JPH0482172A - Lithium cell - Google Patents
Lithium cellInfo
- Publication number
- JPH0482172A JPH0482172A JP2195718A JP19571890A JPH0482172A JP H0482172 A JPH0482172 A JP H0482172A JP 2195718 A JP2195718 A JP 2195718A JP 19571890 A JP19571890 A JP 19571890A JP H0482172 A JPH0482172 A JP H0482172A
- Authority
- JP
- Japan
- Prior art keywords
- particles
- particle size
- average particle
- negative electrode
- lithium cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 10
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 10
- 239000002245 particle Substances 0.000 claims abstract description 31
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 8
- 238000002441 X-ray diffraction Methods 0.000 claims abstract description 3
- 239000011255 nonaqueous electrolyte Substances 0.000 abstract description 2
- 238000012856 packing Methods 0.000 description 4
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は非水電解質リチウム電池に関するものであり、
特に放電特性、サイクル寿命特性に優れたリチウム電池
用負極に関するものである。[Detailed Description of the Invention] Industrial Application Field The present invention relates to a non-aqueous electrolyte lithium battery,
In particular, the present invention relates to a negative electrode for lithium batteries that has excellent discharge characteristics and cycle life characteristics.
従来技術とその問題点
炭素繊維成型体はサイクル寿命特性に優れていいる。し
かしながら、体積当りの容量が小さいという欠点がある
。Prior art and its problems Carbon fiber molded bodies have excellent cycle life characteristics. However, there is a drawback that the capacity per volume is small.
発明の目的
本発明は上記従来の問題点に鑑みなされたものであり、
放電容量の向上したリチウム電池を提供することを目的
とするものである。Purpose of the Invention The present invention has been made in view of the above-mentioned conventional problems.
The purpose of this invention is to provide a lithium battery with improved discharge capacity.
発明の構成
本発明は上記目的を達成するべ(、
X線回折による格子面間隔(do02)が3.68〜3
.56人で、平均粒径0.8μmの粒子10〜65wt
%、平均粒径6μmの粒子90〜65wt%を混合した
炭素粒子から成るWL極をリチウム吸蔵負極として用い
ることを特徴とするリチウム電池である。Structure of the Invention The present invention is intended to achieve the above object (with a lattice spacing (do02) of 3.68 to 3 by X-ray diffraction).
.. 56 people, 10-65wt of particles with an average particle size of 0.8μm
This is a lithium battery characterized in that a WL electrode made of carbon particles mixed with 90 to 65 wt % of particles having an average particle size of 6 μm is used as a lithium storage negative electrode.
実施例 以下、本発明の詳細について一実施例により説明する。Example Hereinafter, the details of the present invention will be explained using one example.
格子面間隔(d 002 )が3.58〜3.56人の
炭素粒子で、平均粒子径が0゜5putの粒子と、平均
粒子径3.0μmの粒径の異なる2種類の炭素粒子を用
い、混合比率を変え、テフロンをバインダーとして厚さ
約150μmのシートを作製し、その充填密度を調べた
。Two types of carbon particles with a lattice spacing (d 002 ) of 3.58 to 3.56 people and different particle sizes were used: particles with an average particle size of 0°5 put and an average particle size of 3.0 μm. A sheet with a thickness of approximately 150 μm was prepared by changing the mixing ratio and using Teflon as a binder, and its packing density was examined.
第1図に混合比率と充填密度の関係を示した。Figure 1 shows the relationship between mixing ratio and packing density.
第1図の結果より、平均粒子径0.8μmの粒子の混合
比率10〜35wt%の範囲で見掛密度1.29/d以
上の高い充填密度が得られた。From the results shown in FIG. 1, a high packing density of 1.29/d or more in apparent density was obtained when the mixing ratio of particles with an average particle diameter of 0.8 μm was in the range of 10 to 35 wt%.
平均粒径0.8μ解の粒子20wt%、平均粒径3.0
μmの粒子80 wt%からなるカーボンシート負極と
比較例として、平均粒径0.8μmの粒子100wt%
、及び平均粒径3.0μmの100wt%、からなるカ
ーボンシート負極にLiを吸蔵させ、放出させた時の単
位体積当りの容量を比較したものである。20wt% particles with an average particle size of 0.8μ, average particle size 3.0
As a comparative example, a carbon sheet negative electrode consisting of 80 wt% of particles with an average particle size of 0.8 μm and 100 wt% of particles with an average particle size of 0.8 μm
, and 100 wt % of carbon sheet negative electrode having an average particle size of 3.0 μm, the capacity per unit volume when Li is occluded and released is compared.
第1図は炭素粒子の混合比率と充填密度の関係を示した
図である。FIG. 1 is a diagram showing the relationship between the mixing ratio of carbon particles and the packing density.
Claims (1)
3.56Åで、平均粒径0.8μmの粒子10〜35w
t%、平均粒径3μmの粒子90〜65wt%を混合し
た炭素粒子から成る電極をリチウム吸蔵負極として用い
ることを特徴とするリチウム電池。The lattice spacing (d002) by X-ray diffraction is 3.38~
3.56 Å, average particle size 0.8 μm particles 10-35w
A lithium battery characterized in that an electrode made of carbon particles mixed with 90 to 65 wt% of particles having an average particle diameter of 3 μm is used as a lithium storage negative electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2195718A JPH0482172A (en) | 1990-07-23 | 1990-07-23 | Lithium cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2195718A JPH0482172A (en) | 1990-07-23 | 1990-07-23 | Lithium cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0482172A true JPH0482172A (en) | 1992-03-16 |
Family
ID=16345813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2195718A Pending JPH0482172A (en) | 1990-07-23 | 1990-07-23 | Lithium cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0482172A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0688057A1 (en) | 1994-06-15 | 1995-12-20 | Kabushiki Kaisha Toshiba | Lithium ion secondary battery |
WO2014057909A1 (en) * | 2012-10-09 | 2014-04-17 | イビデン株式会社 | Carbon material for electricity storage device, process for manufacturing same, and electricity storage device using same |
-
1990
- 1990-07-23 JP JP2195718A patent/JPH0482172A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0688057A1 (en) | 1994-06-15 | 1995-12-20 | Kabushiki Kaisha Toshiba | Lithium ion secondary battery |
WO2014057909A1 (en) * | 2012-10-09 | 2014-04-17 | イビデン株式会社 | Carbon material for electricity storage device, process for manufacturing same, and electricity storage device using same |
JPWO2014057909A1 (en) * | 2012-10-09 | 2016-09-05 | イビデン株式会社 | Carbon material for power storage device, method for producing the same, and power storage device using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4197366A (en) | Non-aqueous electrolyte cells | |
JPH04137368A (en) | Nickel-hydrogen storage battery and its manufacture | |
WO2024113407A1 (en) | Positive electrode sheet, preparation method therefor, and sodium-ion battery | |
JP2005150102A (en) | Cathode active material for lithium secondary cell and its manufacturing mathod as well as nouaqueous lithium secondary cell | |
JPH11167919A (en) | Positive electrode material for highly stable lithium ion secondary battery, its manufacture and its usage | |
JPH1131508A (en) | Nonaqueous electrolyte secondary battery | |
JPH0482172A (en) | Lithium cell | |
JPH07211320A (en) | Positive mix and battery using the same | |
CN116779806A (en) | Lithium supplementing material and preparation method and application thereof | |
JPH10106618A (en) | Sealed alkaline storage battery | |
JP3309463B2 (en) | Cylindrical nickel-metal hydride storage battery | |
JPS62154562A (en) | Hydrogen absorbing alloy electrode | |
JPH02165570A (en) | Closed lead battery | |
JP3114160B2 (en) | Nickel electrode for alkaline storage battery and alkaline storage battery using the same | |
JPS6273564A (en) | Metal oxide-hydrogen battery | |
JPH0810591B2 (en) | Hydrogen storage alloy electrode | |
JPH0432158A (en) | Closed lead acid battery | |
JP2854920B2 (en) | Nickel-metal hydride battery | |
JPH07272714A (en) | Nonaqueous electrolyte battery | |
JPS6097560A (en) | Sealed type alkaline storage battery | |
JPH02158063A (en) | Sealed lead-storage battery | |
CN114361443A (en) | Single crystal ternary material, preparation method thereof and lithium battery | |
JPS5987772A (en) | Organic electrolyte battery | |
JPH02155167A (en) | Alkaline secondary battery | |
JP3082341B2 (en) | Hydrogen storage electrode |