[go: up one dir, main page]

JPH0533775A - Capacity control device for variable capacity type hydraulic pump - Google Patents

Capacity control device for variable capacity type hydraulic pump

Info

Publication number
JPH0533775A
JPH0533775A JP3213166A JP21316691A JPH0533775A JP H0533775 A JPH0533775 A JP H0533775A JP 3213166 A JP3213166 A JP 3213166A JP 21316691 A JP21316691 A JP 21316691A JP H0533775 A JPH0533775 A JP H0533775A
Authority
JP
Japan
Prior art keywords
pressure
variable
pump
discharge
hydraulic pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3213166A
Other languages
Japanese (ja)
Inventor
Masamitsu Takeuchi
正光 竹内
Giichi Nagahara
義一 永原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP3213166A priority Critical patent/JPH0533775A/en
Publication of JPH0533775A publication Critical patent/JPH0533775A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fluid-Pressure Circuits (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Abstract

PURPOSE:To control torque to be constant without using any mechanical feedback mechanism, and improve operability of an actuator. CONSTITUTION:A variable control valve 31 to supply pump discharge pressure to the large diameter pressure receiving chamber 28 of a variable capacity cylinder 25 is switched to the pressure oil supply position B or to the drain position A, by means of pressure difference P across the restriction 43 provided in the discharge passage 21 of a variable capacity type hydraulic pump 20 and pressure difference PC across the restriction 35 provided in the discharge passage 34 of a fixed pump 33 and controlling passing flow by the pump discharge pressure. A load detecting valve 32 to supply pump discharge pressure to the large diameter pressure receiving chamber 28 of the variable capacity cylinder 25 is switched to the pressure oil supply position B and to the drain position A, by pressure difference between the upper stream side pressure P1 and the load pressure PLS of a direction changeover valve 22 and pressure difference across the restriction 35, and flow variation of the variable capacity type hydraulic pump 20 is fed back as a pressure difference across the restriction 43, and rotating speed variation is fed back as a pressure difference across the restriction 35.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、可変容量型油圧ポンプ
の容量を制御する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for controlling the displacement of a variable displacement hydraulic pump.

【0002】[0002]

【従来の技術】図1に示すように、可変容量型油圧ポン
プ1(以下可変ポンプ1という)は斜板2を傾転して容
量、つまり1回転当り吐出流量を変化するものであり、
可変ポンプ1の吐出路3に方向制御弁4を介してアクチ
ュエータ5を設けた油圧回路において、前記斜板2を傾
転して容量を制御する装置として可変制御弁6と負荷検
出弁7でポンプ吐出圧P0 を容量可変シリンダ8の大径
受圧室9に供給するものが知られている。すなわち、可
変制御弁6はバネ10とポンプ吐出圧P0 でドレーン位
置Aと圧油供給位置Bに切換えられ、ポンプ吐出圧P0
が高くなると圧油供給位置Bとなってポンプ吐出圧P0
を容量可変シリンダ8の大径受圧室9に供給して小径受
圧室11との受圧面積差でピストン12を左方向に移動
して斜板2を容量小方向に傾転し、可変ポンプ1の1回
転当り吐出流量を減少し、そのピストン12の動き機械
的フィードバック機構13でバネ10にフィードバック
してバネ力を大きくして斜板2をポンプ吐出圧P0 に見
合う位置としてポンプ吐出圧×1回転当り吐出流量を一
定、つまりトルク一定制御する。負荷検出弁7は方向制
御弁4の上流側圧力P0 と負荷圧PLSの差圧△PLS(△
LS=P0 −PLS)が大きくなると圧油供給位置Bとな
って前述と同様に斜板2を容量小方向に傾転し、その差
圧△PLSが小さくなるとドレーン位置Aとなって方向制
御弁4の開度、つまり操作ストロークに応じて可変ポン
プ1の容量を制御しアクチュエータ5の微操作性、つま
りファインコントロール性を向上している。
2. Description of the Related Art As shown in FIG. 1, a variable displacement hydraulic pump 1 (hereinafter referred to as variable pump 1) tilts a swash plate 2 to change its capacity, that is, the discharge flow rate per rotation.
In the hydraulic circuit in which the actuator 5 is provided in the discharge passage 3 of the variable pump 1 via the direction control valve 4, the variable control valve 6 and the load detection valve 7 serve as a device for tilting the swash plate 2 to control the displacement. It is known that the discharge pressure P 0 is supplied to the large diameter pressure receiving chamber 9 of the variable capacity cylinder 8. That is, the variable control valve 6 is switched between the drain position A and the pressure oil supply position B by the spring 10 and the pump discharge pressure P 0 , and the pump discharge pressure P 0.
Becomes higher, it becomes the pressure oil supply position B and the pump discharge pressure P 0
Is supplied to the large-diameter pressure receiving chamber 9 of the variable capacity cylinder 8 and the piston 12 is moved leftward by the pressure receiving area difference from the small diameter pressure receiving chamber 11 to tilt the swash plate 2 in the small capacity direction. The discharge flow rate per rotation is reduced, the movement of the piston 12 is fed back to the spring 10 by the mechanical feedback mechanism 13 to increase the spring force, and the swash plate 2 is set at a position corresponding to the pump discharge pressure P 0. The discharge flow rate per rotation is controlled to be constant, that is, the torque is controlled to be constant. The load detection valve 7 is a differential pressure ΔP LS (Δ) between the upstream pressure P 0 of the directional control valve 4 and the load pressure P LS.
When P LS = P 0 −P LS ) becomes large, the pressure oil supply position becomes B, and the swash plate 2 is tilted in the small capacity direction in the same manner as described above, and when the differential pressure ΔP LS becomes smaller, it becomes the drain position A. The capacity of the variable pump 1 is controlled according to the opening degree of the directional control valve 4, that is, the operation stroke to improve the fine operability of the actuator 5, that is, the fine controllability.

【0003】[0003]

【発明が解決しようとする課題】かかる容量制御装置で
あると、機械的フィードバック機構13が必要であるか
ら、構造が複雑でコスト高となるし、機械的フィードバ
ック機構13のガタなどにより制御精度が悪くなり、し
かも斜板位置を可変制御弁6にフィードバックするか
ら、可変ポンプ1自体の効率低下によって斜板位置によ
る実際の1回転当り吐出流量が理論1回転当り吐出流量
に対して誤差が生じ出力(流量)特性が悪くなる。
In such a capacity control device, since the mechanical feedback mechanism 13 is required, the structure is complicated and the cost is high, and the control accuracy is increased due to the looseness of the mechanical feedback mechanism 13 and the like. In addition, since the swash plate position is fed back to the variable control valve 6, the efficiency of the variable pump 1 itself deteriorates, so that the actual discharge flow rate per revolution due to the swash plate position causes an error with respect to the theoretical discharge flow rate per rotation, and the output is generated. (Flow rate) characteristics deteriorate.

【0004】そこで、本発明は前述の課題を解決できる
ようにした可変容量型油圧ポンプの容量制御装置を提供
することを目的とする。
Therefore, an object of the present invention is to provide a displacement control device for a variable displacement hydraulic pump, which can solve the above-mentioned problems.

【0005】[0005]

【課題を解決するための手段】可変容量型油圧ポンプ2
0の斜板24を容量大・小方向に傾転する容量可変シリ
ンダ25と、可変容量型油圧ポンプ20の流量変化を検
出する第1の手段と、可変容量型油圧ポンプ20の回転
数変化及びポンプ吐出圧変化を検出する第2の手段と、
前記第1の手段の出力信号と第2の手段の出力信号とに
よって容量可変シリンダ25にポンプ吐出圧を供給する
可変制御弁31と、前記可変容量型油圧ポンプ20の吐
出路21に設けた方向切換弁22の上流側圧力とアクチ
ュエータの負荷圧との差圧と前記第2の手段の出力信号
で容量可変シリンダ25にポンプ吐出圧を供給する負荷
検出弁32より構成した可変容量型油圧ポンプの容量制
御装置。
[Means for Solving the Problems] Variable displacement hydraulic pump 2
A variable capacity cylinder 25 that tilts the swash plate 24 of 0 in the direction of large capacity and a small capacity, first means for detecting a flow rate change of the variable capacity hydraulic pump 20, a rotational speed change of the variable capacity hydraulic pump 20, and Second means for detecting a change in pump discharge pressure;
A variable control valve 31 for supplying a pump discharge pressure to a variable displacement cylinder 25 by an output signal of the first means and an output signal of the second means, and a direction provided in a discharge passage 21 of the variable displacement hydraulic pump 20. A variable displacement hydraulic pump including a load detection valve 32 for supplying a pump discharge pressure to a variable displacement cylinder 25 by a pressure difference between the upstream pressure of the switching valve 22 and the load pressure of the actuator and an output signal of the second means. Capacity control device.

【0006】[0006]

【作 用】可変容量型油圧ポンプ20の流量変化及び
回転数変化、ポンプ吐出圧変化により可変制御弁31を
切換えるから機械的フィードバック機構を用いずにトル
ク一定制御でき、負荷検出弁32を回転数によって切換
えて方向制御弁の通過流量を回転数に応じて増減してア
クチュエータのファインコントロール性を向上できる。
[Operation] Since the variable control valve 31 is switched according to the flow rate change and the rotation speed change of the variable displacement hydraulic pump 20, and the pump discharge pressure change, constant torque can be controlled without using a mechanical feedback mechanism, and the load detection valve 32 can be rotated at the rotation speed. It is possible to improve the fine controllability of the actuator by switching by changing the flow rate of the directional control valve according to the number of revolutions.

【0007】[0007]

【実 施 例】図2に示すように、可変ポンプ20の吐
出路21には複数の方向切換弁22を介して複数のアク
チュエータ23が接続され、その可変ポンプ20の容
量、つまり1回転当り吐出量qを増減する斜板24は容
量可変シリンダ25で容量大・小方向に傾転され、この
容量可変シリンダ25の小径受圧室26は通路27で吐
出路21に接続し、大径受圧室28は通路29,30で
可変制御弁31と負荷検出弁32に接続している。前記
可変ポンプ20とともに駆動される固定ポンプ33の吐
出路34には絞り35が設けてあると共に、その吐出路
34における絞り35前後を短絡するバイパス路36に
はバイパス弁37が設けられ、このバイパス弁37はバ
ネ38で閉じ方向に押され、受圧部39に作用する可変
ポンプ20のポンプ吐出圧P0 で開方向に押されてバイ
パス弁37の開度はポンプ吐出圧P0 に比例して大きく
なる。前記可変制御弁31はドレーン位置Aと圧油供給
位置Bを備え、弱いバネ40でドレーン位置Aに押され
て可変ポンプ20が停止している時にはドレーン位置A
となるようにしてあり、前記可変制御弁31は第1受圧
部41に作用する圧力で圧油供給位置Bに向けて押さ
れ、第2受圧部42に作用する圧力でドレーン位置Aに
向けて押され、その第1受圧部41は可変ポンプ20の
吐出路21に設けた絞り43の上流側に第1パイロット
通路44で接続し、第2受圧部42は絞り43の下流側
に第2パイロット通路45で接続して可変制御弁31は
絞り43前後の差圧△P(△P=P0 −P1 )に比例し
た第1の力F1 で圧油供給位置Bに向けて押される。前
記可変制御弁31は第3受圧部46に作用する圧力でド
レーン位置Aに向けて押され、第4受圧部47に作用す
る圧力で圧油供給位置Bに向けて押され、その第3受圧
部46は第3パイロット通路48で固定ポンプ33の吐
出路34の絞り35の上流側に接続し、第4受圧部47
は第4パイロット通路49で絞り35の下流側に接続し
て可変制御弁31は絞り35前後の差圧△PC (△PC
=P2 −P3 )に比例した第2の力F2 でドレーン位置
Aに向けて押される。前記負荷検出弁32はドレーン位
置Aと圧油供給位置Bを備え、弱いバネ50でドレーン
位置Aに押されて可変ポンプ20が停止している時には
ドレーン位置Aとなるようにしてあり、前記負荷検出弁
32は第1受圧部51に作用する圧力で圧油供給位置B
に向けて押され、第2受圧部52に作用する圧力でドレ
ーン位置Aに向けて押され、その第1受圧部51は方向
制御弁22の上流側に第1パイロット通路54で接続
し、第2受圧部52は各方向切換弁22の負荷圧検出用
の第2パイロット通路56に接続して方向制御弁22の
入口側圧力、つまり絞り43の下流側圧力P1 と最も高
い負荷圧PLSとの差圧△PLS(△PLS=P1 −PLS)に
比例した第1の力F1 で圧油供給位置Bに向けて押され
る。前記負荷検出弁32は第3受圧部57に作用する圧
力でドレーン位置Aに向けて押され、第4受圧部58に
作用する圧力で圧油供給位置Bに向けて押され、その第
3受圧部57は第3パイロット通路59で固定ポンプ3
3の吐出路34の絞り35の上流側に接続し、第4受圧
部58は第4パイロット通路60で絞り35の下流側に
接続して負荷検出弁32は絞り35前後の差圧△P
C (△PC =P2 −P3 )に比例した第2の力F2 でド
レーン位置Aに向けて押される。
[Example] As shown in FIG. 2, a plurality of actuators 23 are connected to a discharge passage 21 of a variable pump 20 via a plurality of directional switching valves 22, and the capacity of the variable pump 20, that is, the discharge per rotation The swash plate 24 for increasing / decreasing the amount q is tilted in the large / small capacity direction by the variable capacity cylinder 25, and the small diameter pressure receiving chamber 26 of this variable capacity cylinder 25 is connected to the discharge passage 21 by the passage 27, and the large diameter pressure receiving chamber 28 is connected. Is connected to the variable control valve 31 and the load detection valve 32 by passages 29 and 30. The discharge passage 34 of the fixed pump 33 driven together with the variable pump 20 is provided with a throttle 35, and the bypass passage 36 for short-circuiting the throttle passage 35 in the discharge passage 34 is provided with a bypass valve 37. The valve 37 is pushed in the closing direction by the spring 38, and is pushed in the opening direction by the pump discharge pressure P 0 of the variable pump 20 acting on the pressure receiving portion 39, and the opening degree of the bypass valve 37 is proportional to the pump discharge pressure P 0. growing. The variable control valve 31 has a drain position A and a pressure oil supply position B, and when the variable pump 20 is stopped by being pushed to the drain position A by a weak spring 40, the drain position A
The variable control valve 31 is pushed toward the pressure oil supply position B by the pressure acting on the first pressure receiving portion 41, and toward the drain position A by the pressure acting on the second pressure receiving portion 42. The first pressure receiving portion 41 is pressed and is connected to the upstream side of the throttle 43 provided in the discharge passage 21 of the variable pump 20 by the first pilot passage 44, and the second pressure receiving portion 42 is connected to the downstream side of the throttle 43 by the second pilot. Connected by the passage 45, the variable control valve 31 is pushed toward the pressure oil supply position B by the first force F 1 proportional to the differential pressure ΔP (ΔP = P 0 −P 1 ) across the throttle 43. The variable control valve 31 is pushed toward the drain position A by the pressure acting on the third pressure receiving portion 46, pushed toward the pressure oil supply position B by the pressure acting on the fourth pressure receiving portion 47, and the third pressure receiving The portion 46 is connected to the upstream side of the throttle 35 of the discharge passage 34 of the fixed pump 33 by the third pilot passage 48, and the fourth pressure receiving portion 47.
Is connected to the downstream side of the throttle 35 by the fourth pilot passage 49, and the variable control valve 31 is connected to the differential pressure ΔP C (ΔP C
= P 2 −P 3 ), and the second force F 2 is pushed toward the drain position A. The load detection valve 32 is provided with a drain position A and a pressure oil supply position B, and is set to the drain position A when the variable pump 20 is stopped by being pushed to the drain position A by the weak spring 50. The detection valve 32 is operated by the pressure acting on the first pressure receiving portion 51, and the pressure oil supply position B
Is pushed toward the drain position A by the pressure acting on the second pressure receiving portion 52, and the first pressure receiving portion 51 is connected to the upstream side of the directional control valve 22 by the first pilot passage 54. The second pressure receiving portion 52 is connected to the second pilot passage 56 for detecting the load pressure of each directional control valve 22, and the inlet pressure of the directional control valve 22, that is, the downstream pressure P 1 of the throttle 43 and the highest load pressure P LS. It is pushed toward the pressure oil supply position B by the first force F 1 proportional to the differential pressure ΔP LS (ΔP LS = P 1 −P LS ). The load detection valve 32 is pushed toward the drain position A by the pressure acting on the third pressure receiving portion 57, is pushed toward the pressure oil supply position B by the pressure acting on the fourth pressure receiving portion 58, and the third pressure receiving thereof is performed. The portion 57 is the third pilot passage 59 and is the fixed pump 3
3 is connected to the upstream side of the throttle 35 in the discharge passage 34, the fourth pressure receiving portion 58 is connected to the downstream side of the throttle 35 in the fourth pilot passage 60, and the load detection valve 32 is connected to the differential pressure ΔP before and after the throttle 35.
The second force F 2 proportional to C (ΔP C = P 2 −P 3 ) is pushed toward the drain position A.

【0008】次に可変ポンプ20の容量制御動作を説明
する。 (可変制御弁31の動作) 可変ポンプ20の回転数が一定でポンプ吐出圧が変化
した時。 ポンプ吐出圧P0 がパイパス弁37のセット圧以下であ
るとバイパス弁37が閉となって、固定ポンプ33の吐
出圧油は全量が絞り35を通過するから、その絞り35
前後の差圧△PC による第2の力F2 が絞り43前後の
差圧△Pによる第1の力F1 よりも大きくなり、可変制
御弁31はドレーン位置Aとなり、容量可変シリンダ2
5の大径受圧室28が通路29,30を通ってタンク6
1に連通するから小径受圧室26に作用するポンプ吐出
圧P0 で容量可変シリンダ25は右方向に移動して斜板
24は容量大方向に傾転し、可変ポンプ20の1回転当
り吐出流量が増大して単位時間当り吐出量が増大するか
ら絞り43前後の差圧が大きくなって第1の力F1 が大
きくなり、この第1の力F1 と第2の力F2 がつり合っ
たところで斜板24の位置が保持される。つまり、絞り
43前後の差圧が可変ポンプ1の流量検出手段となって
可変制御弁31にフィードバックされる。前述の状態に
おいてポンプ吐出圧P0 がパイパス弁37のセット圧以
上となるとパイパス弁37が開き作動して固定ポンプ3
3の吐出圧油の一部がパイパス路36を流れるから絞り
35を流れる流量が減少してその絞り35前後の差圧△
C が低下し、可変制御弁31の第2の力F2 が小さく
なるから可変制御弁31は圧油供給位置Bとなり、ポン
プ吐出圧P0 が通路62,29から容量可変シリンダ2
5の大径受圧室28に供給されて受圧面積差によって容
量可変シリンダ25は左方向に移動して斜板24を容量
小方向に傾転する。これにより、可変ポンプ20の1回
転当り吐出流量が減少して単位時間当り吐出流量も減少
するから絞り43前後の差圧が小さくなって第1の力F
1 も小さくなり、この第1の力F1 と第2の力F2 がつ
り合ったところで斜板24の位置が保持される。
Next, the displacement control operation of the variable pump 20 will be described. (Operation of the variable control valve 31) When the rotation speed of the variable pump 20 is constant and the pump discharge pressure changes. When the pump discharge pressure P 0 is equal to or lower than the set pressure of the bypass valve 37, the bypass valve 37 is closed and the discharge pressure oil of the fixed pump 33 entirely passes through the throttle 35.
The second force F 2 due to the differential pressure ΔP C between the front and rear becomes larger than the first force F 1 due to the differential pressure ΔP before and after the throttle 43, the variable control valve 31 becomes the drain position A, and the variable capacity cylinder 2
The large-diameter pressure receiving chamber 28 of No. 5 passes through the passages 29, 30 and the tank 6
1, the variable displacement cylinder 25 moves to the right at the pump discharge pressure P 0 acting on the small diameter pressure receiving chamber 26, and the swash plate 24 tilts toward the large displacement direction, and the discharge flow rate per rotation of the variable pump 20. And the discharge amount per unit time increase, the differential pressure before and after the throttle 43 increases, the first force F 1 increases, and the first force F 1 and the second force F 2 balance each other. The position of the swash plate 24 is held in the open. That is, the differential pressure before and after the throttle 43 serves as a flow rate detecting means of the variable pump 1 and is fed back to the variable control valve 31. When the pump discharge pressure P 0 becomes equal to or higher than the set pressure of the bypass valve 37 in the above-described state, the bypass valve 37 opens to operate and the fixed pump 3
Since a part of the discharge pressure oil of No. 3 flows through the bypass passage 36, the flow rate flowing through the throttle 35 decreases and the differential pressure Δ before and after the throttle 35.
Since P C decreases and the second force F 2 of the variable control valve 31 decreases, the variable control valve 31 moves to the pressure oil supply position B, and the pump discharge pressure P 0 passes from the passages 62 and 29 to the variable capacity cylinder 2.
The variable capacity cylinder 25 is supplied to the large-diameter pressure receiving chamber 28 of No. 5 and moves to the left by the pressure receiving area difference, and tilts the swash plate 24 in the small capacity direction. As a result, the discharge flow rate per one rotation of the variable pump 20 decreases, and the discharge flow rate per unit time also decreases, so the differential pressure before and after the throttle 43 decreases and the first force F decreases.
1 is also reduced, and the position of the swash plate 24 is maintained when the first force F 1 and the second force F 2 are balanced.

【0009】前述の状態からポンプ吐出圧P0 が更に高
くなると、バイバス弁37が更に開き作動して通路流量
が増えるから絞り35を流れる流量が減少して絞り35
前後の差圧△PC が更に小さくなるので、可変制御弁3
1に作用する第2の力F2 が更に小さくなって可変制御
弁31は圧油供給位置Bとなって前述と同様にして容量
可変シリンダ25が左方向に移動し斜板24が容量小方
向に傾転して1回転当り吐出流量が減少して単位時間当
り吐出流量が減少し、前述と同様に絞り43前後の差圧
が小さくなって第1の力F1 も小さくなり、この第1の
力F1 と第2の力F2 がつり合ったところで斜板24の
位置が保持される。以上のように、可変ポンプ20の回
転数が一定の時にはポンプ吐出圧P0 によって斜板24
の位置が決定されてポンプ吐出圧P0 ×1回転当り吐出
流量qが一定、つまりトルク一定に制御される。
When the pump discharge pressure P 0 further increases from the above-mentioned state, the bypass valve 37 is further opened and the flow rate of the passage increases, so the flow rate through the throttle 35 decreases and the throttle 35 increases.
Since the differential pressure ΔP C between the front and rear becomes even smaller, the variable control valve 3
The second force F 2 acting on 1 becomes smaller, the variable control valve 31 becomes the pressure oil supply position B, and the variable capacity cylinder 25 moves leftward and the swash plate 24 moves in the small capacity direction in the same manner as described above. The discharge flow rate per rotation decreases and the discharge flow rate per unit time decreases, the differential pressure before and after the throttle 43 decreases and the first force F 1 also decreases as described above. The position of the swash plate 24 is held when the force F 1 and the second force F 2 are balanced. As described above, when the rotation speed of the variable pump 20 is constant, the swash plate 24 is driven by the pump discharge pressure P 0 .
Is determined and the discharge flow rate q per pump discharge pressure P 0 × 1 rotation is controlled to be constant, that is, the torque is controlled to be constant.

【0010】可変ポンプ20のポンプ吐出圧が一定で
回転数が変化した時。 ある値のポンプ吐出圧P0 で斜板24位置が決定されて
いる状態で可変ポンプ20の回転数が増加すると1回転
当り吐出流量が同じても単位時間当り吐出流量が増加し
て絞り43前後の差圧△Pが大きくなるが、可変ポンプ
20とともに駆動される固定ポンプ33の単位時間当り
吐出流量も増大して絞り35前後の差圧△PC も大きく
なり、可変制御弁31に作用する第1の力F1 と第2の
力F2 は等しくなって可変制御弁31はつり合ったまま
となって斜板24の位置は変化せずに可変ポンプ20の
1回転当り吐出流量は変化しない。このことは可変ポン
プ20の回転数が低下した時も同様となるから、可変ポ
ンプ20の容量をトルク一定制御できる。すなわち、固
定ポンプ33と絞り35が可変ポンプ回転数検出手段と
なる。
When the pump discharge pressure of the variable pump 20 is constant and the rotation speed changes. When the number of rotations of the variable pump 20 is increased in a state where the swash plate 24 position is determined by a certain value of the pump discharge pressure P 0 , the discharge flow rate per unit time is increased even if the discharge flow rate per rotation is the same, and the throttle 43 is located around the throttle 43. Of the fixed pump 33 that is driven together with the variable pump 20 increases, and the differential pressure ΔP C before and after the throttle 35 also increases, which acts on the variable control valve 31. The first force F 1 and the second force F 2 become equal, the variable control valve 31 remains balanced, the position of the swash plate 24 does not change, and the discharge flow rate per rotation of the variable pump 20 does not change. .. This also applies when the rotational speed of the variable pump 20 is reduced, so that the capacity of the variable pump 20 can be controlled to a constant torque. That is, the fixed pump 33 and the throttle 35 serve as a variable pump rotation speed detecting means.

【0011】(負荷検出弁32の動作) 可変ポンプ20の回転数が一定の時。 負荷検出弁32は固定ポンプ33の吐出路34に設けた
絞り35前後の差圧△PC による第2の力F2 と上流側
圧力P1 と最高負荷圧PLSの差圧△PLSによる第1の力
1 が等しくなる位置となり、それによって可変ポンプ
20の斜板24の位置が決定される。前記上流側圧力P
1 と最高負荷圧PLSの差圧△PLSは方向制御弁22の開
度、つまり操作ストロークに比例し、絞り35前後の差
圧△PC は可変ポンプ20の回転数が一定であれば一定
であるので、操作ストロークが小さい時には前記差圧△
LSが大きく負荷検出弁32に作用する第1の力F1
前記差圧△PC による第2の力F2 より大きくなって負
荷検出弁32は圧油供給位置Bとなり、通路63,3
0,29より容量可変シリンダ25の大径受圧室28に
ポンプ吐出圧P0 が供給されるから前述と同様に斜板2
4は容量小方向に傾転して1回転当り吐出流量が減少し
て単位時間当り流量が減少し、方向制御弁22を通過す
る流量が減少して前記の上流側圧力P1 と最高負荷圧P
LSとの差圧が小さくなって第1の力F1 が低下し、その
第1の力F1 と第2の力F2 がつり合った位置で斜板2
4の位置が決定される。同様に方向制御弁22の操作ス
トロークが大きいときには前記差△PLSが小さく、可変
ポンプ20の斜板24の位置は前述の場合よりも容量大
方向の位置となる。これにより、可変ポンプ20の単位
時間当り吐出流量は方向制御弁22の操作ストロークが
小さい時には少なく、大きい時には多くなるので、最高
負荷圧によらず方向制御弁22の操作ストロークに見合
った流量制御ができてアクチュエータ23の微操作性、
つまりファインコントロール性を向上できる。
(Operation of the load detection valve 32) When the rotation speed of the variable pump 20 is constant. Load detection valve 32 is due to the differential pressure △ P LS of the second force F 2 and the upstream pressure P 1 and the maximum load pressure P LS by differential pressure △ P C diaphragm 35 around which is provided in the discharge passage 34 of the fixed pump 33 The position where the first force F 1 becomes equal is determined, whereby the position of the swash plate 24 of the variable pump 20 is determined. The upstream pressure P
1 and the maximum load pressure P LS differential pressure △ P LS is the opening of the directional control valve 22, that is proportional to the operation stroke, if the pressure difference △ P C before and after the diaphragm 35 is a rotational speed of the variable pump 20 is constant Since it is constant, the differential pressure Δ
Since P LS is large and the first force F 1 acting on the load detection valve 32 is larger than the second force F 2 due to the differential pressure ΔP C , the load detection valve 32 is at the pressure oil supply position B and the passage 63, Three
Since the pump discharge pressure P 0 is supplied to the large-diameter pressure receiving chamber 28 of the variable capacity cylinder 25 from 0 , 29, the swash plate 2 is used as described above.
No. 4 is tilted in the small capacity direction, the discharge flow rate per rotation is decreased and the flow rate per unit time is decreased, the flow rate passing through the directional control valve 22 is decreased, and the upstream pressure P 1 and the maximum load pressure are increased. P
The pressure difference with LS becomes small and the first force F 1 decreases, and the swash plate 2 is placed at a position where the first force F 1 and the second force F 2 are balanced.
The position of 4 is determined. Similarly, when the operation stroke of the directional control valve 22 is large, the difference ΔP LS is small, and the position of the swash plate 24 of the variable pump 20 is in the larger capacity direction than in the case described above. As a result, the discharge flow rate per unit time of the variable pump 20 is small when the operation stroke of the directional control valve 22 is small, and is large when it is large, so that the flow rate control that matches the operation stroke of the directional control valve 22 can be performed regardless of the maximum load pressure. Fine operability of the actuator 23
That is, the fine controllability can be improved.

【0012】可変ポンプ20の回転数が変化した時。 可変ポンプ20の回転数が変化すると固定ポンプ33の
回転数も変化するために、前記絞り35前後の差圧△P
C が上流側圧力P1 と最高負荷圧PLSの差圧△PLSと同
様に変化するので、斜板24の位置は変化しないが、可
変ポンプ20の単位時間当り吐出流量が増減するから、
方向制御弁22を通過する流量が回転数変化により変化
して上流側圧力P1 と最高負荷圧PLSの差圧△PLSは回
転数変化の2乗だけ変化するので、方向制御弁22の同
一操作ストロークに対する通過流量は回転数変化だけ変
化し可変ポンプ20の回転数に比例した流量制御弁がで
きる。例えば、可変ポンプ20の回転数が1/2となる
と前記差圧△PLSは1/4となり、方向制御弁22の同
一ストロークに対する通過流量は1/2となる。
When the rotational speed of the variable pump 20 changes. When the rotation speed of the variable pump 20 changes, the rotation speed of the fixed pump 33 also changes, so that the differential pressure ΔP before and after the throttle 35.
Since C is changed similarly to the differential pressure △ P LS of the upstream pressure P 1 and the maximum load pressure P LS, since the position of the swash plate 24 does not change, per unit time the discharge flow rate of the variable pump 20 is increased or decreased,
Since flow through the directional control valve 22 is a differential pressure △ P LS of the maximum load pressure P LS and the upstream pressure P 1 is changed by speed change changes by the square of the speed change, directional control valve 22 The passing flow rate for the same operation stroke changes only by the change in the rotation speed, so that a flow control valve proportional to the rotation speed of the variable pump 20 can be formed. For example, when the rotation speed of the variable pump 20 becomes 1/2, the differential pressure ΔP LS becomes 1/4, and the passage flow rate of the directional control valve 22 for the same stroke becomes 1/2.

【0013】[0013]

【発明の効果】可変容量油圧ポンプ20の容量をトルク
一定として制御できるし、機械的フィードバック機構が
不要となって構造簡単でコスト安となるばかりか、トル
ク一定制御の精度を向上できるし、可変容量型油圧ポン
プ20の効率が低下しても出力流量特性は低下しない。
また、可変容量型油圧ポンプ20の回転数変化に応じて
方向制御弁の通過流量を制御してアクチュエータの微操
作性を向上できる。
As described above, the displacement of the variable displacement hydraulic pump 20 can be controlled with a constant torque, a mechanical feedback mechanism is not required, the structure is simple and the cost is low, and the accuracy of the constant torque control can be improved. Even if the efficiency of the displacement hydraulic pump 20 decreases, the output flow rate characteristic does not decrease.
Further, the flow rate of passage of the directional control valve can be controlled according to the change in the rotational speed of the variable displacement hydraulic pump 20, and the fine operability of the actuator can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来例の線図的構成説明図である。FIG. 1 is a diagrammatic explanatory diagram of a conventional example.

【図2】本発明の実施例を示す線図的構成説明図であ
る。
FIG. 2 is a diagrammatic configuration explanatory view showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

20 可変容量型油圧ポンプ、21 吐出路、22 方
向制御弁、23 アクチュエータ、24 斜板、25
容量可変シリンダ、26 小径受圧室、28大径受圧
室、31 可変制御弁、32 負荷検出弁、33 固定
ポンプ、34吐出路、35 絞り、37 バイパス弁、
43 絞り。
20 variable displacement hydraulic pump, 21 discharge passage, 22 directional control valve, 23 actuator, 24 swash plate, 25
Variable capacity cylinder, 26 small diameter pressure receiving chamber, 28 large diameter pressure receiving chamber, 31 variable control valve, 32 load detection valve, 33 fixed pump, 34 discharge passage, 35 throttle, 37 bypass valve,
43 aperture.

Claims (1)

【特許請求の範囲】 【請求項1】 可変容量型油圧ポンプ20の斜板24を
容量大・小方向に傾転する容量可変シリンダ25と、可
変容量型油圧ポンプ20の流量変化を検出する第1の手
段と、可変容量型油圧ポンプ20の回転数変化及びポン
プ吐出圧変化を検出する第2の手段と、前記第1の手段
の出力信号と第2の手段の出力信号とによって容量可変
シリンダ25にポンプ吐出圧を供給する可変制御弁31
と、前記可変容量型油圧ポンプ20の吐出路21に設け
た方向切換弁22の上流側圧力とアクチュエータの負荷
圧との差圧と前記第2の手段の出力信号で容量可変シリ
ンダ25にポンプ吐出圧を供給する負荷検出弁32より
構成した可変容量型油圧ポンプの容量制御装置。
Claim: What is claimed is: 1. A variable capacity cylinder 25 for tilting a swash plate 24 of a variable capacity hydraulic pump 20 in a capacity increasing / decreasing direction, and a flow rate change of the variable capacity hydraulic pump 20. 1 means, a second means for detecting a change in the number of revolutions of the variable displacement hydraulic pump 20 and a change in pump discharge pressure, and a variable capacity cylinder by the output signal of the first means and the output signal of the second means. Variable control valve 31 for supplying pump discharge pressure to 25
And the differential pressure between the upstream pressure of the directional control valve 22 provided in the discharge passage 21 of the variable displacement hydraulic pump 20 and the load pressure of the actuator, and the output signal of the second means for pumping to the variable displacement cylinder 25. A displacement control device for a variable displacement hydraulic pump, comprising a load detection valve 32 for supplying pressure.
JP3213166A 1991-07-31 1991-07-31 Capacity control device for variable capacity type hydraulic pump Pending JPH0533775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3213166A JPH0533775A (en) 1991-07-31 1991-07-31 Capacity control device for variable capacity type hydraulic pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3213166A JPH0533775A (en) 1991-07-31 1991-07-31 Capacity control device for variable capacity type hydraulic pump

Publications (1)

Publication Number Publication Date
JPH0533775A true JPH0533775A (en) 1993-02-09

Family

ID=16634656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3213166A Pending JPH0533775A (en) 1991-07-31 1991-07-31 Capacity control device for variable capacity type hydraulic pump

Country Status (1)

Country Link
JP (1) JPH0533775A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998022716A1 (en) * 1996-11-15 1998-05-28 Hitachi Construction Machinery Co., Ltd. Hydraulic drive apparatus
WO1998022717A1 (en) * 1996-11-21 1998-05-28 Hitachi Construction Machinery Co., Ltd. Hydraulic drive apparatus
JPH10205501A (en) * 1996-11-21 1998-08-04 Hitachi Constr Mach Co Ltd Hydraulic drive
WO2007007460A1 (en) * 2005-07-13 2007-01-18 Hitachi Construction Machinery Co., Ltd. Hydraulic drive device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998022716A1 (en) * 1996-11-15 1998-05-28 Hitachi Construction Machinery Co., Ltd. Hydraulic drive apparatus
US6105367A (en) * 1996-11-15 2000-08-22 Hitachi Construction Machinery Co. Ltd. Hydraulic drive system
WO1998022717A1 (en) * 1996-11-21 1998-05-28 Hitachi Construction Machinery Co., Ltd. Hydraulic drive apparatus
JPH10205501A (en) * 1996-11-21 1998-08-04 Hitachi Constr Mach Co Ltd Hydraulic drive
US6192681B1 (en) 1996-11-21 2001-02-27 Hitachi Construction Machinery Co., Ltd. Hydraulic drive apparatus
WO2007007460A1 (en) * 2005-07-13 2007-01-18 Hitachi Construction Machinery Co., Ltd. Hydraulic drive device

Similar Documents

Publication Publication Date Title
JP3756814B2 (en) Pump capacity control device and valve device
EP0879968B1 (en) Hydraulic drive apparatus
JP4976920B2 (en) Pump discharge control device
JPH04136507A (en) Hydraulic circuit
JPH06137276A (en) Volume control device for variable volume hydraulic pump
JPH0533776A (en) Capacity control device for variable capacity type hydraulic pump
JPH10196604A (en) Hydraulic drive
JPH0533775A (en) Capacity control device for variable capacity type hydraulic pump
JP2004116656A (en) Pressure oil energy recovery/regeneration device
JPH0599126A (en) Capacity control device for variable capacity type hydraulic pump
JP3084587B2 (en) Displacement control device for variable displacement hydraulic pump
JPH0599124A (en) Capacity control device for variable capacity type hydraulic pump
JPH10205501A (en) Hydraulic drive
JPH0599127A (en) Capacity control device for variable capacity type hydraulic pump
JPS6181587A (en) Controller for variable displacement oil-hydraulic pump
JP3112189B2 (en) Displacement control device for variable displacement hydraulic pump
JPH0599128A (en) Capacity control device for variable capacity hydraulic pump
JP2557002B2 (en) Operation valve used for hydraulic circuit
JPH05280464A (en) Capacity controller for variable delivery hydraulic pump
JP2556999B2 (en) Hydraulic circuit
JP3655910B2 (en) Control device for hydraulic drive machine
JP3525491B2 (en) Hydraulic actuator circuit
JP2557047Y2 (en) Pressure oil supply device
JP3765317B2 (en) Control device for hydraulic drive machine
JP2563216B2 (en) Hydraulic circuit