[go: up one dir, main page]

JPS63155645A - Surface flattening method - Google Patents

Surface flattening method

Info

Publication number
JPS63155645A
JPS63155645A JP30266886A JP30266886A JPS63155645A JP S63155645 A JPS63155645 A JP S63155645A JP 30266886 A JP30266886 A JP 30266886A JP 30266886 A JP30266886 A JP 30266886A JP S63155645 A JPS63155645 A JP S63155645A
Authority
JP
Japan
Prior art keywords
thin film
ion beam
contact hole
film
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30266886A
Other languages
Japanese (ja)
Inventor
Sunao Nishioka
西岡 直
Hiroaki Morimoto
森本 博明
Yoji Masuko
益子 洋治
Hiroshi Koyama
浩 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP30266886A priority Critical patent/JPS63155645A/en
Publication of JPS63155645A publication Critical patent/JPS63155645A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To make the surface of a thin film smooth and to prevent a thermally unfavorable influence on a device by a method wherein the thin film having the uneven surface is scanned and struck by beam-shaped ions of an element which is identical to the element constituting the thin film or of the element which does not deteriorate the film quality of the thin film. CONSTITUTION:Ion beams 4 are made to strike a thin film 1 having a contact hole 1a in the vertical direction in relation to the film plane of the thin film 1. The ion beams 4 may irradiate the thin film 1 while they are being scanned. Alternatively, while the ion beams 4 are fixed, a semiconductor substrate 3 containing the thin film 1 may be scanned in the X-Y plane. By this type of operation, the side wall of the contact hole 1a increases its thickness gradually because scattered atoms 5 of aluminum atoms sputtered from the thin film 1 are deposited. As a result, the surface of the thin film 1 is made smooth, and a thermally unfavorable influence on a device can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体素子に用いられるアルミニウム薄膜
等の表面の凹凸を滑らかにする表面平坦化方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a surface flattening method for smoothing irregularities on the surface of an aluminum thin film used in a semiconductor device.

〔従来の技術〕[Conventional technology]

従来、例えばコンタク]・・ホール部におけるアルミニ
ウム薄膜等の薄膜の膜切れによる断線を防止する半導体
素子の薄膜の表面平坦化方法として、レーザ光ビームを
薄膜の表面に照射する方法があった(ソリッド ステー
ト テクノロジー、 1986年4月、 129−13
4頁(Solid 5tate Technology
Conventionally, as a method for flattening the surface of a thin film of a semiconductor element to prevent disconnection due to breakage of a thin film such as an aluminum thin film in a hole part, there was a method of irradiating the surface of the thin film with a laser beam (solid contact). State Technology, April 1986, 129-13
4 pages (Solid 5tate Technology
.

八pril  1986.  p、129 −134)
  )  。
8pril 1986. p, 129-134)
).

第3図は従来の方法を示す工程断面図である。FIG. 3 is a process sectional view showing a conventional method.

図において、1は配線に用いられるアルミニウム薄膜な
どの薄膜、1aはコンタクト・ホール部、2は例えばシ
リコン酸化膜の如き絶縁膜、3は例えばシリコン基板の
如き半導体基板、6はレーザ光ビームである。
In the figure, 1 is a thin film such as an aluminum thin film used for wiring, 1a is a contact hole portion, 2 is an insulating film such as a silicon oxide film, 3 is a semiconductor substrate such as a silicon substrate, and 6 is a laser beam. .

半導体基板3上に熱酸化法や気相成長法などで絶縁膜2
を設け、公知の写真食刻技術でコンタクト・ホール部1
aを形成した上に、公知の蒸着法やスパッタリング法で
薄膜1を形成すると、第3図+a)に示す如くコンタク
ト・ホール部1aにおける絶縁膜2の側壁での薄膜1の
膜厚が薄くなり易い。こうした薄膜1を微細な配線パタ
ーンにするとコンタクト・ホール部1aで薄膜1の膜切
れによる断線を引き起こし、半導体装置の製造歩留まり
や信頼性を低下させる。
An insulating film 2 is formed on a semiconductor substrate 3 by a thermal oxidation method, a vapor phase growth method, etc.
A contact hole portion 1 is formed using a known photolithography technique.
When the thin film 1 is formed by a known vapor deposition method or sputtering method on top of the contact hole portion 1a, the thickness of the thin film 1 on the side wall of the insulating film 2 in the contact hole portion 1a becomes thinner, as shown in FIG. 3+a). easy. When such a thin film 1 is formed into a fine wiring pattern, the thin film 1 is cut at the contact hole portion 1a, causing disconnection, which reduces the manufacturing yield and reliability of the semiconductor device.

そこで従来は、(blに示す如く、薄膜1表面に向けて
レーザ光ビーム6を走査しながら照射したり又はコンタ
クト・ホール部1aを含む領域内のみを照射したりして
、薄膜1を局部的に加熱熔融することにより、telの
如く薄膜1の表面の平滑化を行い、コンタクト・ホール
部1aを埋め込む様に薄膜1の膜厚を大きくするか若し
くはコンタクト・ホール部1aの側壁における薄膜1の
膜厚を大きくして断線の発生を防止していた。
Therefore, conventionally, as shown in (bl), the thin film 1 is locally irradiated by scanning and irradiating the laser beam 6 toward the surface of the thin film 1 or by irradiating only the area including the contact hole portion 1a. By heating and melting, the surface of the thin film 1 is smoothed like tel, and the thickness of the thin film 1 is increased so as to fill the contact hole portion 1a, or the thickness of the thin film 1 on the side wall of the contact hole portion 1a is increased. The film thickness was increased to prevent wire breakage.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上記の従来の表面平坦化方法は、薄膜1の表面
を平坦化するうえで次のような欠点があった。
However, the conventional surface planarization method described above has the following drawbacks in planarizing the surface of the thin film 1.

即ち、レーザ光ビーム6の光エネルギーの吸収による発
熱で薄膜1が溶融するため、薄膜1の熔融した部分から
の熱が熱伝導によって薄膜1の下方など周辺に伝わり、
レーザ光ビーム6を照射した近辺が熱的な悪影響を受け
る欠点があった。特に製造工程がかなり進行している時
点で薄膜1の平滑化を行なう場合には、例えば半導体素
子を形成するうえで適切であった不純物分布がレーザ光
ビーム6による熱で変化して不適当な分布になって、設
計通りの電気的特性をもつ半導体素子が得難くなるなど
の欠点が現れ易かった。
That is, since the thin film 1 melts due to the heat generated by the absorption of the optical energy of the laser beam 6, the heat from the melted portion of the thin film 1 is transmitted to the lower part of the thin film 1 and the surrounding area by thermal conduction.
There was a drawback that the vicinity where the laser light beam 6 was irradiated was adversely affected by heat. In particular, when smoothing the thin film 1 at a point when the manufacturing process is far advanced, the impurity distribution that was appropriate for forming a semiconductor element may change due to the heat generated by the laser beam 6, resulting in an inappropriate impurity distribution. As a result, disadvantages such as difficulty in obtaining a semiconductor device with electrical characteristics as designed tend to occur.

この発明は上記のような問題点を解消するためになされ
たもので、熱的悪影響を受けない高信頼性を有する半導
体装置を製造できる表面平坦化方法を得ることを目的と
する。
The present invention was made to solve the above-mentioned problems, and an object of the present invention is to provide a surface planarization method that can manufacture a highly reliable semiconductor device that is not adversely affected by heat.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る表面平坦化方法は、薄膜表面にその薄膜を
構成する元素と同種の元素、または薄膜の膜質を低下さ
せない元素のイオン・ビームを走査・照射するようにし
たものである。
The surface flattening method according to the present invention scans and irradiates the surface of a thin film with an ion beam of an element of the same type as the element constituting the thin film or an element that does not deteriorate the film quality of the thin film.

〔作用〕[Effect]

この発明においては、凹凸のある薄膜にその薄膜を構成
する元素と同種の元素、または薄膜の膜質を低下させな
い元素のイオンをビーム状で走査して衝突させることに
より、凹凸差が小さくなり、薄膜の表面形状を滑らかに
でき、また、従来のような加熱・熔融による半導体素子
への熱的悪影響を防止することができる。
In this invention, by scanning and bombarding an uneven thin film with ions of the same type of element as the element constituting the thin film, or an element that does not deteriorate the film quality of the thin film, the difference in unevenness is reduced and the thin film is The surface shape of the semiconductor element can be made smooth, and the adverse thermal effects on semiconductor elements caused by heating and melting, which are conventional, can be prevented.

〔実施例〕〔Example〕

以下、この発明の実施例を図によって説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例を説明するための工程断面図
である。図において、■は例えばアルゴン・ガスの雰囲
気を使った公知のスパッタリング法によって形成された
配線に用いられるアルミニウム薄膜などの薄膜、1aは
コンタクト・ホール部、2は薄膜1の下地である例えば
シリコン酸化膜の如き絶縁膜、3は例えばシリコン基板
の如き半導体基板、4は例えばアルゴン・イオンの如き
薄膜1を形成する工程で用いた雰囲気ガスと同種の元素
のイオン・ビーム、5はイオン・ビーム4の照射を受け
てスパツクした薄膜1を構成する元素の飛散原子である
FIG. 1 is a process sectional view for explaining one embodiment of the present invention. In the figure, ■ is a thin film such as an aluminum thin film used for wiring formed by a well-known sputtering method using an argon gas atmosphere, 1a is a contact hole part, and 2 is the base of thin film 1, such as silicon oxide. 3 is a semiconductor substrate such as a silicon substrate; 4 is an ion beam of the same element as the atmospheric gas used in the step of forming the thin film 1, such as argon ions; 5 is an ion beam 4; These are the scattered atoms of the elements constituting the thin film 1 that are spattered by the irradiation.

既に述べたように、半導体基板3上の熱酸化法や気相成
長法などにより形成した絶縁膜2に写真食刻技術等で形
成したコンタクト・ホール部1aの薄膜1は、第1図f
alに示す如くコンタクト・ホール部1aの側壁で膜厚
が薄くなっている。
As already mentioned, the thin film 1 of the contact hole portion 1a formed by photolithography or the like on the insulating film 2 formed by the thermal oxidation method or the vapor phase growth method on the semiconductor substrate 3 is shown in FIG.
As shown in al, the film thickness is thinner on the side wall of the contact hole portion 1a.

こうしたコンタクト・ホール部1aを有する薄膜1に向
けて(blの如く薄膜1の膜面と垂直にイオン・ビーム
4を1h突させる。イオン・ビーム4は走査しながら薄
膜1へ照射してもよいし、イオン・ビーム4を固定して
薄膜1を含む半導体基板3をX−Y平面移動する走査を
行なってもよい。例えばアルミニウム薄膜などの薄膜に
アルゴン・イオンを衝突せしめると薄膜を構成するアル
ミニウム等の原子がスパッタしイオン衝突箇所の周辺の
薄膜上に再分布して沈積する。従って、このような操作
によってコンタクト・ホール部1aの側壁は薄膜1から
スパッタされて来たアルミニウム原子の飛散原子5が沈
積して次第に厚みを増してくる。なお、このスパッタリ
ング現象は、従来法で採用していたレーザ光の光吸収現
象と比べ、殆ど発熱を伴わない。そしてイオン・ビーム
によるスパッタ現象では、この薄膜を構成するアルミニ
ウムなど原子のスパッタされる比率が、薄膜面に対し法
線方向からイオンが衝突する場合よりも、薄膜面に対し
斜め方向からイオンの衝突する場合の方が大きい性質が
ある。従って、イオン・ビーム4の走査・照射を適切な
るイオン・ビーム径を選んだり複数回繰り返す等によっ
て、薄膜1は、(C)の如くコンタクト・ホール部りa
内部をスパッタされたアルミニウム原子の飛散原子5で
埋め込まれて平滑化される。
An ion beam 4 is projected perpendicularly to the film surface of the thin film 1 for 1 h toward the thin film 1 having such a contact hole portion 1a (as shown in bl).The ion beam 4 may be irradiated onto the thin film 1 while scanning. Alternatively, scanning may be performed in which the ion beam 4 is fixed and the semiconductor substrate 3 including the thin film 1 is moved in the X-Y plane.For example, when argon ions are bombarded with a thin film such as an aluminum thin film, the aluminum constituting the thin film is Atoms such as ions are sputtered, redistributed and deposited on the thin film around the ion collision site.Thus, by such an operation, the side wall of the contact hole portion 1a is made up of scattered atoms of aluminum sputtered from the thin film 1. 5 is deposited and the thickness gradually increases.This sputtering phenomenon is hardly accompanied by heat generation compared to the light absorption phenomenon of laser light used in the conventional method.In addition, in the sputtering phenomenon caused by the ion beam, The rate of sputtering of atoms such as aluminum that make up this thin film is higher when ions collide from an oblique direction to the thin film surface than when ions collide from a normal direction to the thin film surface. Therefore, by selecting an appropriate ion beam diameter or repeating the scanning and irradiation of the ion beam 4 multiple times, the thin film 1 can be formed into a contact hole portion a as shown in (C).
The interior is filled with sputtered aluminum atoms 5 and smoothed.

こうしてコンタクト・ホール部1aの平滑化された薄膜
1は、公知の写真食刻技術・エツチング技術にて配線パ
ターンを形成しても、コンタクト・ホール部1aで膜切
れによる断線は発生しない。
In this way, the smoothed thin film 1 in the contact hole portion 1a will not cause disconnection due to film breakage in the contact hole portion 1a even if a wiring pattern is formed using known photolithography or etching techniques.

しかも、この平滑化技術は発熱を伴わないので、半導体
素子に熱的な悪影響を与えることはない。
Furthermore, since this smoothing technique does not generate heat, there is no adverse thermal effect on the semiconductor element.

なお、薄膜1はコンタクト・ホール部1aではなくて単
なる凹凸や段差部を有する薄膜であっても、本発明によ
って凹凸差が小さくなるように平滑化されることは言う
までもない。
It goes without saying that even if the thin film 1 does not have a contact hole portion 1a but merely has unevenness or a stepped portion, it can be smoothed by the present invention so that the difference in unevenness is reduced.

また、イオン・ビーム4としては、上述のように薄膜1
の形成時に用いている薄膜1の膜質を低下させない元素
のイオン種だけでなく、薄膜1を構成する元素と同種の
元素のイオン種を用いても良い。例えば薄PJ41がア
ルミニウム−シリコン膜であれば、イオン・ビーム4と
してアルミニウム・イオン若しくはシリコン・イオンを
使用することができる。
In addition, as the ion beam 4, the thin film 1 is used as described above.
In addition to the ion species of the element that does not deteriorate the film quality of the thin film 1 used in forming the thin film 1, it is also possible to use the ion species of the same element as the element constituting the thin film 1. For example, if the thin PJ 41 is an aluminum-silicon film, aluminum ions or silicon ions can be used as the ion beam 4.

また、本発明の具体例を上げると、例えばアルミニウム
−シリコン(1%)膜の薄膜1の場合、ビーム径0.1
5μmのシリコン・イオン(St”  、Si++)・
ビームを、半導体基板3電流が20〜30pAとなるビ
ーム量で、薄膜1にエネルギー100〜200keVで
5X5.crm2の領域を走査すると、この領域内にあ
る1〜2μmφのコンタクト・ホール部1aは素早く埋
め込まれ薄膜1の表面平滑化を達成できた。
In addition, to give a specific example of the present invention, for example, in the case of the thin film 1 of aluminum-silicon (1%) film, the beam diameter is 0.1
5 μm silicon ion (St”, Si++)
The beam was applied to the thin film 1 in a 5×5. When the crm2 area was scanned, the contact hole portion 1a with a diameter of 1 to 2 μm in this area was quickly filled, and the surface of the thin film 1 could be smoothed.

第2図は本発明の他の実施例を示す工程断面図である。FIG. 2 is a process sectional view showing another embodiment of the present invention.

この実施例では、イオン・ビーム4がコンタクト・ホー
ル部りa内部を照射しないようにイオン・ビーム4にブ
ランキングを与え、コンタクト・ホール部1aを飛び越
して薄l!!1を照射させる。
In this embodiment, blanking is applied to the ion beam 4 so that the ion beam 4 does not irradiate the inside of the contact hole 1a, and the ion beam 4 skips over the contact hole 1a and irradiates the inside of the contact hole 1a. ! 1 is irradiated.

この実施例は特に、深いコンタクト・ホール部1aの如
く、主にスパッタして来た飛散原子5によって埋め込み
を行なわねばならない深い凹部を有する場合の薄膜1の
表面平坦化に効果がある。
This embodiment is particularly effective in flattening the surface of the thin film 1 when it has a deep recess, such as a deep contact hole portion 1a, which must be filled mainly with sputtered scattered atoms 5.

即ちコンタクト・ホール部1aが深い凹部で構成されて
おり、薄膜1の膜厚が小さい場合には、勾配の急峻なコ
ンタクト・ホール部1aの斜面状の側壁部でスパッタさ
れる比率が他の部分よりも大きいから、薄膜1の下地の
絶縁膜2の成分の原子をもイオン・ビーム4が弾き出す
恐れがある。だがこの実施例の如くコンタクト・ホール
部1aを避けてイオン・ビーム4を照射してやれば、コ
ンタクト・ホール部りa内部はスパッタされた原子で充
填されるだけであるから、上述の恐れがなくなる。
In other words, if the contact hole portion 1a is composed of a deep concave portion and the thickness of the thin film 1 is small, the ratio of sputtering on the sloped side wall portion of the contact hole portion 1a having a steep slope is higher than that on other portions. , the ion beam 4 may also eject atoms of the insulating film 2 underlying the thin film 1. However, if the ion beam 4 is irradiated while avoiding the contact hole portion 1a as in this embodiment, the above-mentioned fear is eliminated because the inside of the contact hole portion a is simply filled with sputtered atoms.

なお、この実施例の具体例を挙げると、第1図による実
施例の説明で引用した具体例の条件においては、シリコ
ン・イオン(Si+、3i++)ビームの照射でスパッ
タされたアルミニウム原子の飛散原子5はイオン・ビー
ム4の照射箇所から3〜5μmの飛散距離を有し、1〜
2μmφのコンタクト・ホール部1aはこの近傍でイオ
ン・ビーム4を照射・走査することにより飛散原子5が
充分に且つ素早く埋め込まれ、薄膜1の表面平滑化を達
成できた。
To give a specific example of this embodiment, under the conditions of the specific example cited in the explanation of the embodiment shown in FIG. 5 has a scattering distance of 3 to 5 μm from the irradiation point of the ion beam 4;
By irradiating and scanning the ion beam 4 in the vicinity of the contact hole 1a with a diameter of 2 μm, the scattered atoms 5 were sufficiently and quickly embedded, and the surface of the thin film 1 could be smoothed.

また、これまでの実施例では薄膜1の材質として配線に
用いられる例えばアルミニウムやアルミニウム−シリコ
ンを例示したが、他の材質から成る薄膜であっても、イ
オン・ビームでスパツクされ得る薄膜であれば、本発明
を適用できる。
In addition, in the embodiments so far, aluminum and aluminum-silicon, which are used for wiring, have been exemplified as the material of the thin film 1, but thin films made of other materials can also be used as long as they can be spattered by an ion beam. , the present invention can be applied.

さらに、これまでの実施例ではイオン・ビーム4の種類
として例えばアルミニウム・イオンやシリコン・イオン
、アルゴン・イオンを例示したが、本発明はこれらの元
素イオンに限定されることなく、薄膜1を構成する元素
と同種の元素、若しくは薄膜lの膜質や半導体素子の性
能を低下させない元素のイオン・ビームを用いればよい
Further, in the embodiments so far, aluminum ions, silicon ions, and argon ions have been exemplified as types of the ion beam 4, but the present invention is not limited to these elemental ions, and the thin film 1 can be composed of ions. It is sufficient to use an ion beam of the same type of element as the element to be used, or an ion beam of an element that does not deteriorate the quality of the thin film 1 or the performance of the semiconductor element.

また、イオン・ビーム4の走査・照射による薄膜1の表
面平坦化法を実施したのち、例えば薄膜1をアニールす
るための熱処理などを補足してもよい。
Further, after carrying out the surface planarization method of the thin film 1 by scanning and irradiating the ion beam 4, supplementary heat treatment may be performed to anneal the thin film 1, for example.

〔発明の効果〕〔Effect of the invention〕

以上詳しく述べたように、本発明に係る表面平坦化方法
によれば、薄膜を構成する元素と同種の元素、または薄
膜の膜質を低下させない元素のイオン・ビームの走査・
照射を用いて薄膜を平滑化するようにしたので、半導体
素子の製造過程における熱的悪影響を防止でき、コンタ
クト・ホール部などの凹凸が平滑化した断線のない高信
頼性の半導体装置を製造できる。
As described in detail above, according to the surface flattening method according to the present invention, scanning and scanning of an ion beam of an element of the same type as the element constituting the thin film or an element that does not deteriorate the film quality of the thin film.
Since the thin film is smoothed using irradiation, it is possible to prevent adverse thermal effects during the manufacturing process of semiconductor elements, and it is possible to manufacture highly reliable semiconductor devices with smoothed irregularities such as contact holes and no disconnections. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す工程断面図、第2図は
本発明の他の実施例を示す工程断面図、第3図は従来技
術を示す工程断面図である。 1は薄膜、1aはコンタクト・ホール部、2は絶縁膜、
3は半導体基板、4はイオン・ビーム、5は飛散原子、
6はレーザ光ビームである。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1 is a process sectional view showing one embodiment of the present invention, FIG. 2 is a process sectional view showing another embodiment of the invention, and FIG. 3 is a process sectional view showing a conventional technique. 1 is a thin film, 1a is a contact hole part, 2 is an insulating film,
3 is a semiconductor substrate, 4 is an ion beam, 5 is a scattered atom,
6 is a laser beam. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (4)

【特許請求の範囲】[Claims] (1)半導体素子に用いられる薄膜の表面を滑らかにす
る表面平坦化方法において、 上記薄膜表面に該薄膜を構成する元素と同種の元素、若
しくは該薄膜の膜質を低下させない元素のイオン・ビー
ムを走査・照射することを特徴とする表面平坦化方法。
(1) In a surface flattening method for smoothing the surface of a thin film used in a semiconductor device, an ion beam of an element similar to the element constituting the thin film or an element that does not deteriorate the film quality of the thin film is applied to the surface of the thin film. A surface flattening method characterized by scanning and irradiation.
(2)上記イオン・ビームは、上記薄膜の埋め込みを要
する凹部の領域を除いて走査・照射されるものであるこ
とを特徴とする特許請求の範囲第1項記載の表面平坦化
方法。
(2) The surface flattening method according to claim 1, wherein the ion beam scans and irradiates areas other than the recessed areas where the thin film needs to be filled.
(3)上記薄膜はアルゴン雰囲気のスパッタリング法で
形成されたアルミニウム薄膜若しくはアルミニウム−シ
リコン薄膜であり、上記イオン・ビームはアルゴン・イ
オン・ビームであることを特徴とする特許請求の範囲第
1項または第2項記載の表面平坦化方法。
(3) The thin film is an aluminum thin film or an aluminum-silicon thin film formed by a sputtering method in an argon atmosphere, and the ion beam is an argon ion beam. 2. The surface flattening method according to item 2.
(4)上記薄膜はアルミニウム薄膜若しくはアルミニウ
ム−シリコン薄膜であり、イオン・ビームはアルミニウ
ム・イオン・ビーム若しくはシリコン・イオン・ビーム
であることを特徴とする特許請求の範囲第1項または第
2項記載の表面平坦化方法。
(4) Claim 1 or 2, characterized in that the thin film is an aluminum thin film or an aluminum-silicon thin film, and the ion beam is an aluminum ion beam or a silicon ion beam. surface flattening method.
JP30266886A 1986-12-18 1986-12-18 Surface flattening method Pending JPS63155645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30266886A JPS63155645A (en) 1986-12-18 1986-12-18 Surface flattening method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30266886A JPS63155645A (en) 1986-12-18 1986-12-18 Surface flattening method

Publications (1)

Publication Number Publication Date
JPS63155645A true JPS63155645A (en) 1988-06-28

Family

ID=17911749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30266886A Pending JPS63155645A (en) 1986-12-18 1986-12-18 Surface flattening method

Country Status (1)

Country Link
JP (1) JPS63155645A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63204630A (en) * 1987-02-19 1988-08-24 Fujitsu Ltd Manufacturing method of wiring structure
JPH02129925A (en) * 1988-11-09 1990-05-18 Mitsubishi Electric Corp Method of forming wiring
US8520178B2 (en) 2006-07-04 2013-08-27 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device with electrode having frame shape

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63204630A (en) * 1987-02-19 1988-08-24 Fujitsu Ltd Manufacturing method of wiring structure
JPH02129925A (en) * 1988-11-09 1990-05-18 Mitsubishi Electric Corp Method of forming wiring
US8520178B2 (en) 2006-07-04 2013-08-27 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device with electrode having frame shape

Similar Documents

Publication Publication Date Title
US4870031A (en) Method of manufacturing a semiconductor device
US4404735A (en) Method for manufacturing a field isolation structure for a semiconductor device
US5171412A (en) Material deposition method for integrated circuit manufacturing
US4855014A (en) Method for manufacturing semiconductor devices
EP0372061A1 (en) Selective area nucleation and growth method for metal chemical vapor deposition using focused ion beams.
KR100243785B1 (en) Multi-step sputtering method for forming aluminum layer on steped semiconductor wafer
JPS63155645A (en) Surface flattening method
JPH0522377B2 (en)
JPH027415A (en) Formation of soi thin film
JP2791329B2 (en) Adhesion method using laser
JPH0617243A (en) Metal thin film deposition method and semiconductor device manufacturing method
JPS5833822A (en) Preparation of semiconductor substrate
JPS6347256B2 (en)
GB2153253A (en) Semiconductor device and process for making it
JP2631121B2 (en) Laser melting recrystallization method of semiconductor thin film
JPS5856457A (en) Manufacture of semiconductor device
JPH03188267A (en) Method and device for flattening thin film
JP2745055B2 (en) Method for manufacturing single crystal semiconductor thin film
JP2689947B2 (en) Method for manufacturing semiconductor device
JPS63151026A (en) Formation of contact hole
JPH02129925A (en) Method of forming wiring
JPS61172327A (en) Method for deposition of conductive film
JPS60211848A (en) Forming method of conductive film pattern
JPH0673354B2 (en) Wiring forming method and device
JPH01162321A (en) Manufacture of semiconductor single crystal layer