JPS60130054A - Metal-oxide hydrogen battery - Google Patents
Metal-oxide hydrogen batteryInfo
- Publication number
- JPS60130054A JPS60130054A JP58235080A JP23508083A JPS60130054A JP S60130054 A JPS60130054 A JP S60130054A JP 58235080 A JP58235080 A JP 58235080A JP 23508083 A JP23508083 A JP 23508083A JP S60130054 A JPS60130054 A JP S60130054A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- hydrogen
- electrode
- noncrystalline
- metal oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/383—Hydrogen absorbing alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/34—Gastight accumulators
- H01M10/345—Gastight metal hydride accumulators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、金属酸化物電極を正極とし、水素電極を負極
とする、いわゆる金属酸化物・水素電池に係わりさらに
詳しくは負極が水素吸蔵合金により形成されている金属
酸化物・水素電池に関するものである。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a so-called metal oxide/hydrogen battery in which a metal oxide electrode is used as a positive electrode and a hydrogen electrode is used as a negative electrode. It concerns metal oxide/hydrogen batteries that are being formed.
水素吸蔵合金負極を使用する金属酸化物・水素電池はエ
ネルギ密度の大きな二次電池として注目されているが、
その問題点の一つは水素吸蔵合金負極の寿命が必ずしも
長くないことである。すなわち水素吸蔵合金からなる負
極は充放電の繰り返しにより、しだいにその容量を失な
っていく。その理由は、負極を構成する合金粒子が充電
および放電による水素の吸蔵と放出により膨張と収縮を
繰り返しその結果合金粒子がさらに微粉化して、もはや
電極体にとどまれずに脱落するためである。Metal oxide hydrogen batteries that use hydrogen storage alloy negative electrodes are attracting attention as secondary batteries with high energy density.
One of the problems is that the life of the hydrogen storage alloy negative electrode is not necessarily long. In other words, a negative electrode made of a hydrogen storage alloy gradually loses its capacity through repeated charging and discharging. The reason for this is that the alloy particles constituting the negative electrode repeatedly expand and contract due to absorption and release of hydrogen during charging and discharging, and as a result, the alloy particles become even more finely divided and no longer remain in the electrode body and fall off.
これは通常、結晶状態(多結晶として金属相を形成して
いる)の水素吸蔵合金を使う以上さけられないものであ
る。This is usually unavoidable when using a hydrogen storage alloy in a crystalline state (forming a metal phase as polycrystals).
本発明は上記の欠点を解消するためになされたもので、
電極からの合金の脱落がなく、したがって長寿命の水素
吸蔵合金負極を提供し、その結果寿命特性に優れた金属
酸化物・水素電池を提供する事を目的とする。The present invention has been made to solve the above-mentioned drawbacks.
The object of the present invention is to provide a hydrogen storage alloy negative electrode that does not cause alloy to fall off from the electrode and therefore has a long life, and as a result, to provide a metal oxide/hydrogen battery with excellent life characteristics.
本発明は、金属酸化物・水素電池において、その水素極
に非晶質水素吸蔵合金を使用することを特徴とする。非
晶質水素吸蔵合金は、多結晶のものと異なり、水素を吸
蔵しても微粉化しない。その理由は、水素が吸蔵される
ことによって生じるひずみが非晶質合金中に存在する余
分の空げき(自由体積)によって緩和されるからである
。このだめ、非晶質の水素吸蔵合金を電極として使用し
た場合、カソード分極(充電)によって水素を吸蔵して
も微粉化することがないので、電極支持体からの脱落が
なく寿命が長いものとなる。The present invention is characterized in that a metal oxide hydrogen battery uses an amorphous hydrogen storage alloy for its hydrogen electrode. Unlike polycrystalline alloys, amorphous hydrogen storage alloys do not become pulverized even when they store hydrogen. The reason for this is that the strain caused by hydrogen absorption is alleviated by the extra voids (free volume) present in the amorphous alloy. However, when an amorphous hydrogen storage alloy is used as an electrode, it does not become pulverized even if it absorbs hydrogen through cathodic polarization (charging), so it does not fall off from the electrode support and has a long life. Become.
本発明に用いる非晶質水素吸蔵合金としてはNi−Zr
系合金やLaNi、に代表されるABlI系の合金ある
いはABlI−XDXであられされる三元系の合金でも
よい。またFeTiで代表されるAB系合金、あるいは
MgzNtで代表されるA、B系合金でもよい。The amorphous hydrogen storage alloy used in the present invention is Ni-Zr.
It may be an ABlI-based alloy represented by LaNi or a ternary alloy such as ABlI-XDX. Further, an AB-based alloy represented by FeTi, or an A, B-based alloy represented by MgzNt may be used.
さらに、正極としての金属酸化物電極としては。Furthermore, as a metal oxide electrode as a positive electrode.
オキシ水酸化ニッケル(Ni 0OH)、酸化銀(Ag
zOおよびAg0 )等適宜選択する事ができる。Nickel oxyhydroxide (Ni 0OH), silver oxide (Ag
zO and Ag0), etc. can be selected as appropriate.
また、結着剤としては、PTFE以外のものを使用して
もよい。すなわち、例えばポリビニルアルコールやポリ
エチレンあるいは、他のフッ素樹脂等耐アルカリ性で結
着作用があればよい。形成した電極体については、アモ
ルファスが結晶体にもどらない範囲での熱処理を施こす
ことは差しつがえない。Furthermore, as the binder, materials other than PTFE may be used. That is, it may be made of, for example, polyvinyl alcohol, polyethylene, or other fluororesin, as long as it is alkali resistant and has a binding effect. It is permissible to heat the formed electrode body to the extent that the amorphous state does not return to a crystalline state.
次に本発明を実施例にて説明する。負極である水素極に
は、水素吸蔵合金としてNi−Zr 合金を使用し、正
極にはニッケル酸化物(Ni00H) 電極を使用した
。Next, the present invention will be explained using examples. A Ni-Zr alloy was used as a hydrogen storage alloy for the negative hydrogen electrode, and a nickel oxide (Ni00H) electrode was used for the positive electrode.
まず、水素吸蔵合金は次のようにして作成した。First, a hydrogen storage alloy was created as follows.
純度99.9%の粒状ニッケル(直径約1−)と、純度
99.7%の粒状ジルコニウム(直径約0.2 tea
)を、原子比で64:36になるように混合し、これ
をアルゴンを含むアーク溶解炉中で約1000℃で2時
間加熱し均一に溶解させた。この後、先端に直径0.5
tmのオリフィスを持つルツボに溶解している合金を
導入し、アルゴン加圧下で、この先端のオリフィスから
合金を押し出し、これを2つの金属ロールの中間に落下
せしめた。このロールはそれぞれ銅製で、溶解した合金
を圧縮する方向に急速に回転しておシ、これにより、溶
解した合金は圧延と同時に急激に冷却されて厚さ50μ
mで巾1酊のリボン状の非晶質合金となる。なおこのと
き2つのロールにはアルゴンガスが常時ふきつけられて
おり、合金が酸化することを防止している。声だ、この
ときの合金のうける冷却速度は10〜l Q K7′s
ec 程度である。このように作成した合金が非晶質合
金であることは、粉末X線法において明確な面間隔が観
察されないととによって確認された。Granular nickel with a purity of 99.9% (approximately 1 tea in diameter) and granular zirconium with a purity of 99.7% (approximately 0.2 tea in diameter)
) were mixed at an atomic ratio of 64:36 and heated at about 1000° C. for 2 hours in an arc melting furnace containing argon to uniformly melt the mixture. After this, add a diameter of 0.5 to the tip.
The molten alloy was introduced into a crucible having a tm orifice, and under argon pressure, the alloy was forced out through the orifice at the tip and dropped between two metal rolls. Each of these rolls is made of copper and rotates rapidly in the direction of compressing the molten alloy, which cools the molten alloy rapidly at the same time as it is rolled, resulting in a thickness of 50 μm.
m, it becomes a ribbon-shaped amorphous alloy with a width of 1 mm. At this time, the two rolls are constantly blown with argon gas to prevent the alloy from oxidizing. Sounds good, the cooling rate of the alloy at this time is 10~l Q K7's
It is about ec. It was confirmed that the alloy produced in this way was an amorphous alloy because no clear interplanar spacing was observed in the powder X-ray method.
次に上記の非晶質合金を機械的に粉砕し、粒径100μ
m以下とした。この合金粉末1001に対し、ポリテト
ラルオロエチレン(PTFE)を60チ含む比重1.5
の分散液15cc(PTFE固形分として13.5 F
)を加え、よく混合して厚さ0.5 mmのシート状
の混線体を形成した。次いで、これから3 cm X
5αの大きさに2つ切り出し、これをニッケル製のネッ
トをはさむように両側に配置し、そのまま圧着して電極
体を形成した。このようにして作成した非晶質水素吸蔵
合金からなる電極の合金のみの重量は6.02である。Next, the above amorphous alloy was mechanically crushed to a particle size of 100 μm.
m or less. Specific gravity 1.5 containing 60 inches of polytetrafluoroethylene (PTFE) for this alloy powder 1001
15 cc of dispersion (13.5 F as PTFE solid content)
) and mixed well to form a sheet-like mixed wire body with a thickness of 0.5 mm. Then, from this point, 3 cm
Two pieces having a size of 5α were cut out, placed on both sides so as to sandwich a nickel net, and then crimped to form an electrode body. The weight of the electrode alloy made of the amorphous hydrogen storage alloy thus produced was 6.02.
つぎに、第1図に断面的に示すように、この非晶質水素
吸蔵合金からなる負極1の両側にセパレータ3を介して
正極としてのNi0OH極2を配置し、ホルダー4でし
っかシと固定した後、8N−KOH溶液5を含むケース
6に入れて、電池を完成した。このときN i OOH
極の電極容量は、水素吸蔵合金電極よシも十分大きなも
のとした。Next, as shown in cross section in FIG. 1, Ni0OH electrodes 2 as positive electrodes are placed on both sides of the negative electrode 1 made of this amorphous hydrogen storage alloy with a separator 3 in between, and are firmly fixed with a holder 4. After that, the battery was placed in a case 6 containing an 8N-KOH solution 5 to complete the battery. At this time, N i OOH
The electrode capacitance of the electrode was set to be sufficiently larger than that of the hydrogen storage alloy electrode.
次いで、これを室温で、充電および放電のサイクルを繰
り返し、各サイクルでの放電容量を測定した。充電は3
00mAで4時間、放電は300mAで電池電圧が1V
になるまで行った。その結果を第2図(曲線A)に示す
。なお、比較のために1アモルファス体ではなく結晶体
の合金を水素極とした電池の結果を曲線Bとして示す。Next, charging and discharging cycles were repeated at room temperature, and the discharge capacity at each cycle was measured. Charging is 3
00mA for 4 hours, discharge at 300mA and battery voltage is 1V
I went until The results are shown in FIG. 2 (curve A). For comparison, curve B shows the results of a battery in which a crystalline alloy instead of an amorphous one was used as a hydrogen electrode.
これは、本実施例と同一組成の金属を混合し、同じくア
ルゴンを含むアーク炉中で溶解した後、そのまま徐冷し
て得た合金を水素極電極としだものであって、電極体の
作成方法は本実施例と同一である。In this method, metals having the same composition as in this example were mixed, melted in an arc furnace containing argon, and then slowly cooled as they were.The obtained alloy was used as a hydrogen electrode, and the electrode body was prepared. The method is the same as in this example.
第2図かられかるように、最初の20サイクル程度は放
電容量にはとんど差異はないが、サイクル数の増加によ
シ比較例では容量低下がおこるのに対し、本発明例では
容量低下はわずかであることが明らかである。As can be seen from Figure 2, there is almost no difference in discharge capacity for the first 20 cycles or so, but as the number of cycles increases, the capacity decreases in the comparative example, whereas the capacity in the inventive example decreases. It is clear that the decrease is slight.
以上述べたように、本発明によれば寿命の長い水素吸蔵
合金電極を水素極とする金属酸化物・水素電池が実現さ
れ工業上極めて有用なものと言メる。As described above, according to the present invention, a metal oxide hydrogen battery using a long-life hydrogen storage alloy electrode as a hydrogen electrode has been realized, and is said to be extremely useful industrially.
第1図は本発明に係る金属酸化物・水素電池の構成例を
示す断面図、第2図は本発明に係る金属酸化物・水素電
池の特性例を示す曲線図1・・・水素電極(負極)
2・・・金属酸化物電極(正極)
3・・・セパレータFIG. 1 is a cross-sectional view showing a configuration example of a metal oxide/hydrogen battery according to the present invention, and FIG. 2 is a curve diagram showing an example of characteristics of a metal oxide/hydrogen battery according to the present invention. Negative electrode) 2... Metal oxide electrode (positive electrode) 3... Separator
Claims (1)
具備した金属酸化物・水素電池において。 非晶質水素吸蔵合金を水素電極とした事を特徴とする金
属酸化物・水素電池。[Claims] A metal oxide/hydrogen battery comprising a positive electrode made of a metal oxide and a hydrogen electrode as a negative electrode. A metal oxide/hydrogen battery characterized by using an amorphous hydrogen storage alloy as a hydrogen electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58235080A JPS60130054A (en) | 1983-12-15 | 1983-12-15 | Metal-oxide hydrogen battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58235080A JPS60130054A (en) | 1983-12-15 | 1983-12-15 | Metal-oxide hydrogen battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60130054A true JPS60130054A (en) | 1985-07-11 |
Family
ID=16980763
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58235080A Pending JPS60130054A (en) | 1983-12-15 | 1983-12-15 | Metal-oxide hydrogen battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60130054A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62154562A (en) * | 1985-12-27 | 1987-07-09 | Toshiba Corp | Hydrogen absorbing alloy electrode |
US5629000A (en) * | 1994-11-25 | 1997-05-13 | Sanyo Electric Co., Ltd. | Hydrogen-absorbing alloy electrode for metal hydride alkaline batteries and process for producing the same |
-
1983
- 1983-12-15 JP JP58235080A patent/JPS60130054A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62154562A (en) * | 1985-12-27 | 1987-07-09 | Toshiba Corp | Hydrogen absorbing alloy electrode |
US5629000A (en) * | 1994-11-25 | 1997-05-13 | Sanyo Electric Co., Ltd. | Hydrogen-absorbing alloy electrode for metal hydride alkaline batteries and process for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2925615B2 (en) | Hydrogen storage alloy electrode | |
JP2895848B2 (en) | Method for producing hydrogen storage alloy electrode for alkaline storage battery | |
JP3101287B2 (en) | Method for producing hydrogen storage alloy for alkaline storage battery | |
JPS60130054A (en) | Metal-oxide hydrogen battery | |
JPS6119063A (en) | Hydrogen occlusion electrode | |
JP3248762B2 (en) | Hydrogen storage alloy electrode and method for producing the same | |
JP3276677B2 (en) | Hydrogen storage alloy electrode | |
JPH0675398B2 (en) | Sealed alkaline storage battery | |
JPS61233966A (en) | Manufacture of sealed nickel-hydrogen storage battery | |
JPH0265060A (en) | Hydrogen storage electrode | |
JPH0949040A (en) | Hydrogen storage alloy and hydrogen storage alloy electrode | |
JP3011454B2 (en) | Hydrogen storage alloy for secondary batteries | |
JP3306154B2 (en) | Hydrogen storage alloy and method for producing the same | |
JPH0586621B2 (en) | ||
JP2680620B2 (en) | Method of manufacturing alkaline storage battery and hydrogen storage alloy for alkaline storage battery | |
JPH0987781A (en) | Hydrogen storage alloy and hydrogen storage alloy electrode | |
JPS6116471A (en) | Hydrogen occluding electrode | |
JPH07103434B2 (en) | Hydrogen storage Ni-based alloy and sealed Ni-hydrogen storage battery | |
JPH0586622B2 (en) | ||
JPH0873970A (en) | Hydrogen storage alloy and negative electrode for Ni-hydrogen battery using the same | |
JPH0578140B2 (en) | ||
JPH03152867A (en) | Manufacture of hydrogen storage alloy for hydrogen electrode | |
JPS6119058A (en) | Hydrogen occlusion electrode | |
JPH0949039A (en) | Production of hydrogen storage alloy particles | |
JPH03277737A (en) | Hydrogen storage ni-zr series alloy |