[go: up one dir, main page]

JPH05148604A - 溶融亜鉛系めつき鋼板の製造方法 - Google Patents

溶融亜鉛系めつき鋼板の製造方法

Info

Publication number
JPH05148604A
JPH05148604A JP1681492A JP1681492A JPH05148604A JP H05148604 A JPH05148604 A JP H05148604A JP 1681492 A JP1681492 A JP 1681492A JP 1681492 A JP1681492 A JP 1681492A JP H05148604 A JPH05148604 A JP H05148604A
Authority
JP
Japan
Prior art keywords
plating
steel sheet
hot
steel
alloying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1681492A
Other languages
English (en)
Inventor
Masahiko Hori
雅彦 堀
Toshio Nakamori
俊夫 中森
Yoshitaka Adachi
吉隆 足立
Tetsuaki Tsuda
哲明 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1681492A priority Critical patent/JPH05148604A/ja
Publication of JPH05148604A publication Critical patent/JPH05148604A/ja
Withdrawn legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)

Abstract

(57)【要約】 【目的】 溶融亜鉛めっき鋼板および合金化溶融亜鉛め
っき鋼板の不めっきや合金化処理の遅延を防止し、かつ
めっき皮膜の低温衝撃負荷に対する耐久性を高める。 【構成】 鋼板上に、プレめっきとしてC含有量 0.001
〜10wt%のFe−Cめっきを 0.1〜10g/m2の付着量で施し
た後、溶融亜鉛めっきおよび必要であれば合金化処理す
る。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、改良された溶融亜鉛め
っき鋼板及び合金化溶融亜鉛めっき鋼板 (本明細書で
は、この両者を合わせて溶融亜鉛系めっき鋼板と総称す
る) 、例えば、自動車、鋼製器具、建材および家電製品
などの用途に好適な溶融亜鉛系めっき鋼板の製造方法に
関わる。特に、本発明は、珪素添加鋼や燐添加鋼などの
合金鋼を母材とする自動車用に好適な溶融亜鉛系めっき
鋼板、さらには厚めっきが可能な自動車や建材に好適な
溶融亜鉛系鋼板の製造方法に関する。
【0002】
【従来の技術】近年、自動車、家電製品、建材の産業分
野においては、製品の高級化に伴ない、より長期の防錆
能を有する防錆鋼板として、溶融亜鉛系めっき鋼板が大
量に使用されるようになってきた。とりわけ、経済性と
その防錆機能、塗装後の性能の点で、合金化溶融亜鉛め
っき鋼板が広く使用されている。
【0003】溶融亜鉛めっき鋼板は、通常、必要であれ
ば適当な脱脂洗浄工程を経た後、鋼板を弱酸化性雰囲気
もしくは還元雰囲気で予熱した後、水素+窒素の還元雰
囲気で鋼板を焼鈍し、しかる後、鋼板をめっき温度付近
まで冷却し、溶融亜鉛浴に浸漬することにより製造され
る。予熱工程では80 nm 程度の厚みの酸化膜が鋼板表面
に形成される方が溶融亜鉛との濡れ性の点で望ましいと
されるが、酸化膜の厚みがそれ以上になると、ドロス発
生、溶融めっきの密着性の点で悪影響があると考えられ
ている。溶融亜鉛浴中には、めっき/鋼界面における脆
いFe−Zn合金の生成を抑制して、めっき皮膜の加工性を
保持するために、0.1 〜0.2 重量%程度のAlが添加され
る。Alはめっき時にめっき層中に富化する傾向があるた
め、めっき皮膜は0.2 〜0.3 重量%程度のAlを含有す
る。
【0004】合金化溶融亜鉛めっき鋼板は、通常、連続
的に溶融亜鉛めっきした鋼板を熱処理炉で 500〜600 ℃
の材料温度に3〜30秒加熱することにより、Fe−Zn合金
めっき層を形成させたものである。めっき皮膜はFe−Zn
の金属間化合物よりなり、一般にその平均Fe濃度は8〜
12重量%である。めっき皮膜は通常0.12〜0.2 重量%程
度のAlを含有する。これは、合金化溶融亜鉛めっき鋼板
と同一設備で製造される通常の溶融亜鉛めっき鋼板の製
造時に前述の理由で添加されるAlが不可避的に混入する
こともあるが、合金化する場合であっても、めっき皮膜
の耐パウダリング性を確保する上でめっき浴中に微量の
Alを混入させることがむしろ適当であるとされ、めっき
浴に0.08〜0.11重量%程度のAlを存在させているからで
ある。
【0005】溶融亜鉛めっきおよび合金化溶融亜鉛めっ
きのいずれの場合も、めっき層の付着量は、片面当たり
20〜70 g/m2 程度であった。20g/m2未満の付着量にする
のは、通常の溶融亜鉛めっき操業では困難である。ま
た、あまりに厚目付にすると低温対衝撃耐久性が低下す
る。
【0006】こうした溶融亜鉛系めっき鋼板、特に合金
化溶融亜鉛めっき鋼板の母材としては、従来は低炭素Al
キルド鋼、極低炭素Ti添加鋼などが主流であった。しか
し、近年の自動車材料の高強度化の要求とともに、0.2
%超のSiを含む珪素含有鋼板の使用が試みられている。
Siは、鋼の延性を保持したまま、強度向上を図れる利点
があり、その意味では鉄鋼材料として珪素添加鋼は有望
である。
【0007】しかし、珪素含有鋼板を母材とする溶融亜
鉛めっきには次のような問題があった。即ち、珪素含有
鋼板は、通常の溶融亜鉛めっきプロセスに従えば、焼鈍
過程で雰囲気中の極微量の水分と反応し、珪素酸化物を
鋼板表面に形成するため、鋼中のSi濃度の増加に伴い急
激に溶融亜鉛との濡れ性が低下し、その結果として不め
っきが多発する欠点を有する。また、溶融めっきできた
としても、Siがめっき皮膜中に存在するため、合金化が
遅延する、または合金化処理ムラが発生するなど、合金
化にも問題が生じている。前者の珪素酸化物に起因する
濡れ性低下の問題は、表面に予め酸化雰囲気での予熱に
より鉄酸化物を形成することで、濡れ性が改善され、不
めっきが防止できることが報告されている。しかし、Si
含有率が0.2 重量%を超えると、従来の溶融亜鉛めっき
プロセスにおける酸化雰囲気での予熱 (例えば、無酸化
炉の空燃比を1〜1.35にする) では、濡れ性の確保が難
しい。また、後者の合金化遅延の問題の改善対策は特に
なく、合金化処理速度の遅れは生産能率を大きく阻害し
ている。
【0008】また、材料設計上でSiとともにPの添加
も、曲げまたは絞り性などを上げることが可能であり、
Siより安価という点で、Pが鋼中に添加されることがあ
る。PはSiのように濡れ性を悪化させることは少ない
が、Pの添加は合金化を遅延させ、Siと同様に合金化遅
延と処理ムラ発生の問題は避けられない。
【0009】ところで、溶融亜鉛系めっき鋼板の防錆能
を高める最も一般的な方法は、めっき付着量を増大させ
て厚めっきとすることである。しかし、厚めっきにする
と、めっき皮膜の低温 (−50℃〜0℃) 環境下での衝撃
負荷に対する低温対衝撃耐久性が一般に低下する。従っ
て、皮膜の低温対衝撃耐久性が良好で、かつ高い防錆能
を有する溶融亜鉛系めっき鋼板が望まれている。
【0010】一般に、溶融亜鉛めっき鋼板の低温対衝撃
耐久性が低下する原因は、前述したFe/Zn界面に生成す
る硬くて脆いFe−Zn合金相にあるとされている。そこ
で、通常は、溶融亜鉛浴中のAl添加量を増やすことによ
って、Fe/Zn界面におけるFe−Zn−Al系三元合金層の生
成量を増加させ、過度のFe−Zn反応を抑制する対策が採
られている。しかしながら、浴中Al量を増やすと、めっ
き皮膜の時効現象による経時的な密着性低下 (経時剥離
と呼ばれる) を生じやすい欠点がある。
【0011】合金化溶融亜鉛めっき鋼板については、過
度のFe−Zn反応によって生成する脆弱なΓ相が、めっき
皮膜の低温対衝撃耐久性低下の原因であるとされてい
る。したがって、従来からこのΓ相の生成抑制に努力が
注がれ、次のような方法が採用されている。一つは、素
地鋼板の化学組成を制限することによって、合金化過程
における過度のFe−Zn反応を抑制することである。例え
ば、鋼中PはFe−Zn反応を抑制し、脆性なΓ相の生成を
防ぐ効果がある。しかし、Pの添加は前述のように合金
化の遅延と処理ムラ発生という問題がある。また一方
で、TiやMnはFe−Zn反応を加速させるので、これらの元
素の使用を差し控えるか、添加量を少なくすることも可
能であるが、素地鋼板の化学組成をこのように制限する
ことは、当然鋼の機械的性質を限定されたものとしてし
まう。
【0012】上記耐久性の改善には、合金化過程を制御
する方法も有効である。例えば、合金化させる温度を通
常より低く抑えることによって、延性に富むδ1 相単相
からなるめっき皮膜を生成させる方法が考えられる。こ
の手法は有効ではあるが、製造ラインスピードを落とす
結果につながることや、素地鋼板の鋼種によって制御条
件を工夫しなければ、望まれるめっき皮膜構造、すなわ
ちδ1 単相にすることは難しく、万全な方法ではない。
【0013】さらに、低温での対衝撃耐久性は、Fe素地
とめっき皮膜との結合力のみに依存するものではなく、
衝突によりめっき皮膜中に発生したミクロクラックが伝
播していき、Fe/Zn界面で方向転換し、界面に沿ってク
ラックが集中して走るか否か、さらにはこの界面近傍の
極薄い部分のめっき層の耐破壊性が決定的要因と考えら
れており、その理論的解明は未だ暗中模索の段階にあ
る。しかも、このように変形、破壊しためっき皮膜が塩
水環境での乾湿繰り返し腐食を行った際に示す衝撃疵部
の耐ブリスター、赤錆防錆能の如何が、総合的実用性に
関して重要な因子を構成している。
【0014】こうした問題点に対処するため、従来よ
り、溶融亜鉛めっきに先立って、鋼板にFe、Ni等の純金
属を極薄で下地めっき (プレめっき) して、Fe素地/め
っき層界面での密着性改善を図ることは公知である。鋼
板に予め純Feめっきする技術は、例えば、特開昭57−79
160 号、同57−70268 号、同58−120772号各公報に記載
されている。
【0015】溶融めっき前に極薄の下地めっきを施した
溶融亜鉛系めっき鋼板は、施さない場合に比べて、めっ
き皮膜の室温での密着性向上はある程度みられるもの
の、低温、高速で小石等があたる低温衝撃に対する耐久
性については全く不十分であった。しかも、Si含有量が
高い鋼では十分なめっき濡れ性が得られず、またSiやP
含有量が高い場合の合金化の遅延や均一合金化が困難と
いった問題を解消することもできなかった。
【0016】
【発明が解決しようとする課題】従って、材料的には魅
力ある合金鋼、特にSi含有鋼も、従来の溶融亜鉛プロセ
スにおいては実用的な意味で満足できる溶融亜鉛被覆が
困難であり、またSiやPを添加した鋼母材を使用して合
金化処理を施す場合に、合金化が遅延したり不均一にな
るといった問題があった。さらに、従来の溶融亜鉛系め
っき技術では、特に厚めっきの場合の低温対衝撃耐久性
の低下を防止する手段がなかった。
【0017】本発明の目的は、合金鋼、特にSi>0.2 %
の鋼を、不めっき点を生じないで亜鉛めっきし、かつSi
添加鋼だけでなく、P添加鋼においても、合金化処理速
度を十分に改善し、このような鋼母材を使用して高い生
産性で経済的に高品質の溶融亜鉛系めっき鋼板を製造す
る方法を提供することである。
【0018】本発明の別の目的は、特に防錆能を高める
ための厚めっき化した溶融亜鉛系めっき鋼板に認められ
る低温対衝撃耐久性の低下の問題を解決すること、即
ち、厚めっきでも低温対衝撃耐久性に優れた溶融亜鉛系
めっき鋼板を製造できる方法を提供することである。
【0019】
【課題を解決するための手段】本発明者等は、特に不め
っきを発生しやすいSi添加鋼の溶融亜鉛めっきにおける
鋼と溶融亜鉛との濡れ性に関して検討した。その結果、
従来から公知のめっき前処理として行われてきた還元焼
鈍前に鋼板を酸化し、酸化鉄の表面層を予め形成する手
段が、還元焼鈍後の鋼板と溶融亜鉛との濡れ性の改善に
有効なことを再確認した。しかし、この酸化手段のみで
は、Si濃度が増加すると酸化鉄の形成が十分に進まなく
なり、鋼板予熱工程での望ましい酸化鉄量 (Feとして0.
5 g/m2)に対して、その半分以下の0.05〜0.25 g/m2
度の酸化鉄量にしかならず、不十分であることが判明し
た。
【0020】一方、還元焼鈍前のプレめっきについても
検討した。しかし、従来の純Feのプレめっきでは、還元
焼鈍前の酸化処理と組み合わせた場合でも、ある程度の
改善は認められるものの、改善には限界があり、Si量の
増加に伴って十分な酸化鉄量を得ることが困難となるこ
とが判明した。
【0021】以上の結果を踏まえて、Fe系合金のプレめ
っきを各種検討した結果、Fe−Cのプレめっきが濡れ性
改善、合金化速度の促進、さらには低温対衝撃耐久性の
改善に有効であることを見出した。即ち、溶融亜鉛めっ
き前にFe−Cプレめっきを薄膜で施しておくと、Si添加
鋼の溶融亜鉛による濡れ性が向上して不めっきがなくな
り、またSi添加鋼、P添加鋼のような合金化が遅延する
鋼種を母材とする場合の問題点であった合金化の遅延や
処理ムラの発生を防止することができる。さらに、鋼種
にかかわらず特に厚めっきで認められてきた低温対衝撃
耐久性の低下を阻止することもできる。
【0022】ここに、本発明は、鋼板上にC含有量 0.0
01〜10wt%のFe−Cめっきを付着量0.1〜10 g/m2 で施
した後、溶融亜鉛めっきするか、或いは溶融亜鉛めっき
に続いて合金化処理することを特徴とする、溶融亜鉛系
めっき鋼板の製造方法を要旨とする。
【0023】
【作用】以下、本発明の構成をその作用とともに説明す
る。以下の説明において、%は特に指定しない限り、重
量%である。
【0024】本発明の主要な特徴は、溶融亜鉛めっきの
前、好ましくは前処理として行われる母材鋼板の焼鈍前
に、付着量が 0.1〜10 g/m2 の極薄でプレめっきするこ
と、およびこのプレめっき皮膜が、Fe元素と共に 0.001
〜10wt%のC元素を含むことである。その他の条件、例
えば、母材鋼板の鋼種、めっき前処理条件、溶融亜鉛め
っきの組成、その付着量、合金化処理条件などには特に
制限はなく、既存の技術を応用すればよい。ただし、前
述した本発明完成の経緯からわかるように、本発明を特
定の母材鋼種あるいは特定の溶融亜鉛めっき付着量に応
用した場合に、他の場合に比べて効果がより顕著となる
ことはある。
【0025】本発明の方法で用いる母材鋼板は、通常は
冷延鋼板であるが、これに限定されず、また、母材鋼板
の鋼種にも特に限定はなく、炭素鋼、極低炭素鋼、低合
金鋼、高合金鋼を含む任意の鋼種から、製品用途に応じ
て適宜選択すればよい。母材鋼板は、C、Si、Mn、Ti、
Nb、S、P、Al、Ni、Cr、Mo、V、Bなどの鋼に通常添
加される1種もしくは2種以上の合金元素を含有しう
る。1態様において、本発明は、Si:0.2 %以上を含有
する鋼板を母材とする溶融亜鉛めっき鋼板の製造に適用
される。この場合、従来法で問題であった濡れ性低下に
よる不めっきが防止される。
【0026】別の態様においては、本発明は、Si:0.2
%以上、P:0.03%以上の一方または両方を含有する鋼
板を母材とする合金化溶融亜鉛めっき鋼板の製造に適用
され、この種の鋼板で問題となる合金化遅延や処理ムラ
の発生が防止される。
【0027】母材鋼板は、必要であれば常法により脱脂
および/または酸洗して、表面を清浄化する。表面清浄
化は、例えば、有機溶剤 (トリクレン、シンナーなど)
で脱脂した後、2〜10%のオルソ珪酸ナトリウム水溶液
中で電解脱脂処理し、さらに5〜20%の塩酸水溶液中で
酸洗することにより行うことができる。
【0028】次いで、母材鋼板に溶融亜鉛めっきを施す
前、好ましくはめっき前処理で行う予熱や還元焼鈍前
に、プレめっきとしてFe−Cめっきを施す。このFe−C
めっきは電気めっき、真空蒸着、溶射等で行うことが可
能である。以下は、代表的な電気めっきを用いた場合に
つき説明するが、電気Fe−Cめっきは、通常の電気Feめ
っきに準じて実施することができる。例えば、硫酸塩
浴、塩化物浴、またはホウフッ化物浴等を用い、浴中に
水溶性第一鉄化合物に加えて適当な炭素化合物 (例、有
機酸) を溶解させておくことにより、電気Fe−Cめっき
を形成することができる。好適な電解浴の例には、Fe2+
イオン10〜240 g/l を含有し、これに1種もしくは2種
以上の有機酸 (例、シュウ酸、ギ酸、グリシン、マロン
酸、グリコール酸、乳酸、リンゴ酸、酢酸、マレイン
酸、クエン酸、アスコルビン酸など) を添加した浴があ
る。有機酸に代えて、あるいは有機酸に併用して、カル
ボニル化合物やポリエチレングリコール、チオ尿素など
の他の有機化合物をC供給源として使用することもでき
る。
【0029】この電気Fe−Cめっき皮膜の付着量は電流
密度や通電時間により、またC含有量は添加する炭素化
合物の種類や添加量によって制御することができるの
で、本発明では、上述したように、C含有量が 0.001〜
10%で付着量が 0.1〜10 g/m2の下層Fe−Cめっき皮膜
が形成されるように、電気めっき浴組成と条件を制御す
る。この電気Fe−Cめっきでの電流密度は、一般に 0.1
〜100 A/dm2の範囲内である。
【0030】下層のFe−Cめっき皮膜の付着量は 0.1〜
10 g/m2 の範囲内とする。付着量が0.1 g/m2未満では、
下層めっきが鋼板に均一に被覆されず、鋼板自身の組織
の露出や、溶融亜鉛めっき前処理として行われる還元雰
囲気中での加熱処理において鋼板中添加元素の表面への
拡散により、本発明の目的とする効果が得られない。下
層Fe−Cめっきの付着量が10 g/m2 を超えると、効果が
飽和する上に、大きな設備を必要とし、製造コストの面
から有利ではない。
【0031】Fe−Cめっき皮膜中のC含有量は 0.001〜
10%とする。C量が 0.001%未満では、得られる下層め
っきが純Feめっき皮膜と同様な性能しか示さないので、
Si添加鋼での溶融亜鉛による濡れ性の改善効果や、Si/
P添加鋼での合金化遅延の防止効果が不十分となり、本
発明の目的が達成されない。また、溶融亜鉛系めっき皮
膜の低温対衝撃耐久性向上の効果も少ない。一方、C量
が10%を越えると、Fe−C皮膜自身が脆弱になり、かえ
ってめっき皮膜の加工性が低下するので、むやみにC量
を増やすことは得策ではない。好ましいC含有量は、0.
01〜1.0 %である。
【0032】なお、このFe−Cめっき皮膜には、Al、S
i、Nb、Mn、Mg、Mo、Ta、Cu、Ni、Zn、Co、Sn、Sb、T
i、Cr、Cd、Pb、Tl、In、V、W、P、S、B、N等か
ら選ばれた1種もしくは2種以上の微量合金成分を含有
させてもよく、このような微量合金成分を含有するFe−
Cめっき皮膜を形成することも、本発明の「Fe−Cめっ
き」に包含されるものである。これらの微量成分のめっ
き皮膜中の合計量は、通常は0.01%以下、特に0.005 %
以下とするのが好ましい。これらの微量成分は、塩化
物、硝酸塩、硫酸塩、酢酸塩、炭酸塩、モリブデン酸
塩、ピロリン酸塩、次亜リン酸塩、有機金属塩、あるい
は金属を酸に溶解した溶液等としてめっき浴に添加する
ことができる。
【0033】こうしてFe−Cめっきを鋼板にプレめっき
した後、通常は水洗および乾燥した後、溶融亜鉛めっき
で鋼板表面活性化のために通常行われているような前処
理を施す。この前処理は、必要に応じて弱酸化雰囲気も
しくは還元雰囲気中で鋼板を予熱した後、窒素+水素還
元雰囲気中で焼鈍することにより実施できる。具体的に
は、例えば、酸素濃度が0.001 ppm 以上、20 vol%以下
のN2 +O2 雰囲気中において500 〜700 ℃で60秒以内
の予熱に付した後、水素濃度が10〜30 vol%、露点が−
30℃以下のN2 +H2 雰囲気で30〜90秒の還元焼鈍を行
う。
【0034】その後、溶融亜鉛めっきを施し、必要であ
ればさらに合金化処理を行うことによって、本発明の溶
融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板が得
られる。これらは常法に従って実施できる。例えば、溶
融亜鉛めっき法は、ゼンジマー型の連続溶融亜鉛めっき
ラインをはじめ、いかなる方法も可能である。溶融亜鉛
めっきは、460 ℃程度の浴温で行うことができる。溶融
亜鉛めっきの付着量は特に制限されない。従来の20〜70
g/m2 の範囲内の付着量でも高品質の溶融亜鉛めっきを
行うことができるが、本発明によれば、厚めっきしても
低温対衝撃耐久性が確保されるので、付着量の上限は15
0 g/m2まで拡大することができ、厚めっきでも高品質の
溶融亜鉛めっきが行われることが特徴の一つである。
【0035】また、溶融亜鉛めっき浴の組成、例えば、
Al濃度にも特に制限はない。本発明の方法は、浴中のAl
濃度に関係なくその効果を発揮することができる。従っ
て、本発明の「溶融亜鉛めっき」は、Zn−55wt%Al浴を
用いる通称ガルバリューム鋼板、およびZn−5wt%Al浴
を用いる通称ガルファン鋼板のような亜鉛合金めっき鋼
板の製造にも適用でき、その場合にも本発明の効果が発
揮される。但し、本発明においては、下層のFe−Cプレ
めっき層を設けたことにより、Znと鋼板との反応が高め
られているため、Al量があまりに少ないと、めっき時に
この反応を制御することが困難となり、付着量の制御が
難しくなる場合がある。その意味で、浴中Al量は0.03%
以上とすることが好ましい。また、当業者には周知のよ
うに、合金化溶融亜鉛めっき鋼板の製造においては、め
っき浴中のAl濃度が過大になると、めっき時に生成する
Fe−Alの合金層が厚くなりすぎ、合金化が阻害される。
従って、合金化する場合には、浴中Al濃度は3%以下と
することが好ましい。
【0036】合金化処理も、従来技術に準じて、特に雰
囲気を規定することはない。420 〜600 ℃程度の温度に
10〜30秒加熱することにより実施することができる。
【0037】本発明によれば、溶融亜鉛による濡れ性が
悪いため、通常の溶融亜鉛めっき法ではめっきできない
鋼種である0.2 %以上のSiが添加されたSi添加鋼の鋼板
についても、不めっきを起こさずに均一に溶融亜鉛めっ
きを施すことができる。Si添加鋼板を母材として本発明
の方法により溶融亜鉛めっき鋼板を製造する場合、Al
濃度0.12%以上のめっきままで製品とするGIと呼
ばれる製品、さらには上記のガルファン、ガルバリウム
を含む、浴中Al濃度が約0.03〜55%の範囲内の各種溶融
亜鉛めっきについて、不めっき等の支障なく溶融亜鉛め
っきを施すことができる。
【0038】本発明はまた、合金化の遅延や処理ムラが
発生しやすい、0.2 %以上のSiおよび/または0.03%以
上のPが添加された鋼 (Si/P添加鋼と称する) にも有
利に適用することができる。即ち、このようなSi/P添
加鋼の鋼板を母材として合金化溶融亜鉛めっき鋼板を製
造すると、迅速かつ均一に合金化処理を行うことがで
き、製造効率が大幅に向上する。この場合には、浴中Al
濃度は0.03%以上、3.0%以下とすることが好ましい。
上述したように、Al濃度が3.0 %を超えると合金化が阻
害され、0.03%未満ではめっきの制御が困難となるから
である。
【0039】本発明において、下層にFe−Cの極薄めっ
きを施すことにより、上述した効果(不めっきの防止、
合金化の促進、密着性向上による低温対衝撃耐久性の改
善)が達成される原因の詳細は明らかではないが、界面
近傍の結晶方位・粒径、結晶靱性、界面のミクロ凹凸形
状等の効果またはC自身の化学的な性質 (例えば、鋼中
元素と反応し、それぞれの悪影響を及ぼす機構に変化を
与える等) の影響によるもので、Fe−Cプレめっき層に
よりZnと鋼板との反応性が高められることが関与してい
るものと考えられる。
【0040】
【実施例】実施例1 表1に示す組成を持った各種の極低炭素鋼冷延鋼板未焼
鈍材 (板厚0.8 mm) を用い、250 ×100 mmに裁断して供
試材とした。この鋼板を、予めトリクレンで脱脂した
後、60℃の 2〜10%オルソ珪酸ナトリウム水溶液中で電
解脱脂し、10%塩酸中で酸洗した後、表2に示すめっき
条件で 0.1〜30秒のFe−C電気めっき、または比較用の
電気Feめっき施した。
【0041】
【表1】
【0042】
【表2】
【0043】なお、FC2〜4では、浴の調製後、90℃
で10〜20分間加熱し、冷却後に硫酸を添加して、浴のp
Hを2に調整した。めっき温度はすべて40℃の一定とし
た。Fe−CおよびFe電気めっきの付着量は、通電時間お
よび電流密度を変化させることにより変動させた。
【0044】上記プレめっき皮膜の付着量およびC含有
量 (皮膜中重量%とC付着量) を調べた結果を次の表3
に示す。
【0045】
【表3】
【0046】所定雰囲気での熱処理が可能で、かつ還元
雰囲気からの直接溶融めっきが可能な、竪型溶融めっき
装置 (レスカ社製) を用いて、上で得たプレめっき鋼板
および比較用のプレめっきなしの鋼板の溶融めっきを行
った。各供試鋼板は、この装置内で予め予熱と焼鈍を施
してから、溶融めっきした。予熱は、Fe−Cプレめっき
鋼板およびプレめっきなしの鋼板の場合には酸素5〜15
vol%を含む窒素雰囲気で、また比較用のFeプレめっき
鋼板の場合には酸素8000 ppm〜15 vol%を含む窒素雰囲
気で、それぞれ500 ℃において0〜60秒行い、焼鈍はい
ずれも露点−30℃、酸素濃度2 ppmの、N2 +40%H2
の雰囲気で850 ℃×60秒行った。焼鈍後、520 ℃の鋼板
温度に冷却した後、各種Al濃度の亜鉛溶湯を用いて溶融
亜鉛めっきを施した。めっき時間は1秒であり、ガスワ
イパーによりZn付着量を約60g/m2(片面当たり) に調整
した。めっき後、Si添加鋼については、不めっきの発生
状況を目視で調査し、鋼板の濡れ性を評価した。さら
に、得られた各溶融亜鉛めっき鋼板について、500 ℃の
塩浴中で合金化処理し、合金化完了までの時間 (合金化
時間) を測定した。即ち、溶融亜鉛めっき皮膜中のFe濃
度が9〜12%になるまでの時間を測定し、合金化時間と
した。その結果を次の表4に示す。
【0047】
【表4】
【0048】表4に示した結果からわかるように、本発
明により極薄のFe−Cプレめっきを予め施しておくこと
で、Si添加鋼の濡れ性が向上し、不めっきが発生しなく
なると共に、Si/P添加鋼での合金化遅延の改善にも効
果がある。これに対し、Feプレめっきを施した比較例で
は、合金化時間はプレめっきなしの比較例と全く変わら
ず、Feプレめっきではプレめっき層の存在にもかかわら
ず合金化時間短縮の効果が全く得られていない。このこ
とから、Fe−Cプレめっきの予想外の効果が明らかであ
る。
【0049】実施例2 表5に示す成分の各種の冷間圧延鋼板 (板厚0.8 mm) を
用い、実施例1と同様に脱脂および水洗した後、表6に
示す組成の電解液を電気めっき浴とし、同じく表6に示
す電解条件で電気Fe−Cめっきを施した。また比較を目
的として電気Feめっきを行った場合の電解条件も表6に
あわせて示す。
【0050】
【表5】
【0051】
【表6】
【0052】電気Fe−Cめっき皮膜中のC含有量はギ酸
の濃度を制御することにより変化させ、めっき皮膜厚み
は通電量を調整して変化させた。また、一部のFe−Cめ
っき皮膜中には微量合金成分を含有させた。微量合金成
分は、上記電解液中に各金属の塩化物、硝酸塩、硫酸
塩、酢酸塩、炭酸塩、モリブデン酸塩、ピロリン酸塩、
次亜リン酸塩、有機金属塩、または金属自体を予め酸で
溶解した状態で、目標組成のめっき皮膜が得られるよう
な量で添加した。
【0053】電気Fe−Cめっきの終了後、得られたプレ
めっき鋼板を乾燥し、続いて、実施例1と同様の装置を
使用して、弱酸化性 (5ppm の酸素を含有するN2 ) 雰
囲気中で鋼板を500 ℃で1秒間予熱した後、N2 +20%
2 の雰囲気中で850 ℃に20秒間加熱して焼鈍処理し
た。その後、所定量のAlを含む460 ℃に保持した溶融亜
鉛めっき浴中に3秒間浸漬して、片面当たり約60 g/m2
の溶融亜鉛めっきを施した。さらに、一部の試験材は、
溶融亜鉛めっきに続いて500 ℃で亜鉛の金属光沢が消失
するまで合金化処理した。
【0054】こうして得られた溶融亜鉛めっき鋼板 (G
Iと略記)および合金化溶融亜鉛めっき鋼板(GAと略
記)の各供試材のめっき皮膜の低温対衝撃耐久性を、次
の方法により評価した。
【0055】試験方法:供試材の片面のめっき皮膜上
に、リン酸亜鉛処理 (Chemfil 社、CF168 処理液使用)
→カチオン電着塗装 (PPG 社、Uniprime塗料使用、膜厚
30μm)→中塗り塗装 (同社製エポキシエステル系塗料使
用、膜厚15μm)→上塗り塗料 (同社製アクリル・エナメ
ル系塗料使用、膜厚45μm)という手順で化成処理と塗装
を行った。これを供試台上にセットし、−40℃の低温条
件下においてダイヤモンド粒 (直径約3mm) を時速120
km/hの速度で10箇所衝突させる衝撃を与えた後、次に述
べる耐食性暴露試験に供した。衝撃を付与した供試材
を、1ヵ月に1回の頻度で3%NaCl水溶液に30分間浸漬
しながら、工業地帯環境 (兵庫県尼崎市) に暴露し続
け、この暴露試験を5年間にわたって継続した。低温対
衝撃耐久性の評価は、衝突点での塗膜ブリスターの最大
径が5mm以上のもの (×) 、3mm以上5mm未満のもの
(△) 、1mm以上3mm未満のもの (○) 、1mm未満のも
の (◎) という基準で行った。
【0056】試験結果を、使用した鋼板の種類、下層Fe
−C電気めっき皮膜のC含有量、膜厚および微量元素
量、ならびに溶融亜鉛めっき浴中のAl量と共に表7〜表
9に示す。
【0057】
【表7】
【0058】
【表8】
【0059】
【表9】
【0060】これらの表に示した結果から明らかなよう
に、電気Fe−Cプレめっきを施した溶融亜鉛めっき鋼板
および合金化溶融亜鉛めっき鋼板は、従来例であるプレ
めっきがFe電気めっきである溶融亜鉛めっき鋼板および
合金化溶融亜鉛めっき鋼板、ならびにプレめっきを施さ
ない溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼
板に比べて、低温対衝撃耐久性が極めて良い。また、下
層電気Fe−CめっきのC含有量または膜厚が本発明で規
定する範囲外である比較例の試験結果から分かるよう
に、膜厚が薄すぎたり、或いはC量が多すぎるか少なす
ぎる場合には、十分な低温対衝撃耐久性が得られない。
【0061】
【発明の効果】以上述べたように、本発明の方法は、溶
融亜鉛めっきにおける鋼板のめっき濡れ性を改善して不
めっきを防止すると共に、その後の合金化処理を促進さ
せ、合金化処理の遅延や処理ムラの発生を防止できる。
同時に、得られためっき皮膜は、厚めっきであっても低
温衝撃負荷に対する皮膜耐久性に優れている。従って、
本発明により、母材鋼板の鋼種によらず、高品質の溶融
亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板を経済
的に製造することができる。従って、本発明の方法によ
り製造された溶融亜鉛系めっき鋼板は、例えば、自動車
の車体用、家電製品などに適用した場合にその寿命を著
しく増大させることができ、産業上極めて有用である。
───────────────────────────────────────────────────── フロントページの続き (72)発明者 津田 哲明 大阪市中央区北浜4丁目5番33号 住友金 属工業株式会社内

Claims (1)

    【特許請求の範囲】
  1. 【請求項1】 鋼板上に、C含有量 0.001〜10wt%のFe
    −Cめっきを付着量0.1〜10 g/m2 で施した後、溶融亜
    鉛めっきするか、或いは溶融亜鉛めっきに続いて合金化
    処理することを特徴とする、溶融亜鉛系めっき鋼板の製
    造方法。
JP1681492A 1991-09-30 1992-01-31 溶融亜鉛系めつき鋼板の製造方法 Withdrawn JPH05148604A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1681492A JPH05148604A (ja) 1991-09-30 1992-01-31 溶融亜鉛系めつき鋼板の製造方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-251857 1991-09-30
JP25185791 1991-09-30
JP1681492A JPH05148604A (ja) 1991-09-30 1992-01-31 溶融亜鉛系めつき鋼板の製造方法

Publications (1)

Publication Number Publication Date
JPH05148604A true JPH05148604A (ja) 1993-06-15

Family

ID=26353217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1681492A Withdrawn JPH05148604A (ja) 1991-09-30 1992-01-31 溶融亜鉛系めつき鋼板の製造方法

Country Status (1)

Country Link
JP (1) JPH05148604A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256108A (ja) * 2004-03-12 2005-09-22 Sumitomo Metal Ind Ltd 溶融亜鉛系めっき鋼材の製造方法
JP2007039780A (ja) * 2004-10-07 2007-02-15 Jfe Steel Kk 溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板ならびにそれらの製造方法
JP2007107051A (ja) * 2005-10-13 2007-04-26 Nippon Steel Corp 外観、加工性、溶接性に優れた高張力溶融Znめっき鋼材及びその製造方法
JP2007238997A (ja) * 2006-03-07 2007-09-20 Jfe Steel Kk 溶融亜鉛めっき鋼板およびその製造装置、ならびに表面処理制御方法、表面処理制御装置
JP2015504976A (ja) * 2011-12-28 2015-02-16 ポスコ メッキ表面品質及びメッキ密着性に優れた高強度溶融亜鉛メッキ鋼板及びその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256108A (ja) * 2004-03-12 2005-09-22 Sumitomo Metal Ind Ltd 溶融亜鉛系めっき鋼材の製造方法
JP2007039780A (ja) * 2004-10-07 2007-02-15 Jfe Steel Kk 溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板ならびにそれらの製造方法
JP2007107051A (ja) * 2005-10-13 2007-04-26 Nippon Steel Corp 外観、加工性、溶接性に優れた高張力溶融Znめっき鋼材及びその製造方法
JP2007238997A (ja) * 2006-03-07 2007-09-20 Jfe Steel Kk 溶融亜鉛めっき鋼板およびその製造装置、ならびに表面処理制御方法、表面処理制御装置
JP2015504976A (ja) * 2011-12-28 2015-02-16 ポスコ メッキ表面品質及びメッキ密着性に優れた高強度溶融亜鉛メッキ鋼板及びその製造方法
US11001918B2 (en) 2011-12-28 2021-05-11 Posco High-strength hot-dip galvanized steel sheet having excellent plating surface quality and adhesion, and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US5494706A (en) Method for producing zinc coated steel sheet
JP2707928B2 (ja) 珪素含有鋼板の溶融亜鉛めっき方法
JPH04214895A (ja) めっき性と溶接性に優れた表面処理鋼板およびその製造方法
JP4968701B2 (ja) 外観の良好な溶融Znめっき高強度鋼材
JP2964911B2 (ja) P添加高張力鋼材の合金化溶融亜鉛めっき方法
JP2841889B2 (ja) 合金化溶融Znめっき鋼板の製造方法
JP2705390B2 (ja) Si含有鋼板の溶融亜鉛めっき方法
JP3382697B2 (ja) 合金化溶融亜鉛めっき鋼板の製造方法
JPH05148604A (ja) 溶融亜鉛系めつき鋼板の製造方法
JPH0645853B2 (ja) 合金化溶融亜鉛めっき鋼板の製造方法
JP2704045B2 (ja) めっき欠陥の少ない表面処理鋼板およびその製造方法
JP2019143237A (ja) 高強度めっき鋼板の製造方法
JP2000248346A (ja) Si含有高強度溶融亜鉛めっき鋼板ならびに高強度合金化溶融亜鉛めっき鋼板の製造方法
JPH11140587A (ja) めっき密着性に優れた合金化溶融亜鉛めっき鋼板
KR970000190B1 (ko) 아연도금강판의 제조방법
JP3078456B2 (ja) 高張力溶融亜鉛めっき鋼板の製造方法
JP2001279411A (ja) 溶融亜鉛めっき鋼板の製造方法
JPH0711409A (ja) 亜鉛めっき鋼板の製造方法
JPH08170160A (ja) Si含有高張力(合金化)溶融亜鉛めっき鋼板の製造方法
JPH05106001A (ja) 珪素含有鋼板の溶融亜鉛めつき方法
JPH07197225A (ja) 高張力熱延鋼板の溶融めっき方法
JP2000169948A (ja) 合金化溶融亜鉛めっき鋼板およびその製造方法
JPH05171389A (ja) 溶融亜鉛めっき鋼板の製造方法
JP2841898B2 (ja) 表面平滑性に優れた合金化溶融亜鉛めっき鋼板
JP5103759B2 (ja) 溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板の製造方法

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990408