JPS62120476A - Method and apparatus for photochemical reaction processing - Google Patents
Method and apparatus for photochemical reaction processingInfo
- Publication number
- JPS62120476A JPS62120476A JP25998685A JP25998685A JPS62120476A JP S62120476 A JPS62120476 A JP S62120476A JP 25998685 A JP25998685 A JP 25998685A JP 25998685 A JP25998685 A JP 25998685A JP S62120476 A JPS62120476 A JP S62120476A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- light
- photochemical reaction
- mentioned
- stage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006552 photochemical reaction Methods 0.000 title claims abstract description 28
- 238000012545 processing Methods 0.000 title claims abstract description 12
- 238000000034 method Methods 0.000 title description 18
- 239000000758 substrate Substances 0.000 claims abstract description 50
- 238000003672 processing method Methods 0.000 claims abstract description 7
- 230000001678 irradiating effect Effects 0.000 claims abstract description 3
- 230000003287 optical effect Effects 0.000 abstract description 17
- 238000006243 chemical reaction Methods 0.000 abstract description 9
- 230000004907 flux Effects 0.000 abstract 2
- 230000008569 process Effects 0.000 description 16
- 238000005516 engineering process Methods 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000005530 etching Methods 0.000 description 5
- 238000001259 photo etching Methods 0.000 description 4
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 4
- 239000002184 metal Substances 0.000 description 3
- 238000000059 patterning Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 238000000137 annealing Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000010329 laser etching Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005289 physical deposition Methods 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Landscapes
- Chemical Vapour Deposition (AREA)
- ing And Chemical Polishing (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は電子デバイスの製造プロセスに用いられる光化
学反応を利用した加工方法及び装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a processing method and apparatus using photochemical reactions used in the manufacturing process of electronic devices.
LSI製造プロセスに光化学反応を利用する光CVDや
光エッチング等の光プロセス技術が、LSIの高集積化
に伴うプロセスの低温化、低損傷化、簡素化等の要請に
応えうる有力技術の候補として注目されている。Optical process technologies such as photo-CVD and photo-etching that utilize photochemical reactions in the LSI manufacturing process are potential candidates for technologies that can meet the demands for lower temperatures, less damage, and simplification of processes associated with higher integration of LSIs. Attention has been paid.
このうちレジストプロセスを不要とするバターニングの
簡素化は、将来のLSIプロセスへの適用形態として最
も期待が強いもののひとつである。Among these, the simplification of patterning that eliminates the need for a resist process is one of the most promising forms of application to future LSI processes.
このような例は、特開昭57−26445 rレーザア
ニール装置」に提案され、また、レーザエツチングにつ
いて実験的に実証した例が[第16凹円体素子材料コン
ファレンスJ (1984,神戸)のアブストラクト
の441頁以降に記載されている。Such an example was proposed in ``Laser annealing apparatus'' in Japanese Patent Application Laid-open No. 57-26445, and an example of experimentally demonstrated laser etching is in ``Abstract of the 16th Concave Element Materials Conference J (1984, Kobe). It is described from page 441 onwards.
しかしながら、従来の光プロセスによるレジスI・レス
のバターニング技術においては、照射光をマスクを通し
てバターニングして基板上に転写する必要があるため、
通常のレジストプロセスのリソグラフィ一工程と同様、
微細な目合わせをする必要がある。このため、光学的に
関連する所要技術レベルは、従来の光プロセスによって
も緩和されず、このことが光プロセスの導入を遅れさせ
る要因のひとつになっている。しかも、光化学反応の高
度化と、デバイスの微細化とによって、光プロセス用の
光源波長は短波長化される傾向にあるが、このことが光
学系関連技術の所要技術レベルをむしろ高める方向にさ
え働いている。このため、光プロセスにおいては、マス
クパターン転写に顆る従来形のバターニング技術から離
れ、プロセス途中の基板のパターンを利用したセルファ
ライン技術を何らかの形で導入して、前述の光学系に係
る所要技術レベルを大幅に下げることが必要である。However, in conventional resist I/less patterning technology using optical processes, it is necessary to pattern the irradiated light through a mask and transfer it onto the substrate.
Similar to the lithography step of the normal resist process,
It is necessary to make minute adjustments. For this reason, the required level of optically related technology cannot be alleviated even by conventional optical processes, and this is one of the factors that delays the introduction of optical processes. Moreover, with the advancement of photochemical reactions and the miniaturization of devices, the wavelength of the light source for optical processes tends to become shorter, and this may even lead to an increase in the level of technology required for optical system-related technology. is working. For this reason, in the optical process, we have moved away from the conventional patterning technology, which relies on mask pattern transfer, and have introduced some form of self-line technology that utilizes the pattern on the substrate during the process. It is necessary to significantly lower the technical level.
本発明の目的は、このような問題を解決し、セルファラ
インによりデバイスの平坦化にh゛効な光化学反応加工
方法およびその加工装置を提供することにある。An object of the present invention is to solve such problems and to provide a photochemical reaction processing method and processing apparatus that are highly effective in planarizing devices using Selfa Line.
第1の本発明の横或は、ガスの雰囲気中に置かれた基板
の表面の所望部に、光を照射して光化学反応に基づく加
工を施す光化学反応加工方法において、前記の光を平行
光束にして前記基板に斜めに照射し、かつ前記基板に垂
直な軸を回転軸として前記基板とnq記の光とを相対的
に回転させることを特徴とする。A photochemical reaction processing method according to the first aspect of the present invention, in which a desired part of the surface of a substrate placed in a gas atmosphere is irradiated with light to perform processing based on a photochemical reaction, in which the light is converted into a parallel beam of light. The light beam is irradiated obliquely onto the substrate, and the light nq is rotated relative to the substrate with an axis perpendicular to the substrate serving as a rotation axis.
第2の本発明の構成は、光源と、この光源からの光を入
射窓を介して基板上に導入しかつこの光照射により光化
学反応を生ずるガス雰囲気中にその基板を保持する加工
セルと、前記光源からの光を平行光にして前記入射窓を
介して前記基板面の所望個所に導く光学系とを含む光化
学反応加工装置において、前記基板面の垂直軸に対し前
記平行光が傾斜されてその基板面を照射するようこの基
板を保持する手段と、この基板を前記垂直軸のまわりに
回転させる回転手段とを備えることを特徴とする。A second configuration of the present invention includes a light source, a processing cell that introduces light from the light source onto the substrate through an entrance window and holds the substrate in a gas atmosphere in which a photochemical reaction is caused by the light irradiation; and an optical system that converts light from the light source into parallel light and guides it to a desired location on the substrate surface through the entrance window, wherein the parallel light is tilted with respect to a vertical axis of the substrate surface. It is characterized by comprising means for holding the substrate so as to irradiate its surface, and rotating means for rotating the substrate about the vertical axis.
本発明の構成により、光化学反応誘起用の照射光を平行
光にして基板面に斜めに入射させている。According to the configuration of the present invention, the irradiation light for inducing a photochemical reaction is made into parallel light and is made obliquely incident on the substrate surface.
この基板には、既に画工、程による凹凸パターンができ
ているものとすると、光の直進性により基板上には凹部
に光の当らない影を生ずる。この影の部分と、光が照射
されている部分とでは、基板表面の光化学反応の生じ方
に差を生じる。しかも、この反応の選択性は当然セルフ
ァラインに生じる。Assuming that this substrate already has a pattern of protrusions and recesses due to the drawing process, the rectilinear nature of light causes a shadow on the substrate where the light does not hit the concave portions. There is a difference in how the photochemical reaction occurs on the substrate surface between this shadowed area and the area irradiated with light. Furthermore, the selectivity of this reaction naturally occurs in Cellufaline.
本発明では、さらに照射光の基板への入射方向を基板の
垂直軸のまわりで回転(才差運動)させることにより、
この光化学反応のセルファラインな選択性を一層強調な
いしは変形させている。即ち、深いトレンチやバイアホ
ールの底部付近では、この才差運動によっても、光は常
に照射されないが、底部よりも上部の部分や、例えば配
線による段差の部分にできる影の部分G1、この才差運
動の周期のある一部の時間で生じ、その池の時間では光
が当たり、また平坦部には従来通り常時光が当たる、こ
の段差付近の場所の違いによる照射積分時間の差、即ち
光化学反応量の差は、次に述べるように、段差被覆性の
向上やバイアホール埋込みなど、マイクロデバイスに重
要な平坦化に極めて有効な作用を及ぼす。In the present invention, by further rotating (precession) the direction of incidence of the irradiation light onto the substrate around the vertical axis of the substrate,
The self-aligned selectivity of this photochemical reaction is further emphasized or modified. In other words, near the bottom of a deep trench or via hole, light is not always irradiated due to this precession, but the shadow part G1 formed above the bottom or, for example, at a step caused by wiring, is affected by this precession. It occurs at a certain time in the cycle of movement, and the light hits the pond during that time, and the flat part is always hit by light as usual.The difference in the irradiation integral time due to the difference in the location near this step, that is, the photochemical reaction. As described below, the difference in amount has an extremely effective effect on flattening, which is important for microdevices, such as improving step coverage and filling via holes.
すなわち、まず光エッチングの場合には、影の部分では
エツチングが生じないため基板面の凸部のみが工・ソチ
ングにより平坦化される。That is, in the case of photo-etching, only the convex portions of the substrate surface are flattened by etching and soching, since no etching occurs in the shadowed portions.
次に、この光エッチングと組合わせて、同時に成膜プロ
セスを行えば埋め込み成膜が可能である。Next, if a film formation process is performed at the same time in combination with this photoetching, buried film formation is possible.
この場合の成膜には特段光の効果を利用しなくて良い。In this case, it is not necessary to use special effects of light for film formation.
さらに、光化学反応の反応種が光により基板表面から脱
離する光脱離現象を利用した場合、これらの例とは逆に
、光の照射量の多い場所での光化学反応が抑制され、む
しろ影の部分での反応が進行するので、熱化学反応プロ
セスを光の照射により四部のみに限定することができる
。このため、成膜技術と組合せることにより、やはり埋
込み成膜が可能となる。Furthermore, if we utilize the photo-elimination phenomenon in which the reactive species of a photochemical reaction are desorbed from the substrate surface by light, the photochemical reaction will be suppressed in areas with a high amount of light irradiation, contrary to these examples. Since the reaction proceeds in these parts, the thermochemical reaction process can be limited to only four parts by irradiation with light. Therefore, in combination with film formation technology, buried film formation becomes possible.
以下、図面を用いて本発明の詳細な説明する。 Hereinafter, the present invention will be explained in detail using the drawings.
第1図は本発明の一実施例の構成図である。紫外レーザ
からなる光源1からの出射光を光学系2により所要のビ
ーム径を有した平行光に変換して、反応セル3の入射窓
4から基板5に向は入射させる。この入射光は一様な強
度分布を有する平行光にするため、光学系2はリソグラ
フィー用ステッパの超精密な光学系や目合わせ機構が不
要で、極めて簡単な構成でよい。FIG. 1 is a block diagram of an embodiment of the present invention. Light emitted from a light source 1 consisting of an ultraviolet laser is converted into parallel light having a required beam diameter by an optical system 2, and the parallel light is made to enter a substrate 5 through an entrance window 4 of a reaction cell 3. Since this incident light is made into parallel light having a uniform intensity distribution, the optical system 2 does not require an ultra-precise optical system or an alignment mechanism of a lithography stepper, and may have an extremely simple configuration.
基板5は傾斜ステージ7により、入射光が所定の入射角
となるよう傾き角をセットされる。次いで、回転ステー
ジ8によりプロセス中に基板5を回転しうるようにして
いる。さらに基板はヒータ9に装着して、加熱可能な構
成としているにのため、反応セル3の底部から、XYス
テージ6゜傾斜ステージ7、回転ステージ8.ヒータく
)の順番で結合して基板保持部を構成する1、XYステ
ージ6は、傾斜ステージ7の動作による基板の中心の水
平移動を入射光に対し補正するために用いる。The tilt angle of the substrate 5 is set by a tilt stage 7 so that the incident light has a predetermined angle of incidence. Next, a rotation stage 8 allows the substrate 5 to be rotated during the process. Further, since the substrate can be mounted on a heater 9 and heated, an XY stage 6° inclined stage 7, a rotary stage 8. The XY stage 6 is used to correct the horizontal movement of the center of the substrate due to the operation of the tilting stage 7 with respect to the incident light.
さらにこの反応セル3に、光化学反応を誘起するガスを
供給するガス供給系10と排ガス処理系11とを接続す
る。Furthermore, this reaction cell 3 is connected to a gas supply system 10 that supplies a gas that induces a photochemical reaction and an exhaust gas treatment system 11.
以下、具体的なプロセスへの適用例について具体的に説
明する6
第2図は本発明をWのバイアホー・ル埋込みに適用した
場合の基板の断面図である。この場合、絶縁膜23で覆
われた下層のA 配線21を有する基板5にバイアホー
ル22を開け、Wを埋め込む。Hereinafter, an example of application to a specific process will be described in detail.6 FIG. 2 is a cross-sectional view of a substrate when the present invention is applied to via hole embedding of W. In this case, a via hole 22 is opened in the substrate 5 having the lower layer A wiring 21 covered with an insulating film 23 and filled with W.
通常はガス供給系10からWF6とH2ガスとを反応セ
ル3に供給して、A の還元反応を利用してWを埋め込
むが、その場合には埋め込み可能なWの厚みが非常に薄
いため、アスペクト比の太きなバ・イアホールの埋込み
には使えない。Normally, WF6 and H2 gas are supplied from the gas supply system 10 to the reaction cell 3 and W is embedded using the reduction reaction of A, but in that case, the thickness of the W that can be embedded is very thin. It cannot be used for filling via holes with large aspect ratios.
これに対し本実施例では、還元反応のような基板選択性
のあるプロセスに代えて、WF6のみを用いた通常の熱
CVDを行い、それに加えてガス供給系10からWのエ
ツチング用のCF4ガスを同時に供給して、A、Fエキ
シマレーザを光源1に用い、バイアホール以外の部分で
のWのCVDを光エツチング反応により抑止し、影とな
るバイアホール部にのみセルファラインにWを深く埋め
込むことができる。In contrast, in this example, instead of a process with substrate selectivity such as a reduction reaction, ordinary thermal CVD using only WF6 is performed, and in addition, CF4 gas for etching W is supplied from the gas supply system 10. At the same time, A and F excimer lasers are used as light source 1 to suppress CVD of W in areas other than the via hole by photo-etching reaction, and deeply embed W in the self-line only in the shadowed via hole area. be able to.
埋め込まれた金属24の断面形状は、入射光25の光線
と基板5の表面とのなす傾斜角θで決る影の部分に対応
し、高いアスペクト比のバイアホールに対しても、後工
程に支障を与えない程充分深く埋め込むことができる。The cross-sectional shape of the embedded metal 24 corresponds to the shadow part determined by the angle of inclination θ between the incident light 25 and the surface of the substrate 5, and even for via holes with high aspect ratios, it does not interfere with post-processing. It can be embedded deep enough to not cause
なお、光源1の波長によっては、WF6の光CVDも生
ずるが、本実施例では、その場合にも平坦部のWのCV
Dが生じないように、エツチングガスの濃度を数Tor
r程度に高く設定している。Note that depending on the wavelength of the light source 1, optical CVD of WF6 may also occur, but in this example, even in that case, the CV of W in the flat portion
To prevent D from occurring, the concentration of the etching gas is set to several Torr.
It is set as high as r.
以上、光エッチングと一括熱CVDとを組合わせた場合
について述べたが、本発明が適用可能な対象はこの例に
限定されることなく、池の多くの変形が可能である。Although the case where optical etching and batch thermal CVD are combined has been described above, the object to which the present invention is applicable is not limited to this example, and many modifications of the structure are possible.
例えば、下層金属配線上の凹凸の生ずる絶縁膜のエッチ
バッグに適用可能である。また、光化学反応として吸着
種に対する光脱闇効果を利用すれば、熱的CVDとの組
合せにより、やはりバイアポールの埋込みが可能である
。For example, it can be applied to an etch bag for an insulating film where unevenness occurs on the underlying metal wiring. Further, if the photo-darkening effect on adsorbed species is utilized as a photochemical reaction, it is still possible to embed viapoles in combination with thermal CVD.
また、以上の説明で成膜に用いる熱CV Dの代りに、
蒸着、スパッタ、MBE等の物理的な成膜技術も用いら
れる。Also, instead of the thermal CVD used for film formation in the above explanation,
Physical deposition techniques such as evaporation, sputtering, and MBE may also be used.
また、光源としてはレーザに限らず、光化学反応を誘起
しうる池の紫外ランプやプラズマ発光等が当然用いられ
る。また、基板の回転の代りに、照射光を才差運動させ
ながら基板に照射する光学系を用いても良い。また、光
化学反応の適用対象としては、レーザ酸化などの改質加
工ら可能である。Furthermore, the light source is not limited to a laser, and of course an ultraviolet lamp, plasma light emission, etc. that can induce a photochemical reaction can be used. Moreover, instead of rotating the substrate, an optical system may be used that irradiates the substrate with the irradiation light while precessing the irradiation light. Further, photochemical reactions can be applied to modification processing such as laser oxidation.
以上説明したように、本発明によれば、凹凸のある基板
に斜めに光化学反応誘起光を照射することにより、凹凸
部に対する積分光照射量の違いを利用した極めて簡単な
光学系の構成にもかかわらず、セルファラインで、デバ
イスの平坦化に特に有効な加工方法及び加工装置が得ら
れる。As explained above, according to the present invention, by irradiating photochemical reaction-inducing light obliquely onto an uneven substrate, it is possible to construct an extremely simple optical system that takes advantage of the difference in the integrated light irradiation amount to the uneven parts. Regardless, Selfaline provides a processing method and processing apparatus that are particularly effective for flattening devices.
第1図は本発明の一実施例を説明する全体構成図、第2
図は本発明を適用した場合の基板の断面図である。
1・・・光源、2・・・光学系、3・・・反応セル、4
・・・入射窓、5・・・基板、6・・・X−Yステージ
、7・・・傾斜ステージ、8・・・回転ステージ、9・
・・ヒータ、10・・・ガス供給系、11・・・排ガス
処理系、21・・・A配線、22・・・バイアホール、
23・・・絶縁膜、24・・・埋め込まれた金属、25
・・・入射光。FIG. 1 is an overall configuration diagram explaining one embodiment of the present invention, and FIG.
The figure is a sectional view of a substrate to which the present invention is applied. 1... Light source, 2... Optical system, 3... Reaction cell, 4
...Incidence window, 5...Substrate, 6...X-Y stage, 7...Tilt stage, 8...Rotation stage, 9...
... Heater, 10 ... Gas supply system, 11 ... Exhaust gas treatment system, 21 ... A wiring, 22 ... Via hole,
23... Insulating film, 24... Embedded metal, 25
...Incoming light.
Claims (2)
、光を照射して光化学反応に基づく加工を施す光化学反
応加工方法において、前記の光を平行光束にして前記基
板に斜めに照射し、かつ前記基板に垂直な軸を回転軸と
して前記基板と前記の光とを相対的に回転させることを
特徴とする光化学反応加工方法。(1) In a photochemical reaction processing method in which a desired part of the surface of a substrate placed in a gas atmosphere is irradiated with light to perform processing based on a photochemical reaction, the light is converted into a parallel beam of light and directed diagonally onto the substrate. A photochemical reaction processing method characterized by irradiating and relatively rotating the substrate and the light using an axis perpendicular to the substrate as a rotation axis.
上に導入しかつこの光照射により光化学反応を生ずるガ
ス雰囲気中にその基板を保持する加工セルと、前記光源
からの光を平行光にして前記入射窓を介して前記基板面
の所望個所に導く光学系とを含む光化学反応加工装置に
おいて、前記基板面の垂直軸に対し前記平行光が傾斜さ
れてその基板面を照射するようこの基板を保持する手段
と、この基板を前記垂直軸のまわりに回転させる回転手
段とを備えることを特徴とする光化学反応加工装置。(2) a light source, a processing cell that introduces light from the light source onto the substrate through an entrance window and holds the substrate in a gas atmosphere that causes a photochemical reaction by irradiation with the light; In a photochemical reaction processing apparatus, the parallel light is tilted with respect to a vertical axis of the substrate surface and irradiates the substrate surface. A photochemical reaction processing apparatus comprising means for holding a substrate in a holder and rotation means for rotating the substrate around the vertical axis.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25998685A JPS62120476A (en) | 1985-11-19 | 1985-11-19 | Method and apparatus for photochemical reaction processing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25998685A JPS62120476A (en) | 1985-11-19 | 1985-11-19 | Method and apparatus for photochemical reaction processing |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62120476A true JPS62120476A (en) | 1987-06-01 |
JPH041069B2 JPH041069B2 (en) | 1992-01-09 |
Family
ID=17341692
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25998685A Granted JPS62120476A (en) | 1985-11-19 | 1985-11-19 | Method and apparatus for photochemical reaction processing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62120476A (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61279690A (en) * | 1985-06-05 | 1986-12-10 | Hitachi Ltd | Surface treatment device |
-
1985
- 1985-11-19 JP JP25998685A patent/JPS62120476A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61279690A (en) * | 1985-06-05 | 1986-12-10 | Hitachi Ltd | Surface treatment device |
Also Published As
Publication number | Publication date |
---|---|
JPH041069B2 (en) | 1992-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5645646A (en) | Susceptor for deposition apparatus | |
JP5351450B2 (en) | Absorbing layer for dynamic surface annealing | |
US8008207B2 (en) | Use of ion implantation in chemical etching | |
US20230185196A1 (en) | Pre-exposure photoresist curing to enhance euv lithographic performance | |
EP1001454B1 (en) | Surface treatment method | |
KR20020033429A (en) | Exposure Method | |
JP2007507900A (en) | Absorbing layer for dynamic surface annealing | |
JP2002208555A (en) | System and method for treatment | |
JP2001023916A (en) | Method for treating material with electromagnetic wave and apparatus | |
JP2008091793A (en) | Exposure method and exposure apparatus | |
JPH09181155A (en) | Susceptor of depositing equipment | |
JP2001126869A (en) | Manufacturing method of organic electroluminescent device | |
JPS62120476A (en) | Method and apparatus for photochemical reaction processing | |
JPH05144710A (en) | Optical element and manufacturing method thereof | |
TWI876020B (en) | Method for treating photoresist, and apparatus for depositing thin film | |
JP3511728B2 (en) | UV treatment equipment | |
JPS6245035A (en) | Manufacture of semiconductor device | |
US20020177300A1 (en) | Method for forming an opening in polymer-based dielectric | |
JP2586700B2 (en) | Wiring formation method | |
JP3104081B2 (en) | Method for manufacturing semiconductor device | |
JP2756364B2 (en) | Optical surface treatment method and treatment device | |
JP2664218B2 (en) | White point correction method | |
JPH0476914A (en) | Manufacture of semiconductor device | |
JP2000077349A (en) | Heating apparatus | |
JPS63155645A (en) | Surface flattening method |