[go: up one dir, main page]

JPS62154562A - Hydrogen absorbing alloy electrode - Google Patents

Hydrogen absorbing alloy electrode

Info

Publication number
JPS62154562A
JPS62154562A JP60293118A JP29311885A JPS62154562A JP S62154562 A JPS62154562 A JP S62154562A JP 60293118 A JP60293118 A JP 60293118A JP 29311885 A JP29311885 A JP 29311885A JP S62154562 A JPS62154562 A JP S62154562A
Authority
JP
Japan
Prior art keywords
electrode
hydrogen storage
storage alloy
hydrogen
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60293118A
Other languages
Japanese (ja)
Other versions
JPH0793137B2 (en
Inventor
Kunihiko Sasaki
邦彦 佐々木
Motoi Kanda
基 神田
Yuji Sato
優治 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60293118A priority Critical patent/JPH0793137B2/en
Publication of JPS62154562A publication Critical patent/JPS62154562A/en
Publication of JPH0793137B2 publication Critical patent/JPH0793137B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To safely manufacture in a short time without need of treatment with hydrogen and without use of a complicated and expensive manufacturing facility by bonding mechanically crushed hydrogen absorbing alloy powder having a pore size of 20-149mum with a resin. CONSTITUTION:Particle size of hydrogen absorbing alloy powder is specified to 20-149mum. If the powder having a particle size less than 20mum is used, a battery having high performance is cannot obtained. If the particles size of the powder exceeds 149mum, particles in an electrode break and come off f the electrode during repeated charge-discharge to decrease the life of the battery. The amount of resin used as a binder is limited to 0.5-4wt.% based on the alloy powder. If the amount of the resin is less than 0.5wt.%, the strength of the electrode is insufficient, and if it exceeds 4.0wt.%, the capacity of the electrode is insufficient. Use of water repellent fluorine resin is preferable as the binder.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は密閉型ニッケル酸化物・水素蓄電池等に用いら
れる水素吸蔵合金電極の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to improvements in hydrogen storage alloy electrodes used in sealed nickel oxide hydrogen storage batteries and the like.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、例えば密閉型ニッケル酸化物・水素蓄電池に用い
られる水素吸蔵合金電極は以下のようにして製造されて
いる。まず、水素吸蔵合金のインゴットを耐熱・耐圧容
器内に入れ、容器内を例えば10 ’ torrまで減
圧した後、必要に応じて冷却しながら10〜30気圧の
水素を容器内に充満させる。こうして合金に水素を吸蔵
させ、飽和に達した後、容器内温度を60〜80℃程度
に上げ、容器内の水素を真空ポンプで吸引除去し、合金
に吸蔵されている水素を放出させる。水素を完全に放出
させた後、再度10〜30気圧の水素を容器内に充満さ
せて合金に水素を吸蔵させる。このような水素の吸蔵・
放出操作を数回繰返して水素吸蔵合金を粉末化する。次
に、水素吸蔵合金粉末を不活性ガス中でシート状に成形
して水素吸蔵合金電極を製造する。
Conventionally, hydrogen storage alloy electrodes used, for example, in sealed nickel oxide/hydrogen storage batteries have been manufactured as follows. First, an ingot of a hydrogen storage alloy is placed in a heat-resistant and pressure-resistant container, and after the pressure inside the container is reduced to, for example, 10' torr, the container is filled with hydrogen at 10 to 30 atm while cooling as necessary. In this way, hydrogen is stored in the alloy, and after reaching saturation, the temperature inside the container is raised to about 60 to 80° C., and the hydrogen in the container is removed by suction with a vacuum pump, thereby releasing the hydrogen stored in the alloy. After hydrogen is completely released, the container is again filled with hydrogen at 10 to 30 atmospheres to cause the alloy to store hydrogen. Such hydrogen storage and
The releasing operation is repeated several times to powderize the hydrogen storage alloy. Next, the hydrogen storage alloy powder is formed into a sheet shape in an inert gas to produce a hydrogen storage alloy electrode.

しかし、上記のような方法では、複雑で高価な製造設備
を必要とし、高圧の水素ガスを使用するため危険を伴い
、しかも処理に長時間を要するという欠点がある。
However, the above-mentioned method requires complicated and expensive production equipment, is dangerous because it uses high-pressure hydrogen gas, and has disadvantages in that it requires a long time for processing.

〔発明の目的〕[Purpose of the invention]

本発明は上記欠点を解消するためになされたものであり
、水素を用いる処理を必要とせず、複雑で高価な製造設
備なしに安全にかつ短時間で製造し得る水素吸蔵合金電
極を提供しようとするものである。
The present invention has been made to eliminate the above-mentioned drawbacks, and aims to provide a hydrogen storage alloy electrode that does not require treatment using hydrogen and can be manufactured safely and in a short time without complex and expensive manufacturing equipment. It is something to do.

〔発明の概要〕[Summary of the invention]

本発明者らは、空気中で機械的に粉砕した水素吸蔵合金
粉末でも、その粒径を規定して水素吸蔵合金電極を作製
すれば、高い電池性能を示すことを見出だし本発明をな
すに至った。
The present inventors have discovered that even hydrogen-absorbing alloy powder mechanically pulverized in air can exhibit high battery performance if a hydrogen-absorbing alloy electrode is manufactured with a defined particle size. It's arrived.

すなわち、本発明の水素吸蔵合金電極は、機械的に粉砕
した粒径20〜149pの水素吸蔵合金粉末を樹脂で結
着させたことを特徴とするものである。
That is, the hydrogen storage alloy electrode of the present invention is characterized in that mechanically pulverized hydrogen storage alloy powder having a particle size of 20 to 149p is bound with a resin.

このような水素吸蔵合金電極は、水素を使用する粉末化
処理を必要としないので、複雑で高価な製造設備を必要
とせず、安全にかつ短時間で製造でき、非常に安価とな
る。
Such a hydrogen storage alloy electrode does not require powdering treatment using hydrogen, so it does not require complicated and expensive production equipment, can be produced safely and in a short time, and is very inexpensive.

本発明において水素吸蔵合金粉末の粒径を20〜149
IERに規定したのは、粒径が20p未満では高い電池
性能が得られず、一方149pを超えると電極を作製し
て充放電を繰返す間に粒子がくずれて脱落し寿命が短く
なるためである。特に好ましい粒径の範囲は37〜14
9pである。
In the present invention, the particle size of the hydrogen storage alloy powder is 20 to 149.
The reason for specifying the IER is that if the particle size is less than 20p, high battery performance cannot be obtained, while if it exceeds 149p, the particles will break and fall off during repeated charging and discharging after making the electrode, shortening the lifespan. . A particularly preferable particle size range is 37 to 14
It is 9p.

また、本発明において、結着剤として混合する樹脂の割
合は水素吸蔵合金粉末に対して0.5〜4重量%である
ことが望ましい。これは、樹脂量が0.5重量%未満で
は電極の強度が十分でなく、一方4.0重量%を超える
と電極の容量が十分でなくなるためである。また、樹脂
としては撥水性を有するフッ素樹脂等を用いることが望
ましい。
Further, in the present invention, the proportion of the resin mixed as a binder is preferably 0.5 to 4% by weight based on the hydrogen storage alloy powder. This is because if the amount of resin is less than 0.5% by weight, the strength of the electrode will not be sufficient, while if it exceeds 4.0% by weight, the capacity of the electrode will not be sufficient. Further, as the resin, it is desirable to use a water-repellent fluororesin or the like.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

まず、LmN i   Mn   A、+7    (
ただし、4.2  0.B   O12 LmはLaリッチのミツシュメタル)なる組成の水素吸
蔵合金のインゴットを空気中でボールミルに入れ、30
分間粉砕した。その後、ふるいにかけて100〜200
メツシユ(149〜741m)、200〜300メツシ
ユ (74〜46p)、300〜400メツシユ (4
6〜37p)、400〜635メツシユ (37〜20
p)、653メツシユパス(20−以下)の5種類に分
級した。
First, LmN i Mn A, +7 (
However, 4.2 0. An ingot of a hydrogen-absorbing alloy with a composition of B O12 Lm (La-rich Mitsushmetal) was placed in a ball mill in the air,
Pulverized for minutes. After that, sift it to 100 to 200
mesh (149-741m), 200-300 mesh (74-46p), 300-400 mesh (4
6-37p), 400-635 pages (37-20
p), 653 mesh passes (20 or less).

次に、各粒度の水素吸蔵合金粉末に対してそれぞれポリ
テトラフルオロエチレン(PTFE)を4.0.2.0
.0.5重量%の割合で混合してシート状に成形した後
、それぞれニッケル金網集電体に400 kg/α2の
圧力で圧着して水素吸蔵合金電極を作製した。
Next, 4.0.2.0% polytetrafluoroethylene (PTFE) was added to each particle size of hydrogen storage alloy powder.
.. After mixing at a ratio of 0.5% by weight and forming into a sheet, each was pressed onto a nickel wire mesh current collector at a pressure of 400 kg/α2 to produce a hydrogen storage alloy electrode.

これらの水素吸蔵合金電極及び対極として大容量のニッ
ケル極を用いて電池を構成し、充放電試験を行なった。
A battery was constructed using these hydrogen storage alloy electrodes and a large capacity nickel electrode as a counter electrode, and a charge/discharge test was conducted.

なお、充放電効率が100%のときの放電容量をその水
素吸蔵合金電極の性能とした。その結果を下記表に示す
Note that the discharge capacity when the charge/discharge efficiency was 100% was defined as the performance of the hydrogen storage alloy electrode. The results are shown in the table below.

また、実施例1〜4及び比較例1の電極を用いて作製し
た電池を実際の使用状態を考慮して初めから合金1g当
り171mA/g−Mの電流密度で1時間充電を行ない
、放電容量が171mAh/g−M以上に達するサイク
ルを測定した。その結果を第1図に示す。
In addition, considering the actual usage conditions, the batteries produced using the electrodes of Examples 1 to 4 and Comparative Example 1 were charged from the beginning at a current density of 171 mA/g-M per 1 g of alloy for 1 hour, and the discharge capacity was The cycle in which the amount reached 171 mAh/g-M or more was measured. The results are shown in FIG.

上記表から明らかなように、比較例1〜3のように粒径
20−以下の水素吸蔵合金粉末からなる電極を用いた場
合には、電池性能が著しく低いのに対し、実施例1〜1
2のように粒径20〜149pの水素吸蔵合金粉末から
なる電極を用いた場合には、高い電池性能を示す。また
、結着剤としてのPTFEfflが減少すれば、性能が
向上する傾向が見られる。これはPTFEが撥水性であ
り、その含有量が減少したことにより水素吸蔵合金と電
解液との接触が良好になったためであると考えられる。
As is clear from the above table, when an electrode made of hydrogen storage alloy powder with a particle size of 20- or less is used as in Comparative Examples 1 to 3, the battery performance is extremely low, whereas in Examples 1 to 3, the battery performance is extremely low.
When an electrode made of hydrogen storage alloy powder with a particle size of 20 to 149p as in Example 2 is used, high battery performance is exhibited. Furthermore, there is a tendency for performance to improve as the amount of PTFEffl as a binder decreases. This is considered to be because PTFE is water repellent and the reduced content of PTFE improved contact between the hydrogen storage alloy and the electrolyte.

更に、第1図から明らかなように、比較例1の電極を用
いた電池では放電容量が低いのに対し、粒径20〜14
9pの水素吸蔵合金粉末からなる実施例1〜4の電極を
用いた場合には、いずれも2サイクル目から171mA
h/g−Mを超える放電容量を示し、実際の電池を想定
すると極めて実用的価値が大きい。
Furthermore, as is clear from FIG. 1, the battery using the electrode of Comparative Example 1 had a low discharge capacity, whereas the battery with a particle size of 20 to 14
When the electrodes of Examples 1 to 4 made of 9p hydrogen storage alloy powder were used, the output was 171 mA from the second cycle.
It exhibits a discharge capacity exceeding h/g-M, and has extremely high practical value when used as an actual battery.

なお、以上の説明ではLa−Ni系の LmN i   Mn   A、i?   の4元合金
につい4.2  0.8  0.2 てのみ述べたが、他のT i −N i系、Ca−Ni
系、Mg−NL系、Ti−Cr系、Ti−Fe系、Ti
−V系、La−Co系についても同様の効果が期待でき
る。
In addition, in the above explanation, La-Ni-based LmN i Mn A,i? Although only the quaternary alloy 4.2 0.8 0.2 has been described, other Ti-Ni system, Ca-Ni
system, Mg-NL system, Ti-Cr system, Ti-Fe system, Ti
Similar effects can be expected for the -V series and the La-Co series.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、複雑で高価な製造設
備を必要とせず、安全にかつ短時間で製造でき、安価な
水素吸蔵合金電極を提供できるものである。
As detailed above, according to the present invention, it is possible to provide an inexpensive hydrogen storage alloy electrode that can be manufactured safely and in a short time without requiring complicated and expensive manufacturing equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1〜4及び比較例1の水素吸蔵
合金電極を用いて作製した電池の充放電サイクル試験の
結果を示す特性図である。
FIG. 1 is a characteristic diagram showing the results of a charge/discharge cycle test of batteries manufactured using the hydrogen storage alloy electrodes of Examples 1 to 4 of the present invention and Comparative Example 1.

Claims (3)

【特許請求の範囲】[Claims] (1)機械的に粉砕した粒径20〜149μmの水素吸
蔵合金粉末を樹脂で結着させたことを特徴とする水素吸
蔵合金電極。
(1) A hydrogen storage alloy electrode characterized in that mechanically crushed hydrogen storage alloy powder having a particle size of 20 to 149 μm is bound with a resin.
(2)樹脂を水素吸蔵合金粉末に対して0.5〜4重量
%混合したことを特徴とする特許請求の範囲第1項記載
の水素吸蔵合金電極。
(2) The hydrogen storage alloy electrode according to claim 1, wherein the resin is mixed in an amount of 0.5 to 4% by weight based on the hydrogen storage alloy powder.
(3)水素吸蔵合金がLa−Ni系、Ti−Ni系、C
a−Ni系、Mg−Ni系、Ti−Cr系、Ti−Fe
系、Ti−V系、La−Co系から選ばれる少なくとも
1種の系を主体とすることを特徴とする特許請求の範囲
第1項記載の水素吸蔵合金電極。
(3) The hydrogen storage alloy is La-Ni type, Ti-Ni type, C
a-Ni series, Mg-Ni series, Ti-Cr series, Ti-Fe
The hydrogen storage alloy electrode according to claim 1, characterized in that the hydrogen storage alloy electrode is mainly composed of at least one type selected from the group consisting of Ti-V, Ti-V, and La-Co.
JP60293118A 1985-12-27 1985-12-27 Hydrogen storage alloy electrode Expired - Lifetime JPH0793137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60293118A JPH0793137B2 (en) 1985-12-27 1985-12-27 Hydrogen storage alloy electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60293118A JPH0793137B2 (en) 1985-12-27 1985-12-27 Hydrogen storage alloy electrode

Publications (2)

Publication Number Publication Date
JPS62154562A true JPS62154562A (en) 1987-07-09
JPH0793137B2 JPH0793137B2 (en) 1995-10-09

Family

ID=17790660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60293118A Expired - Lifetime JPH0793137B2 (en) 1985-12-27 1985-12-27 Hydrogen storage alloy electrode

Country Status (1)

Country Link
JP (1) JPH0793137B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02177259A (en) * 1988-12-28 1990-07-10 Tokai Univ Manufacture of sheet electrode and accumulator
JPH06283163A (en) * 1993-03-30 1994-10-07 Furukawa Battery Co Ltd:The Manufacture of hydrogen storage alloy electrode
US6110304A (en) * 1995-11-17 2000-08-29 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy electrode for alkaline storage batteries
JP2006127817A (en) * 2004-10-27 2006-05-18 Sanyo Electric Co Ltd Hydrogen storage alloy electrode and alkali storage battery
JP2012129191A (en) * 2010-11-24 2012-07-05 Daihatsu Motor Co Ltd Fuel cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60130054A (en) * 1983-12-15 1985-07-11 Toshiba Corp Metal-oxide hydrogen battery
JPS60140657A (en) * 1983-12-27 1985-07-25 Matsushita Electric Ind Co Ltd Production of hydrogen-occluding electrode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60130054A (en) * 1983-12-15 1985-07-11 Toshiba Corp Metal-oxide hydrogen battery
JPS60140657A (en) * 1983-12-27 1985-07-25 Matsushita Electric Ind Co Ltd Production of hydrogen-occluding electrode

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02177259A (en) * 1988-12-28 1990-07-10 Tokai Univ Manufacture of sheet electrode and accumulator
JPH06283163A (en) * 1993-03-30 1994-10-07 Furukawa Battery Co Ltd:The Manufacture of hydrogen storage alloy electrode
US6110304A (en) * 1995-11-17 2000-08-29 Sanyo Electric Co., Ltd. Hydrogen-absorbing alloy electrode for alkaline storage batteries
JP2006127817A (en) * 2004-10-27 2006-05-18 Sanyo Electric Co Ltd Hydrogen storage alloy electrode and alkali storage battery
JP2012129191A (en) * 2010-11-24 2012-07-05 Daihatsu Motor Co Ltd Fuel cell

Also Published As

Publication number Publication date
JPH0793137B2 (en) 1995-10-09

Similar Documents

Publication Publication Date Title
JPH02277737A (en) Electrode made of hydrogen storage alloy
JPS62154562A (en) Hydrogen absorbing alloy electrode
JPS59181459A (en) Metal oxide hydrogen battery
JPH11162503A (en) Nickel-hydrogen secondary battery
JPS60109174A (en) Manufacture of hydrogen absorption electrode
JP2566912B2 (en) Nickel oxide / hydrogen battery
JPH0613077A (en) Hydrogen storage electrode
JP2994731B2 (en) Method for manufacturing metal hydride storage battery
KR100207618B1 (en) Anode manufacturing method of secondary battery and secondary battery having same
JPH05179372A (en) Production of hydrogen occluding alloy powder
JP2994704B2 (en) Manufacturing method of hydrogen storage alloy electrode
JPH0268856A (en) Hydrogen occluded alloy electrode
JPS61292855A (en) Metal oxide and hydrogen cell
JP2642144B2 (en) Method for producing hydrogen storage electrode
JP3043128B2 (en) Metal-hydrogen alkaline storage battery
JP2955351B2 (en) Hydrogen storage alloy for secondary batteries
JP3011454B2 (en) Hydrogen storage alloy for secondary batteries
JP3152845B2 (en) Nickel-metal hydride battery
JP3454574B2 (en) Manufacturing method of alkaline secondary battery
JP3225408B2 (en) Hydrogen storage alloy electrode and method for producing the same
JPH03289059A (en) Metal-hydrogen alkaline battery
JP3146063B2 (en) Metal oxide / hydrogen secondary batteries
JPH04319258A (en) Hydrogen storage alloy electrode
JPS62223971A (en) Metal oxide-hydrogen battery
JPH0547372A (en) Alkaline secondary battery and manufacture thereof