[go: up one dir, main page]

JPH041069B2 - - Google Patents

Info

Publication number
JPH041069B2
JPH041069B2 JP60259986A JP25998685A JPH041069B2 JP H041069 B2 JPH041069 B2 JP H041069B2 JP 60259986 A JP60259986 A JP 60259986A JP 25998685 A JP25998685 A JP 25998685A JP H041069 B2 JPH041069 B2 JP H041069B2
Authority
JP
Japan
Prior art keywords
light
substrate
photochemical reaction
light source
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60259986A
Other languages
Japanese (ja)
Other versions
JPS62120476A (en
Inventor
Shunji Kishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP25998685A priority Critical patent/JPS62120476A/en
Publication of JPS62120476A publication Critical patent/JPS62120476A/en
Publication of JPH041069B2 publication Critical patent/JPH041069B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子デバイスの製造プロセスに用いら
れる光化学反応を利用した加工方法及び装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a processing method and apparatus using photochemical reactions used in the manufacturing process of electronic devices.

〔従来の技術〕[Conventional technology]

LSI製造プロセスに光化学反応を利用する光
CVDや光エツチング等の光プロセス技術が、LSI
の高集積化に伴うプロセスの低温化、低損傷化、
簡素化等の要請に応えうる有力技術の候補として
注目されている。
Light that uses photochemical reactions in the LSI manufacturing process
Optical process technologies such as CVD and optical etching are
Lower process temperatures and less damage associated with higher integration,
It is attracting attention as a promising technology candidate that can meet demands for simplification.

このうちレジストプロセスを不要とするパター
ニングの簡素化は、将来のLSIプロセスへの適用
形態として再も期待が強いもののひとつである。
このような例は、特開昭57−26445「レーザアニー
ル装置」に提案され、また、レーザエツチングに
ついて実験的に実証した例が「第16回固体素子材
料コンフアレンス」(1984、神戸)のアブストラ
クトの441頁以降に記載されている。
Among these, the simplification of patterning that eliminates the need for a resist process is one of the methods that has strong expectations as a form of application to future LSI processes.
Such an example was proposed in Japanese Patent Application Laid-Open No. 57-26445 "Laser Annealing Apparatus", and an example of experimentally demonstrated laser etching is in the abstract of "16th Solid State Element Materials Conference" (1984, Kobe). It is described from page 441 onwards.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来の光プロセスによるレジス
トレスのパターニング技術においては、照射光を
マスクを通してパターニングして基板上に転写す
る必要があるため、通常のレジストプロセスのリ
ソグラフイー工程と同様、微細な目合わせをする
必要がある。このため、光学的に関連する所要技
術レベルは、従来の光プロセスによつても緩和さ
れず、このことが光プロセスの導入を遅れさせる
要因のひとつになつている。しかも、光化学反応
の高度化と、デバイスの微細化とによつて、光プ
ロセス用の光源波長は短波長化される傾向にある
が、このことが光学系関連技術の所要技術レベル
をむしろ高める方向にさえ働いている。このた
め、光プロセスにおいては、マスクパターン転写
に頼る従来形のパターニング技術から離れ、プロ
セス途中の基板のパターンを利用したセルフアラ
イン技術を何らかの形で導入して、前述の光学系
に係る所要技術レベルを大幅に下げることが必要
である。
However, in resistless patterning technology using conventional optical processes, it is necessary to pattern the irradiated light through a mask and transfer it onto the substrate, so it is necessary to perform fine alignment in the same way as in the lithography process of normal resist processes. There is a need. For this reason, the required level of optically related technology cannot be alleviated even by conventional optical processes, and this is one of the factors that delays the introduction of optical processes. Moreover, with the advancement of photochemical reactions and the miniaturization of devices, the wavelength of the light source for optical processes tends to become shorter, and this is likely to increase the required level of optical system-related technology. even working on it. For this reason, in the optical process, we are moving away from conventional patterning technology that relies on mask pattern transfer and introducing some form of self-alignment technology that utilizes the pattern on the substrate during the process. It is necessary to significantly lower the

本発明の目的は、このような問題を解決し、セ
ルフアラインによりデバイスの平坦化に有効な光
化学反応加工方法およびその加工装置を提供する
ことにある。
An object of the present invention is to solve such problems and provide a photochemical reaction processing method and processing apparatus that are effective for planarizing devices by self-alignment.

〔問題点を解説するための手段〕[Means for explaining the problem]

第1の本発明の構成は、ガスの雰囲気中に置か
れた基板の表面の所望部に、光を照射して光化学
反応に基づく加工を施す光化学反応加工方法にお
いて、前記の光を平行光束して前記基板に斜めに
照射し、かつ前記基板に垂直な軸を回転軸として
前記基板と前記の光とを相対的に回転させること
を特徴とする。
The first aspect of the present invention is a photochemical reaction processing method in which a desired part of the surface of a substrate placed in a gas atmosphere is irradiated with light to perform processing based on a photochemical reaction, in which the light is converted into a parallel beam. The light beam is irradiated obliquely onto the substrate, and the substrate and the light are relatively rotated about an axis perpendicular to the substrate as a rotation axis.

第2の本発明の構成は、光源と、この光源から
の光を入射窓を介して基板上に導入しかつこの光
照射により光化学反応に生ずるガス雰囲気中にそ
の基板を保持する加工セルと、前記光源からの光
を平行光にして前記入射窓を介して前記基板面の
所望個所に導く光学系とを含む光化学反応加工装
置において、前記基板面の垂直軸に対し前記平行
光が傾斜されてその基板面を照射するようこの基
板を保持する手段と、この基板を前記垂直軸のま
わりに回転させる回転手段とを備えることを特徴
とする。
A second configuration of the present invention includes a light source, a processing cell that introduces light from the light source onto the substrate through an entrance window and holds the substrate in a gas atmosphere that is generated in a photochemical reaction by the light irradiation; and an optical system that converts light from the light source into parallel light and guides it to a desired location on the substrate surface through the entrance window, wherein the parallel light is tilted with respect to a vertical axis of the substrate surface. It is characterized by comprising means for holding the substrate so as to irradiate its surface, and rotating means for rotating the substrate about the vertical axis.

〔作用〕[Effect]

本発明の構成により、光化学反応誘起用の照射
光を平行光にして基板面に斜めに入射させてい
る。この基板には、既に前工程による凹凸パター
ンができているものとすると、光の直進性により
基板上には凹部に光の当らない影を生ずる。この
影の部分と、光が照射されている部分とでは、基
板表面の光化学反応の生じ方に差を生じる。しか
も、この反応の選択性は当然セルフアラインに生
じる。
According to the configuration of the present invention, the irradiation light for inducing a photochemical reaction is made into parallel light and is made obliquely incident on the substrate surface. Assuming that this substrate already has a pattern of protrusions and recesses formed in the previous process, the rectilinearity of light causes a shadow on the substrate where no light hits the concave portions. There is a difference in how the photochemical reaction occurs on the substrate surface between this shadowed area and the area irradiated with light. Moreover, the selectivity of this reaction naturally occurs in self-alignment.

本発明では、さらに照射光の基板への入射方向
を基板の垂直軸のまわりで回転(才差運動)させ
ることにより、この光化学反応のセルフアライン
な選択性を一層強調ないしは変形させている。即
ち、深いトレンチやバイアホールの底部付近で
は、この才差運動によつても、光は常に照射され
ないが、底部よりも上部の部分や、例えば配線に
よる段差の部分にできる影の部分は、この才差運
動の周期のある一部の時間で生じ、その他の時間
では光が当たり、また平坦部には従来通り常時光
が当たる。この段差付近の場所の違いによる照射
積分時間の差、即ち光化学反応量の差は、次に述
べるように、段差被覆性の向上やバイアホール埋
込みなど、マイクロデバイスに重要な平坦化に極
めて有効な作用を及ぼす。
In the present invention, the self-aligned selectivity of this photochemical reaction is further emphasized or modified by rotating (precession) the direction of incidence of the irradiation light on the substrate around the vertical axis of the substrate. In other words, near the bottom of a deep trench or via hole, light is not always irradiated due to this precession, but the shadow part that forms above the bottom or, for example, in a step caused by wiring, is affected by this precession. It occurs during a certain part of the period of precession, and is exposed to light at other times, and the flat area is always exposed to light as before. The difference in irradiation integration time, that is, the difference in the amount of photochemical reaction due to the difference in location near this step, is extremely effective for planarization, which is important for microdevices, such as improving step coverage and filling via holes, as described below. exert an effect.

すなわち、まず光エツチングの場合には、影の
部分ではエツチングが生じないため基板面の凸部
のみがエツチングにより平坦化される。
That is, in the case of optical etching, only the convex portions of the substrate surface are flattened by etching because no etching occurs in the shadowed portions.

次に、この光エツチングと組合わせて、同時に
成膜プロセスを行えば埋め込み成膜が可能であ
る。この場合の成膜には特段光の効果を利用しな
くて良い。
Next, if a film formation process is performed simultaneously in combination with this photoetching, buried film formation is possible. In this case, it is not necessary to use special effects of light for film formation.

さらに、光化学反応の反応種が光により基板表
面から脱離する光脱離現象を利用した場合、これ
らの例とは逆に、光の照射量の多い場所での光化
学反応が抑制され、むしろ影の部分での反応が進
行するので、熱化学反応プロセスを光の照射によ
り凹部のみに限定することができる。このため、
成膜技術と組合せることにより、やはり埋込み成
膜が可能となる。
Furthermore, if we utilize the photo-elimination phenomenon in which the reactive species of a photochemical reaction are desorbed from the substrate surface by light, the photochemical reaction will be suppressed in areas with a high amount of light irradiation, contrary to these examples. Since the reaction proceeds in the region, the thermochemical reaction process can be limited to only the concave portion by irradiation with light. For this reason,
By combining this with film-forming technology, embedded film-forming becomes possible.

〔実施例〕〔Example〕

以下、図面を用いて本発明を詳細に説明する。 Hereinafter, the present invention will be explained in detail using the drawings.

第1図は本発明の一実施例の構成図である。紫
外レーザからなる光源1からの出射光を光学系2
により所要のビーム径を有した平行光に交換し
て、反応セル3の入射窓4から基板5に向け入射
させる。この入射光は一様な強度分布を有する平
行光にするため、光学系2はリソグラフイー用ス
テツパの超精密な光学系や目合わせ機構が不要
で、極めて簡単な構成でよい。
FIG. 1 is a block diagram of an embodiment of the present invention. Optical system 2 transmits light emitted from light source 1 consisting of an ultraviolet laser.
The collimated beam is exchanged with a parallel beam having a required beam diameter, and the parallel beam is made to enter the substrate 5 through the entrance window 4 of the reaction cell 3. Since this incident light is made into parallel light having a uniform intensity distribution, the optical system 2 does not require an ultra-precise optical system or an alignment mechanism of a stepper for lithography, and may have an extremely simple configuration.

基板5は傾斜ステージ7により、入射光が所定
の入射角となるように傾き角をセツトされる。次
いで、回転ステージ8によりプロセス中に基板5
を回転しうるようにしている。さらに基板はヒー
タ9に装着して、加熱可能な構成としている。こ
のため、反応セル3の底部から、XYステージ
6、傾斜ステージ7、回転ステージ8、ヒータ9
の順番で結合して基板保持部を構成する。XYス
テージ6は、傾斜ステージ7の動作による基板の
中心の水平移動を入射光に対し補正するために用
いる。さらにこの反応セル3に、光化学反応を誘
起するガスを供給するガス供給系10と排ガス処
理系11とを接続する。
The tilt angle of the substrate 5 is set by a tilt stage 7 so that the incident light has a predetermined angle of incidence. Next, the substrate 5 is rotated during the process by the rotation stage 8.
can be rotated. Further, the substrate is attached to a heater 9 so that it can be heated. Therefore, from the bottom of the reaction cell 3, the XY stage 6, tilting stage 7, rotation stage 8, heater 9
The substrate holder is constructed by combining the substrates in this order. The XY stage 6 is used to correct the horizontal movement of the center of the substrate due to the operation of the tilting stage 7 with respect to the incident light. Furthermore, this reaction cell 3 is connected to a gas supply system 10 that supplies a gas that induces a photochemical reaction and an exhaust gas treatment system 11.

以下、具体的なプロセスへの適用例について具
体的に説明する。
Below, an example of application to a specific process will be explained in detail.

第2図は本発明をWのバイアホール埋込みに適
用した場合の基板の断面図である。この場合、絶
縁膜23で覆われた下層のA配線21を有する基
板5にバイアホール22を開け、Wを埋め込む。
通常はガス供給系10からWF6とH2ガスとを反
応セル3に供給して、Aの還元反応を利用してW
を埋め込むが、その場合には埋め込み可能なWの
厚みが非常に薄いため、アスペクト比の大きなバ
イアホールの埋込みには使えない。
FIG. 2 is a cross-sectional view of a substrate when the present invention is applied to filling via holes with W. In this case, a via hole 22 is opened in the substrate 5 having the lower layer A wiring 21 covered with an insulating film 23 and filled with W.
Normally, WF 6 and H 2 gas are supplied from the gas supply system 10 to the reaction cell 3, and W is converted using the reduction reaction of A.
However, in that case, the thickness of W that can be embedded is very thin, so it cannot be used to fill via holes with a large aspect ratio.

これに対し本実施例では、還元反応のような基
板選択性のあるプロセスに代えて、WF6のみを
用いた通常の熱CVDを行い、それに加えてガス
供給系10からWのエツチング用のCL4ガスを同
時に供給して、ArFエキシマレーザを光源1に
用い、バイアホール以外の部分でのWのCVDを
光エツチング反応により抑止し、影となるバイア
ホール部にのみセルフアラインにWを深く埋め込
むことができる。
In contrast, in this example, instead of a process with substrate selectivity such as a reduction reaction, ordinary thermal CVD using only WF 6 is performed, and in addition, CL for etching of W is supplied from the gas supply system 10. By simultaneously supplying four gases and using an A r F excimer laser as light source 1, CVD of W in areas other than the via hole is suppressed by photo-etching reaction, and W is applied in a self-aligned manner only to the shadowed via hole area. Can be embedded deeply.

埋め込まれた金属24の断面形状は、入射光2
5の光線と基板5の表面とのなす傾斜角θで決る
影の部分に対応し、高いアスペクト比のバイアホ
ールに対しても、後工程に支障を与えない程充分
深く埋め込むことができる。なお、光源1の波長
によつては、WF6の光CVDも生ずるが、本実施
例では、その場合には平坦部のWのCVDが生じ
ないように、エツチングガスの濃度を数Torr程
度に高く設定している。
The cross-sectional shape of the embedded metal 24 is
Corresponding to the shadow part determined by the inclination angle θ between the light beam 5 and the surface of the substrate 5, even a via hole with a high aspect ratio can be buried sufficiently deep so as not to interfere with subsequent processes. Note that depending on the wavelength of the light source 1, optical CVD of WF 6 may also occur, but in this example, in order to prevent CVD of W on the flat area from occurring, the concentration of the etching gas is set to about several Torr. It is set high.

以上、光エツチングと一括熱CVDとを組合わ
せた場合について述べたが、本発明が適用可能な
対象はこの例に限定されることなく、他の多くの
変形が可能である。
Although the case where optical etching and batch thermal CVD are combined has been described above, the object to which the present invention is applicable is not limited to this example, and many other modifications are possible.

例えば、下層金属配線上の凹凸の生ずる絶縁膜
のエツチバツグに適用可能である。また、光化学
反応として吸着種に対する光脱離効果を利用すれ
ば、熱的CVDとの組合せにより、やはりバイア
スホールの埋込みが可能である。
For example, the present invention can be applied to etch bagging an insulating film on which unevenness occurs on lower metal wiring. Furthermore, if the photodesorption effect on adsorbed species is used as a photochemical reaction, it is possible to fill bias holes in combination with thermal CVD.

また、以上の説明で成膜に用いる熱CVDの代
りに、蒸着、スパツタ、MBE等の物理的な成膜
技術も用いられる。
Furthermore, instead of the thermal CVD used for film formation in the above explanation, physical film formation techniques such as evaporation, sputtering, and MBE may also be used.

また、光源としてはレーザに限らず、光化学反
応を誘起しうる他の紫外ランプやプラズマ発光等
が当然用いられる。また、基板の回転の代りに、
照射光を才差運動させながら基板に照射する光学
系を用いても良い。また、光化学反応の適用対象
としては、レーザ酸化などの改質加工も可能であ
る。
In addition, the light source is not limited to lasers, but other ultraviolet lamps, plasma light emission, etc. that can induce photochemical reactions can be used as a light source. Also, instead of rotating the board,
An optical system that irradiates the substrate with the irradiation light while precessing the irradiation light may be used. In addition, modification processing such as laser oxidation can also be applied to photochemical reactions.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、凹凸の
ある基板に斜めに光化学反応誘起光を照射するこ
とにより、凹凸部に対する積分光照射量の違いを
利用した極めて簡単な光学系の構成にもかかわら
ず、セルフアラインで、デバイスの平坦化に特に
有効な加工方法及び加工装置が得られる。
As explained above, according to the present invention, by irradiating photochemical reaction-inducing light obliquely onto an uneven substrate, it is possible to construct an extremely simple optical system that takes advantage of the difference in the integrated light irradiation amount to the uneven parts. Regardless, self-alignment provides a processing method and processing apparatus that are particularly effective for flattening devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を説明する全体構成
図、第2図は本発明を適用した場合の基板の断面
図である。 1……光源、2……光源系、3……反応セル、
4……入射窓、5……基板、6……X−Yステー
ジ、7……傾斜ステージ、8……回転ステージ、
9……ヒータ、10……ガス供給系、11……排
ガス処理系、21……A配線、22……バイアホ
ール、23……絶縁膜、24……埋め込まれた金
属、25……入射光。
FIG. 1 is an overall configuration diagram illustrating an embodiment of the present invention, and FIG. 2 is a sectional view of a substrate to which the present invention is applied. 1...Light source, 2...Light source system, 3...Reaction cell,
4...Incidence window, 5...Substrate, 6...X-Y stage, 7...Tilt stage, 8...Rotation stage,
9... Heater, 10... Gas supply system, 11... Exhaust gas treatment system, 21... A wiring, 22... Via hole, 23... Insulating film, 24... Embedded metal, 25... Incident light .

Claims (1)

【特許請求の範囲】 1 ガスの雰囲気中に置かれた基板の表面の所望
部に、光を照射して光化学反応に基づく加工を施
す光化学反応加工方法において、前記の光を平行
光束にして前記基板に斜めに照射し、かつ前記基
板に垂直な軸を回転軸として前記基板と前記の光
とを相対的に回転させることを特徴とする光化学
反応加工方法。 2 光源と、この光源からの光を入射窓を介して
基板上に導入しかつこの光照射により光化学反応
を生ずるガス雰囲気中にその基板を保持する加工
セルと、前記光源からの光を平行光にして前記入
射窓を介して前記基板面の所望個所に導く光学系
とを含む光化学反応加工装置において、前記基板
面の垂直軸に対し前記平行光が傾斜されてその基
板面を照射するようこの基板を保持する手段と、
この基板を前記垂直軸のまわりに回転させる回転
手段とを備えることを特徴とする光化学反応加工
装置。
[Scope of Claims] 1. A photochemical reaction processing method in which a desired part of the surface of a substrate placed in a gas atmosphere is irradiated with light to perform processing based on a photochemical reaction, in which the light is converted into a parallel beam of light and the A photochemical reaction processing method characterized by irradiating a substrate obliquely and relatively rotating the substrate and the light using an axis perpendicular to the substrate as a rotation axis. 2. A light source, a processing cell that introduces light from the light source onto the substrate through an entrance window and holds the substrate in a gas atmosphere that causes a photochemical reaction by irradiation with the light, and converts the light from the light source into parallel light. and an optical system that guides the parallel light to a desired location on the substrate surface through the incident window, wherein the parallel light is tilted with respect to a vertical axis of the substrate surface and irradiates the substrate surface. means for holding the substrate;
A photochemical reaction processing apparatus comprising: rotation means for rotating the substrate around the vertical axis.
JP25998685A 1985-11-19 1985-11-19 Method and apparatus for photochemical reaction processing Granted JPS62120476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25998685A JPS62120476A (en) 1985-11-19 1985-11-19 Method and apparatus for photochemical reaction processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25998685A JPS62120476A (en) 1985-11-19 1985-11-19 Method and apparatus for photochemical reaction processing

Publications (2)

Publication Number Publication Date
JPS62120476A JPS62120476A (en) 1987-06-01
JPH041069B2 true JPH041069B2 (en) 1992-01-09

Family

ID=17341692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25998685A Granted JPS62120476A (en) 1985-11-19 1985-11-19 Method and apparatus for photochemical reaction processing

Country Status (1)

Country Link
JP (1) JPS62120476A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61279690A (en) * 1985-06-05 1986-12-10 Hitachi Ltd Surface treatment device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61279690A (en) * 1985-06-05 1986-12-10 Hitachi Ltd Surface treatment device

Also Published As

Publication number Publication date
JPS62120476A (en) 1987-06-01

Similar Documents

Publication Publication Date Title
US4388517A (en) Sublimation patterning process
US6451512B1 (en) UV-enhanced silylation process to increase etch resistance of ultra thin resists
US5258266A (en) Method of forming minute patterns using positive chemically amplifying type resist
US5112645A (en) Phototreating method and apparatus therefor
JP2001523039A (en) Method for printing molecular scale patterns on surfaces
JPH041069B2 (en)
US5356758A (en) Method and apparatus for positively patterning a surface-sensitive resist on a semiconductor wafer
JPS61228633A (en) Thin film formation method
JPH0153577B2 (en)
JP2624168B2 (en) Pattern forming method and electron beam drawing apparatus
JPH07254556A (en) Pattern forming method and forming apparatus
JP3300781B2 (en) Method of forming oxide film
JP3125004B2 (en) Substrate surface processing method
JPS61216449A (en) Method and apparatus for forming pattern thin-film
JP4174610B2 (en) Etching method
JP3111071B2 (en) Process for patterning a photoresist layer on a semiconductor wafer substrate
JP2586700B2 (en) Wiring formation method
JP2883918B2 (en) Compound semiconductor pattern formation method
KR20120035823A (en) Target structure for generating charged particle beam, method of manufacturing the same and medical appliance using the target structure
JPS6245035A (en) Manufacture of semiconductor device
JP3639840B2 (en) Manufacturing method of ultrafine periodic structure
JPH10321625A (en) Manufacture of semiconductor device
JPS60260131A (en) Anisotropic dry-etching
JPH0555186A (en) Surface treatment method
JPS63155645A (en) Surface flattening method