure acting on the first pressure receiving portion 41, and toward the drain position A by the pressure acting on the second pressure receiving portion 42. The first pressure receiving portion 41 is pressed and is connected to the upstream side of the throttle 43 provided in the discharge passage 21 of the variable pump 20 by the first pilot passage 44, and the second pressure receiving portion 42 is connected to the downstream side of the throttle 43 by the second pilot. Connected by the passage 45, the variable control valve 31 is pushed toward the pressure oil supply position B by the first force F 1 proportional to the differential pressure ΔP (ΔP = P 0 −P 1 ) across the throttle 43. The variable control valve 31 is pushed toward the drain position A by the pressure acting on the third pressure receiving portion 46, pushed toward the pressure oil supply position B by the pressure acting on the fourth pressure receiving portion 47, and the third pressure receiving The portion 46 is connected to the upstream side of the throttle 35 of the discharge passage 34 of the fixed pump 33 by the third pilot passage 48, and the fourth pressure receiving portion 47.
Is connected to the downstream side of the throttle 35 by the fourth pilot passage 49, and the variable control valve 31 is connected to the differential pressure ΔP C (ΔP C
= P 2 −P 3 ), and the second force F 2 is pushed toward the drain position A. The load detection valve 32 is provided with a drain position A and a pressure oil supply position B, and is set to the drain position A when the variable pump 20 is stopped by being pushed to the drain position A by the weak spring 50. The detection valve 32 is operated by the pressure acting on the first pressure receiving portion 51, and the pressure oil supply position B
Is pushed toward the drain position A by the pressure acting on the second pressure receiving portion 52, and the first pressure receiving portion 51 is connected to the upstream side of the directional control valve 22 by the first pilot passage 54. The second pressure receiving portion 52 is connected to the second pilot passage 56 for detecting the load pressure of each directional control valve 22, and the inlet pressure of the directional control valve 22, that is, the downstream pressure P 1 of the throttle 43 and the highest load pressure P LS. It is pushed toward the pressure oil supply position B by the first force F 1 proportional to the differential pressure ΔP LS (ΔP LS = P 1 −P LS ). The load detection valve 32 is pushed toward the drain position A by the pressure acting on the third pressure receiving portion 57, is pushed toward the pressure oil supply position B by the pressure acting on the fourth pressure receiving portion 58, and the third pressure receiving thereof is performed. The portion 57 is the third pilot passage 59 and is the fixed pump 3
3 is connected to the upstream side of the throttle 35 in the discharge passage 34, the fourth pressure receiving portion 58 is connected to the downstream side of the throttle 35 in the fourth pilot passage 60, and the load detection valve 32 is connected to the differential pressure ΔP before and after the throttle 35.
The second force F 2 proportional to C (ΔP C = P 2 −P 3 ) is pushed toward the drain position A.
【0008】次に可変ポンプ20の容量制御動作を説明
する。 (可変制御弁31の動作) 可変ポンプ20の回転数が一定でポンプ吐出圧が変化
した時。ポンプ吐出圧P0 がパイパス弁37のセット圧
以下であるとバイパス弁37が閉となって、固定ポンプ
33の吐出圧油は全量が絞り35を通過するから、その
絞り35前後の差圧△PC による第2の力F2 が絞り4
3前後の差圧△Pによる第1の力F1 よりも大きくな
り、可変制御弁31はドレーン位置Aとなり、容量可変
シリンダ25の大径受圧室28が通路29,30を通っ
てタンク61に連通するから小径受圧室26に作用する
ポンプ吐出圧P0 で容量可変シリンダ25は右方向に移
動して斜板24は容量大方向に傾転し、可変ポンプ20
の1回転当り吐出流量が増大して単位時間当り吐出量が
増大するから絞り43前後の差圧が大きくなって第1の
力F1 が大きくなり、この第1の力F1 と第2の力F2
がつり合ったところで斜板24の位置が保持される。つ
まり、絞り43前後の差圧が可変ポンプ1の流量検出手
段となって可変制御弁31にフィードバックされる。前
述の状態においてポンプ吐出圧P0 がパイパス弁37の
セット圧以上となるとパイパス弁37が開き作動して固
定ポンプ33の吐出圧油の一部がパイパス路36を流れ
るから絞り35を流れる流量が減少してその絞り35前
後の差圧△PC が低下し、可変制御弁31の第2の力F
2 が小さくなるから可変制御弁31は圧油供給位置Bと
なり、ポンプ吐出圧P0 が通路62,29から容量可変
シリンダ25の大径受圧室28に供給されて受圧面積差
によって容量可変シリンダ25は左方向に移動して斜板
24を容量小方向に傾転する。これにより、可変ポンプ
20の1回転当り吐出流量が減少して単位時間当り吐出
流量も減少するから絞り43前後の差圧が小さくなって
第1の力F1 も小さくなり、この第1の力F1 と第2の
力F2 がつり合ったところで斜板24の位置が保持され
る。Next, the displacement control operation of the variable pump 20 will be described. (Operation of the variable control valve 31) When the rotation speed of the variable pump 20 is constant and the pump discharge pressure changes. If the pump discharge pressure P 0 is less than or equal to the set pressure of the bypass valve 37, the bypass valve 37 is closed and the discharge pressure oil of the fixed pump 33 entirely passes through the throttle 35. Therefore, the differential pressure Δ before and after the throttle 35. The second force F 2 due to P C is the diaphragm 4
It becomes larger than the first force F 1 due to the differential pressure ΔP before and after 3, the variable control valve 31 becomes the drain position A, and the large diameter pressure receiving chamber 28 of the variable capacity cylinder 25 passes through the passages 29 and 30 to the tank 61. Since they communicate with each other, the variable displacement cylinder 25 moves to the right by the pump discharge pressure P 0 acting on the small diameter pressure receiving chamber 26, the swash plate 24 tilts toward the large displacement direction, and the variable pump 20 moves.
Since the discharge flow rate per one rotation increases and the discharge amount per unit time increases, the differential pressure before and after the throttle 43 increases and the first force F 1 increases, and the first force F 1 and the second force F 1 increase. Force F 2
The position of the swash plate 24 is held where the two are balanced. That is, the differential pressure before and after the throttle 43 serves as a flow rate detecting means of the variable pump 1 and is fed back to the variable control valve 31. When the pump discharge pressure P 0 becomes equal to or higher than the set pressure of the bypass valve 37 in the above-mentioned state, the bypass valve 37 is opened and a part of the discharge pressure oil of the fixed pump 33 flows through the bypass passage 36, so that the flow rate of the throttle 35 increases. As the differential pressure ΔP C before and after the throttle 35 decreases, the second force F of the variable control valve 31 decreases.
Since 2 becomes smaller, the variable control valve 31 becomes the pressure oil supply position B, the pump discharge pressure P 0 is supplied from the passages 62 and 29 to the large diameter pressure receiving chamber 28 of the variable volume cylinder 25, and the variable pressure cylinder 25 is caused by the pressure receiving area difference. Moves to the left and tilts the swash plate 24 in the small capacity direction. As a result, the discharge flow rate per one rotation of the variable pump 20 decreases and the discharge flow rate per unit time also decreases, so that the differential pressure across the throttle 43 decreases and the first force F 1 also decreases. The position of the swash plate 24 is maintained when F 1 and the second force F 2 are balanced.
【0009】前述の状態からポンプ吐出圧P0 が更に高
くなると、バイバス弁37が更に開き作動して通路流量
が増えるから絞り35を流れる流量が減少して絞り35
前後の差圧△PC が更に小さくなるので、可変制御弁3
1に作用する第2の力F2 が更に小さくなって可変制御
弁31は圧油供給位置Bとなって前述と同様にして容量
可変シリンダ25が左方向に移動し斜板24が容量小方
向に傾転して1回転当り吐出流量が減少して単位時間当
り吐出流量が減少し、前述と同様に絞り43前後の差圧
が小さくなって第1の力F1 も小さくなり、この第1の
力F1 と第2の力F2 がつり合ったところで斜板24の
位置が保持される。以上のように、可変ポンプ20の回
転数が一定の時にはポンプ吐出圧P0 によって斜板24
の位置が決定されてポンプ吐出圧P0 ×1回転当り吐出
流量qが一定、つまりトルク一定に制御される。When the pump discharge pressure P 0 further increases from the above-mentioned state, the bypass valve 37 is further opened and the flow rate of the passage increases, so the flow rate through the throttle 35 decreases and the throttle 35 increases.
Since the differential pressure ΔP C between the front and rear becomes even smaller, the variable control valve 3
The second force F 2 acting on 1 becomes smaller, the variable control valve 31 becomes the pressure oil supply position B, and the variable capacity cylinder 25 moves leftward and the swash plate 24 moves in the small capacity direction in the same manner as described above. The discharge flow rate per rotation decreases and the discharge flow rate per unit time decreases, the differential pressure before and after the throttle 43 decreases and the first force F 1 also decreases as described above. The position of the swash plate 24 is held when the force F 1 and the second force F 2 are balanced. As described above, when the rotation speed of the variable pump 20 is constant, the swash plate 24 is driven by the pump discharge pressure P 0 .
Is determined and the discharge flow rate q per pump discharge pressure P 0 × 1 rotation is controlled to be constant, that is, the torque is controlled to be constant.
【0010】可変ポンプ20のポンプ吐出圧が一定で
回転数が変化した時。ある値のポンプ吐出圧P0 で斜板
24位置が決定されている状態で可変ポンプ20の回転
数が増加すると1回転当り吐出流量が同じても単位時間
当り吐出流量が増加して絞り43前後の差圧△Pが大き
くなるが、可変ポンプ20とともに駆動される固定ポン
プ33の単位時間当り吐出流量も増大して絞り35前後
の差圧△PC も大きくなり、可変制御弁31に作用する
第1の力F1 と第2の力F2 は等しくなって可変制御弁
31はつり合ったままとなって斜板24の位置は変化せ
ずに可変ポンプ20の1回転当り吐出流量は変化しな
い。このことは可変ポンプ20の回転数が低下した時も
同様となるから、可変ポンプ20の容量をトルク一定制
御できる。すなわち、固定ポンプ33と絞り35が可変
ポンプ回転数検出手段となる。When the pump discharge pressure of the variable pump 20 is constant and the rotation speed changes. When the number of rotations of the variable pump 20 is increased in a state where the swash plate 24 position is determined by a certain value of the pump discharge pressure P 0 , the discharge flow rate per unit time is increased even if the discharge flow rate per rotation is the same, and the throttle 43 is located around the throttle 43. Of the fixed pump 33 that is driven together with the variable pump 20 increases, and the differential pressure ΔP C before and after the throttle 35 also increases, which acts on the variable control valve 31. The first force F 1 and the second force F 2 become equal, the variable control valve 31 remains balanced, the position of the swash plate 24 does not change, and the discharge flow rate per rotation of the variable pump 20 does not change. .. This also applies when the rotational speed of the variable pump 20 is reduced, so that the capacity of the variable pump 20 can be controlled to a constant torque. That is, the fixed pump 33 and the throttle 35 serve as a variable pump rotation speed detecting means.
【0011】(負荷検出弁32の動作) 可変ポンプ20の回転数が一定の時。負荷検出弁32
は固定ポンプ33の吐出路34に設けた絞り35前後の
差圧△PC による第2の力F2 と上流側圧力P1 と最高
負荷圧PLSの差圧△PLSによる第1の力F1 が等しくな
る位置となり、それによって可変ポンプ20の斜板24
の位置が決定される。前記上流側圧力P1 と最高負荷圧
PLSの差圧△PLSは方向制御弁22の開度、つまり操作
ストロークに比例し、絞り35前後の差圧△PC は可変
ポンプ20の回転数が一定であれば一定であるので、操
作ストロークが小さい時には前記差圧△PLSが大きく負
荷検出弁32に作用する第1の力F1 が前記差圧△PC
による第2の力F2 より大きくなって負荷検出弁32は
圧油供給位置Bとなり、通路63,30,29より容量
可変シリンダ25の大径受圧室28にポンプ吐出圧P0
が供給されるから前述と同様に斜板24は容量小方向に
傾転して1回転当り吐出流量が減少して単位時間当り流
量が減少し、方向制御弁22を通過する流量が減少して
前記の上流側圧力P1 と最高負荷圧PLSとの差圧が小さ
くなって第1の力F1 が低下し、その第1の力F1 と第
2の力F2 がつり合った位置で斜板24の位置が決定さ
れる。同様に方向制御弁22の操作ストロークが大きい
ときには前記差△PLSが小さく、可変ポンプ20の斜板
24の位置は前述の場合よりも容量大方向の位置とな
る。これにより、可変ポンプ20の単位時間当り吐出流
量は方向制御弁22の操作ストロークが小さい時には少
なく、大きい時には多くなるので、最高負荷圧によらず
方向制御弁22の操作ストロークに見合った流量制御が
できてアクチュエータ23の微操作性、つまりファイン
コントロール性を向上できる。(Operation of the load detection valve 32) When the rotation speed of the variable pump 20 is constant. Load detection valve 32
The first force due to the differential pressure △ P LS of the second force F 2 and the upstream pressure P 1 and the maximum load pressure P LS by differential pressure △ P C diaphragm 35 around which is provided in the discharge passage 34 of the fixed pump 33 is F 1 becomes a position where the swash plate 24 of the variable pump 20 becomes equal.
The position of is determined. Rotational speed of the upstream pressure P 1 and the maximum load pressure P LS differential pressure △ P LS is the opening of the directional control valve 22, that is proportional to the operation stroke, the diaphragm 35 before and after differential pressure △ P C is the variable pump 20 Is constant when the operating stroke is small, the differential pressure ΔP LS is large and the first force F 1 acting on the load detection valve 32 is the differential pressure ΔP C.
Becomes larger than the second force F 2 by the load detection valve 32 to the pressure oil supply position B, and the pump discharge pressure P 0 to the large diameter pressure receiving chamber 28 of the capacity variable cylinder 25 from the passages 63, 30, 29.
As described above, the swash plate 24 is tilted in the small capacity direction, the discharge flow rate per one rotation is reduced, the flow rate per unit time is reduced, and the flow rate passing through the directional control valve 22 is reduced. A position where the differential pressure between the upstream pressure P 1 and the maximum load pressure P LS is reduced, the first force F 1 is reduced, and the first force F 1 and the second force F 2 are balanced. The position of the swash plate 24 is determined by. Similarly, when the operation stroke of the directional control valve 22 is large, the difference ΔP LS is small, and the position of the swash plate 24 of the variable pump 20 is in the larger capacity direction than in the case described above. As a result, the discharge flow rate per unit time of the variable pump 20 is small when the operation stroke of the directional control valve 22 is small, and is large when it is large, so that the flow rate control suitable for the operation stroke of the directional control valve 22 can be performed regardless of the maximum load pressure. As a result, the fine operability of the actuator 23, that is, the fine controllability can be improved.
【0012】可変ポンプ20の回転数が変化した時。
可変ポンプ20の回転数が変化すると固定ポンプ33の
回転数も変化するために、前記絞り35前後の差圧△P
C が上流側圧力P1 と最高負荷圧PLSの差圧△PLSと同
様に変化するので、斜板24の位置は変化しないが、可
変ポンプ20の単位時間当り吐出流量が増減するから、
方向制御弁22を通過する流量が回転数変化により変化
して上流側圧力P1 と最高負荷圧PLSの差圧△PLSは回
転数変化の2乗だけ変化するので、方向制御弁22の同
一操作ストロークに対する通過流量は回転数変化だけ変
化し可変ポンプ20の回転数に比例した流量制御弁がで
きる。例えば、可変ポンプ20の回転数が1/2となる
と前記差圧△PLSは1/4となり、方向制御弁22の同
一ストロークに対する通過流量は1/2となる。When the rotational speed of the variable pump 20 changes.
When the rotation speed of the variable pump 20 changes, the rotation speed of the fixed pump 33 also changes, so that the differential pressure ΔP before and after the throttle 35.
Since C is changed similarly to the differential pressure △ P LS of the upstream pressure P 1 and the maximum load pressure P LS, since the position of the swash plate 24 does not change, per unit time the discharge flow rate of the variable pump 20 is increased or decreased,
Since flow through the directional control valve 22 is a differential pressure △ P LS of the maximum load pressure P LS and the upstream pressure P 1 is changed by speed change changes by the square of the speed change, directional control valve 22 The passing flow rate for the same operation stroke changes only by the change in the rotation speed, so that a flow control valve proportional to the rotation speed of the variable pump 20 can be formed. For example, when the rotation speed of the variable pump 20 becomes 1/2, the differential pressure ΔP LS becomes 1/4, and the passage flow rate of the directional control valve 22 for the same stroke becomes 1/2.
【0013】以上の説明は可変ポンプ20の吐出圧P0
が固定ポンプ33の吐出圧P2 よりも高い場合であり、
可変ポンプ20の吐出圧P0 が固定ポンプ33の吐出圧
P2よりも低い場合には固定ポンプ33の吐出圧油が高
圧優先弁62より容量可変シリンダ25の小径受圧室2
6に供給される。これにより、アクチュエータ23がオ
ーバランした時あるいは外力等により可変ポンプ20の
吐出流量以上に動いた時に可変ポンプ20の吐出圧P0
が著しく低圧もしくは負圧になると、固定ポンプ33の
吐出圧油を容量可変シリンダ25の小径受圧室26に供
給して斜板24を制御できる。The above description is based on the discharge pressure P 0 of the variable pump 20.
Is higher than the discharge pressure P 2 of the fixed pump 33,
When the discharge pressure P 0 of the variable pump 20 is lower than the discharge pressure P 2 of the fixed pump 33, the discharge pressure oil of the fixed pump 33 is discharged from the high pressure priority valve 62 to the small diameter pressure receiving chamber 2 of the variable capacity cylinder 25.
6 is supplied. This allows the discharge pressure P 0 of the variable pump 20 when the actuator 23 overruns or moves more than the discharge flow rate of the variable pump 20 due to external force or the like.
When the pressure becomes extremely low or negative, the swash plate 24 can be controlled by supplying the pressure oil discharged from the fixed pump 33 to the small diameter pressure receiving chamber 26 of the variable capacity cylinder 25.
【0014】すなわち、高圧優先弁62を設けずに通路
27を可変ポンプ20の吐出路20aに接続してポンプ
吐出圧油を容量可変シリンダ25の小径受圧室26に供
給するようにすると、前述のように可変ポンプ20の吐
出圧P0 が著しく低圧もしくは負圧となると容量可変シ
リンダ25を縮小方向に作動できずに斜板24を制御で
きなくなる。That is, if the passage 27 is connected to the discharge passage 20a of the variable pump 20 without providing the high pressure priority valve 62 and the pump discharge pressure oil is supplied to the small diameter pressure receiving chamber 26 of the variable capacity cylinder 25, As described above, when the discharge pressure P 0 of the variable pump 20 becomes extremely low or negative, the variable capacity cylinder 25 cannot be operated in the reduction direction, and the swash plate 24 cannot be controlled.
【0015】例えば、1つのアクチュエータ23をパワ
ーショベルのブームシリンダ、他のアクチュエータ23
をパワーショベルの旋回用モータとし、斜板24が最小
角度位置の状態でブーム下げ、旋回加速の操作をした時
に、ブームシリンダが外力によって可変ポンプ20の吐
出流量以上縮小すると可変ポンプ20のポンプ吐出圧が
著しく低下もしくは負圧となり、アクチュエータ23の
負荷圧PLSとポンプ吐出圧P0 の差圧が低下する。この
結果負荷検出弁32は第1・第2パイロット通路54,
56の差圧が少なくなるため、固定ポンプ33の吐出路
34に設けた絞り35前後の差圧によってドレーン位置
Aとなる。このため容量可変シリンダ25の大径受圧室
28はタンク61に連通し、その容量可変シリンダ25
は小径受圧室26内の圧力により縮小して斜板24を最
大角度位置に向けて作動しなければならないが、前述の
ように小径受圧室26にポンプ吐出圧油を供給する場合
にはそのポンプ吐出圧P0 が著しく低圧もしくは負圧と
なって斜板作動圧力以下であるから斜板24を制御でき
ずに最小角度位置のままとなり続いて操作する旋回動作
ができなくなる。For example, one actuator 23 is a boom cylinder of a power shovel, and another actuator 23.
Is a swing motor of the power shovel, and when the boom cylinder is lowered with the swash plate 24 at the minimum angular position and the swing acceleration is performed, if the boom cylinder reduces by more than the discharge flow rate of the variable pump 20 by the external force, the pump discharge of the variable pump 20 is performed. The pressure remarkably decreases or becomes a negative pressure, and the differential pressure between the load pressure P LS of the actuator 23 and the pump discharge pressure P 0 decreases. As a result, the load detection valve 32 has the first and second pilot passages 54,
Since the differential pressure of 56 is reduced, the drain position A is reached by the differential pressure before and after the throttle 35 provided in the discharge passage 34 of the fixed pump 33. Therefore, the large diameter pressure receiving chamber 28 of the variable volume cylinder 25 communicates with the tank 61, and
Must be reduced by the pressure in the small diameter pressure receiving chamber 26 to operate the swash plate 24 toward the maximum angular position. However, when the pump discharge pressure oil is supplied to the small diameter pressure receiving chamber 26 as described above, Since the discharge pressure P 0 becomes a remarkably low pressure or a negative pressure and is equal to or lower than the swash plate operating pressure, the swash plate 24 cannot be controlled and remains in the minimum angular position, and the swiveling operation to be operated subsequently cannot be performed.
【0016】これに対して、図2に示すように高圧優先
弁62で固定ポンプ33の吐出圧P2 を容量可変シリン
ダ25の小径受圧室26に供給すれば、前述の状態の時
に容量可変シリンダ25の小径受圧室26内の圧力が斜
板作動圧力以上となって斜板24を最大角度位置に向け
て作動できる。On the other hand, as shown in FIG. 2, if the discharge pressure P 2 of the fixed pump 33 is supplied to the small diameter pressure receiving chamber 26 of the variable capacity cylinder 25 by the high pressure priority valve 62, the variable capacity cylinder in the above-mentioned state. The pressure in the small diameter pressure receiving chamber 26 of 25 becomes equal to or higher than the swash plate operating pressure, and the swash plate 24 can be operated toward the maximum angular position.
【0017】[0017]
【発明の効果】可変容量油圧ポンプ20の容量をトルク
一定として制御できるし、機械的フィードバック機構が
不要となって構造簡単でコスト安となるばかりか、トル
ク一定制御の精度を向上できるし、可変容量型油圧ポン
プ20の効率が低下しても出力流量特性は低下しない。
また、可変容量型油圧ポンプ20の回転数変化に応じて
方向制御弁の通過流量を制御してアクチュエータの微操
作性を向上できる。また、可変容量型油圧ポンプ20の
ポンプ吐出圧が斜板作動圧力以下に低下しても他の油圧
ポンプの吐出圧で容量可変シリンダ25を作動して可変
容量型油圧ポンプ20の容量を制御できる。As described above, the displacement of the variable displacement hydraulic pump 20 can be controlled with a constant torque, a mechanical feedback mechanism is not required, the structure is simple and the cost is low, and the accuracy of the constant torque control can be improved. Even if the efficiency of the displacement hydraulic pump 20 decreases, the output flow rate characteristic does not decrease.
Further, the flow rate of passage of the directional control valve can be controlled according to the change in the rotational speed of the variable displacement hydraulic pump 20, and the fine operability of the actuator can be improved. Further, even if the pump discharge pressure of the variable displacement hydraulic pump 20 drops below the swash plate working pressure, the displacement variable cylinder 25 can be operated by the discharge pressure of another hydraulic pump to control the displacement of the variable displacement hydraulic pump 20. ..
【図1】従来例の線図的構成説明図である。FIG. 1 is a diagrammatic explanatory diagram of a conventional example.
【図2】本発明の実施例を示す線図的構成説明図であ
る。FIG. 2 is a diagrammatic configuration explanatory view showing an embodiment of the present invention.
20…可変容量型油圧ポンプ、21…吐出路、22…方
向制御弁、23…アクチュエータ、24…斜板、25…
容量可変シリンダ、26…小径受圧室、28…大径受圧
室、31…可変制御弁、32…負荷検出弁、33…固定
ポンプ、34…吐出路、35…絞り、37…バイパス
弁、43…絞り、62…高圧優先弁。20 ... Variable displacement hydraulic pump, 21 ... Discharge passage, 22 ... Direction control valve, 23 ... Actuator, 24 ... Swash plate, 25 ...
Variable capacity cylinder, 26 ... Small diameter pressure receiving chamber, 28 ... Large diameter pressure receiving chamber, 31 ... Variable control valve, 32 ... Load detection valve, 33 ... Fixed pump, 34 ... Discharge passage, 35 ... Throttle, 37 ... Bypass valve, 43 ... Throttle, 62 ... High pressure priority valve.
Claims (1)
容量大・小方向に傾転する容量可変シリンダ25と、可
変容量型油圧ポンプ20の流量変化を検出する第1の手
段と、可変容量型油圧ポンプ20の回転数変化及びポン
プ吐出圧変化を検出する第2の手段と、前記第1の手段
の出力信号と第2の手段の出力信号とによって容量可変
シリンダ25の大径受圧室28にポンプ吐出圧を供給す
る可変制御弁31と、前記可変容量型油圧ポンプ20の
吐出路21に設けた方向切換弁22の上流側圧力とアク
チュエータの負荷圧との差圧と前記第2の手段の出力信
号で容量可変シリンダ25の大径受圧室28にポンプ吐
出圧を供給する負荷検出弁32と、前記可変容量型油圧
ポンプ20のポンプ吐出圧と他の油圧ポンプの吐出圧を
比較して高圧の圧力を容量可変シリンダ25の小径受圧
室26に供給する高圧優先弁62より構成した可変容量
型油圧ポンプの容量制御装置。1. A variable capacity cylinder 25 for tilting a swash plate 24 of a variable capacity hydraulic pump 20 in a large capacity / small capacity direction, a first means for detecting a flow rate change of the variable capacity hydraulic pump 20, and a variable capacity cylinder. A second means for detecting a change in the number of revolutions of the displacement type hydraulic pump 20 and a change in the pump discharge pressure, and a large diameter pressure receiving chamber of the variable capacity cylinder 25 by the output signal of the first means and the output signal of the second means. The variable control valve 31 for supplying the pump discharge pressure to the valve 28, the differential pressure between the upstream pressure of the direction switching valve 22 provided in the discharge passage 21 of the variable displacement hydraulic pump 20 and the load pressure of the actuator, and the second pressure. The load detection valve 32 that supplies the pump discharge pressure to the large diameter pressure receiving chamber 28 of the variable displacement cylinder 25 by the output signal of the means, and the pump discharge pressure of the variable displacement hydraulic pump 20 and the discharge pressures of other hydraulic pumps are compared. High pressure A variable displacement hydraulic pump displacement control device comprising a high-pressure priority valve 62 for supplying the small pressure receiving chamber 26 of the variable displacement cylinder 25.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04102550A JP3084587B2 (en) | 1992-03-30 | 1992-03-30 | Displacement control device for variable displacement hydraulic pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04102550A JP3084587B2 (en) | 1992-03-30 | 1992-03-30 | Displacement control device for variable displacement hydraulic pump |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05280471A true JPH05280471A (en) | 1993-10-26 |
JP3084587B2 JP3084587B2 (en) | 2000-09-04 |
Family
ID=14330359
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04102550A Expired - Fee Related JP3084587B2 (en) | 1992-03-30 | 1992-03-30 | Displacement control device for variable displacement hydraulic pump |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3084587B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006152831A (en) * | 2004-11-25 | 2006-06-15 | Komatsu Ltd | Radial piston type fluid rotary machine |
US7094483B2 (en) | 2002-09-30 | 2006-08-22 | Seagate Technology Llc | Magnetic storage media having tilted magnetic anisotropy |
-
1992
- 1992-03-30 JP JP04102550A patent/JP3084587B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7094483B2 (en) | 2002-09-30 | 2006-08-22 | Seagate Technology Llc | Magnetic storage media having tilted magnetic anisotropy |
JP2006152831A (en) * | 2004-11-25 | 2006-06-15 | Komatsu Ltd | Radial piston type fluid rotary machine |
JP4558459B2 (en) * | 2004-11-25 | 2010-10-06 | 株式会社小松製作所 | Radial piston type fluid rotary machine |
Also Published As
Publication number | Publication date |
---|---|
JP3084587B2 (en) | 2000-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3756814B2 (en) | Pump capacity control device and valve device | |
JP4976920B2 (en) | Pump discharge control device | |
WO1998022716A1 (en) | Hydraulic drive apparatus | |
JPH04136507A (en) | Hydraulic circuit | |
JPH06137276A (en) | Volume control device for variable volume hydraulic pump | |
JPH0579502A (en) | Hydraulic construction machine | |
JPH10196604A (en) | Hydraulic drive | |
JP2004116656A (en) | Pressure oil energy recovery/regeneration device | |
JPH0841933A (en) | Hydraulic controller for excavator | |
JPH05280471A (en) | Capacity controller for variable delivery hydraulic pump | |
JPH0533776A (en) | Capacity control device for variable capacity type hydraulic pump | |
JPH0599126A (en) | Capacity control device for variable capacity type hydraulic pump | |
JP5985268B2 (en) | Hydraulic system for construction machinery | |
JPH0533775A (en) | Capacity control device for variable capacity type hydraulic pump | |
JP2557002B2 (en) | Operation valve used for hydraulic circuit | |
JPH0599124A (en) | Capacity control device for variable capacity type hydraulic pump | |
JP3112189B2 (en) | Displacement control device for variable displacement hydraulic pump | |
JPH0599127A (en) | Capacity control device for variable capacity type hydraulic pump | |
JP3655910B2 (en) | Control device for hydraulic drive machine | |
JPH05280464A (en) | Capacity controller for variable delivery hydraulic pump | |
JP2563216B2 (en) | Hydraulic circuit | |
JP7330263B2 (en) | Excavator | |
JP2556999B2 (en) | Hydraulic circuit | |
JPH08338405A (en) | Capacity control device for variable displacement hydraulic pump | |
JPH11315806A (en) | Hydraulic driving device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |