[go: up one dir, main page]

JPH0153577B2 - - Google Patents

Info

Publication number
JPH0153577B2
JPH0153577B2 JP59074703A JP7470384A JPH0153577B2 JP H0153577 B2 JPH0153577 B2 JP H0153577B2 JP 59074703 A JP59074703 A JP 59074703A JP 7470384 A JP7470384 A JP 7470384A JP H0153577 B2 JPH0153577 B2 JP H0153577B2
Authority
JP
Japan
Prior art keywords
reaction
light
wavelength
reactions
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59074703A
Other languages
Japanese (ja)
Other versions
JPS60220139A (en
Inventor
Misao Saga
Akinori Shimizu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP7470384A priority Critical patent/JPS60220139A/en
Publication of JPS60220139A publication Critical patent/JPS60220139A/en
Publication of JPH0153577B2 publication Critical patent/JPH0153577B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/121Coherent waves, e.g. laser beams

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は、反応ガスに光を照射することにより
ひき起こされる光化学反応あるいは光分解反応の
ような光誘起反応が複数の反応の組合せで起こる
場合の光による反応誘起方法に関する。
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to a method in which a photoinduced reaction such as a photochemical reaction or a photodecomposition reaction caused by irradiating a reactive gas with light occurs by a combination of multiple reactions. This invention relates to a method of inducing a reaction using light.

(従来技術とその問題点〕 光によつてひき起こされる反応を利用して各種
の加工あるいは処理を行うことは特にレーザの開
発に伴なつて注目されている。光誘起反応は被処
理物体の温度を高くする必要がないこと、あるい
は電子ビーム、イオンビームを用いる場合のよう
に被処理物体に損傷を与えないことなどの利点が
ある。このような光誘起反応においては、二つ以
上の光化学反応あるいは光分解反応の組合せで起
こることが多いが、光の照射により主として一方
の反応が誘起されることにより進行する。一方光
誘起反応の利用にあたつては反応速度の向上ある
いは反応制御範囲の拡大などがつねに望まれてい
る。
(Prior art and its problems) Performing various types of processing or processing using reactions caused by light has been attracting attention, especially with the development of lasers.Light-induced reactions are Advantages include that there is no need to raise the temperature, and that there is no damage to the object being treated, unlike when using electron beams or ion beams.In such photoinduced reactions, two or more photochemical It often occurs through a combination of reactions or photolysis reactions, and progresses mainly by inducing one reaction by irradiation with light.On the other hand, when using photoinduced reactions, it is important to improve the reaction rate or control the reaction range. There is always a desire for expansion.

〔発明の目的〕[Purpose of the invention]

本発明は、これに対して複数の反応の組合せか
らなる光誘起反応の反応速度の向上、あるいは制
御範囲が拡大できる光による反応誘起方法を提供
することを目的とする。
In contrast, it is an object of the present invention to provide a method for inducing a reaction using light that can improve the reaction rate of a photoinduced reaction consisting of a combination of a plurality of reactions or expand the control range.

〔発明の要点〕[Key points of the invention]

本発明は、複数の反応の組合せによる光誘起反
応を個々の反応に適応した波長を有する光の同時
照射により進行させることにより上記の目的を達
成する。
The present invention achieves the above object by advancing a photo-induced reaction by combining a plurality of reactions by simultaneous irradiation with light having a wavelength suitable for each individual reaction.

〔発明の実施例〕[Embodiments of the invention]

以下図を引用して本発明の実施例について説明
する。第1図において、シリコン基板1を反応室
2の底部の上に置き、反応室2内を真空ポンプ3
により排気したのち、マスフローメータ4により
流量制御してボンベ5よりSiH4ガスを70ml/
min、ボンベ6よりNH3ガス700ml/minの割合
で反応室2内に導入する。そこへ波長10.6μmの
CO2ガスレーザあるいは波長5144ÅのAr+レーザ
の発振光7を鏡8、レンズ9を介して、また、よ
り波長の短い1930ÅのArFエキシマレーザ光17
を鏡8、レンズ9を介して基板1の上に入射させ
る。この結果長波長の光7によりSiH4の光分解
反応、短波長の光17によりNH3の光化学反応
が起こり、活性化したSiとNのイオンが生ずる。
これにより短波長の光の照射のみで活性化Nを生
成し、それをSiH4に作用させて反応させる場合
に比して反応速度が向上し、短時間にSi3N4膜を
基板1の上に形成することができる。
Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1, a silicon substrate 1 is placed on the bottom of a reaction chamber 2, and a vacuum pump 3
After exhausting the air, 70 ml of SiH 4 gas was supplied from the cylinder 5 by controlling the flow rate using the mass flow meter 4.
NH 3 gas is introduced into the reaction chamber 2 from the cylinder 6 at a rate of 700 ml/min. There, the wavelength of 10.6 μm
The oscillation light 7 of a CO 2 gas laser or an Ar + laser with a wavelength of 5144 Å is passed through a mirror 8 and a lens 9, and the ArF excimer laser beam 17 with a shorter wavelength of 1930 Å is transmitted.
is made incident onto the substrate 1 via a mirror 8 and a lens 9. As a result, the long-wavelength light 7 causes a photodecomposition reaction of SiH 4 and the short-wavelength light 17 causes a photochemical reaction of NH 3 to generate activated Si and N ions.
As a result, the reaction speed is improved compared to the case where activated N is generated only by irradiation with short wavelength light and reacted by acting on SiH 4 , and the Si 3 N 4 film can be deposited on the substrate 1 in a short time. can be formed on top.

次にシリコン基板1上にりんガラス層を形成す
る実施例について述べる。この場合は反応室2に
ボンベ5よりSiH4ガス、ボンベ10よりP2O5
ス、ボンベ11よりN2Oガスを導入し、CO2ガス
レーザあるいはAr+レーザからの光7と、例えば
3600Åの波長のXeFエキシマレーザ光17とを照
射する。長波長の光7の照射によりSiH4の光分
解反応が起こつて活性化したSiイオン、短波長の
光17の照射によりP2O5およびN2Oの光分解反
応が起こつて活性化したPイオンおよびOイオン
が生じ、これからりんけい酸ガラス膜が基板表面
に形成される。この場合光7,18の光源の光度
比の調整によりガラスの組成を調整することがで
きる。たとえば光7の光源の光度を最初低く、後
に高くして第2図に示すように基板1に接する下
層12のPの含有量を1〜3mol%、上層13の
Pの含有量を5mol%以上にし、レジスト膜14
で被覆して弗酸系のエツチング液による湿式エツ
チング、あるいはCF4ガスを光の局部照射により
イオン化して行う局部的乾式エツチングを施せ
ば、上層13が下層12に比してエツチングされ
やすいため、点線15に示したようにテーパが生
ずる。従つてこのようなりんガラス膜12,13
の上に配線を被着する場合には、段差被覆性が良
好で断線の虞がなくなる。あるいは逆に上層13
のP含有量を下層12のそれより少なくすれば、
レジストの下側へのサイドエツチの防止に役立
ち、精密なりんガラスパターンを形成できる。ま
たAlはPによつて腐食されやすいので、短波長
の光17のビームによつて基板1の上面を走査す
る場合に、Al配線の被着されない領域では光1
7の光源の光度を高くして、P含有量が多くパツ
シベーシヨン効果の大きいりんガラス膜を形成
し、Al配線の被着される領域では光17の光源
の光度を低くして、P含有量が少なくAlに対す
る腐食性の弱いりんガラス膜を形成することもで
きる。
Next, an example in which a phosphor glass layer is formed on the silicon substrate 1 will be described. In this case, SiH 4 gas from the cylinder 5, P 2 O 5 gas from the cylinder 10, and N 2 O gas from the cylinder 11 are introduced into the reaction chamber 2, and the light 7 from the CO 2 gas laser or the Ar + laser is emitted, for example.
XeF excimer laser light 17 with a wavelength of 3600 Å is irradiated. Si ions are activated by a photodecomposition reaction of SiH 4 caused by irradiation with long-wavelength light 7, and P is activated by a photodecomposition reaction of P 2 O 5 and N 2 O by irradiation with short-wavelength light 17. Ions and O ions are generated, from which a phosphosilicate glass film is formed on the substrate surface. In this case, the composition of the glass can be adjusted by adjusting the luminous intensity ratio of the light sources 7 and 18. For example, the luminous intensity of the light source of light 7 is first lowered and then increased to increase the P content of the lower layer 12 in contact with the substrate 1 to 1 to 3 mol%, and the P content of the upper layer 13 to 5 mol% or more, as shown in FIG. and resist film 14
If the upper layer 13 is coated with a hydrofluoric acid etching solution and subjected to wet etching using a hydrofluoric acid etching solution or local dry etching performed by ionizing CF 4 gas by local irradiation with light, the upper layer 13 is more likely to be etched than the lower layer 12. A taper occurs as shown by the dotted line 15. Therefore, such phosphor glass films 12, 13
When wiring is applied on top of the wiring, the step coverage is good and there is no risk of wire breakage. Or conversely, upper layer 13
If the P content of is lower than that of the lower layer 12,
It helps prevent side etching on the underside of the resist, allowing precise phosphor glass patterns to be formed. Furthermore, since Al is easily corroded by P, when scanning the top surface of the substrate 1 with a beam of light 17 having a short wavelength, the light 17
The luminous intensity of the light source 7 is increased to form a phosphorous glass film with a high P content and a large passivation effect, and the luminous intensity of the light source 17 is lowered in the area where the Al wiring is deposited to reduce the P content. It is also possible to form a phosphorous glass film that is less corrosive to Al.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明は反応ガスに波長の異
なる光を同時に照射して複数の光化学反応あるい
は光分解反応をそれぞれ誘起するもので、1種類
の光だけの照射にくらべ反応速度を向上させるこ
とができる。また各光の光源の光度比の制御によ
り各反応の進行の割合を変化させることができる
ため、時間的あるいは場所的に異なる組成の反応
生成物を形成することができ、半導体装置の製造
をはじめ多くの場合に有効に適用できる。
As described above, the present invention simultaneously irradiates a reactive gas with light of different wavelengths to induce multiple photochemical reactions or photodecomposition reactions, thereby improving the reaction rate compared to irradiation with only one type of light. Can be done. In addition, since the rate of progress of each reaction can be changed by controlling the luminous intensity ratio of each light source, it is possible to form reaction products with different compositions over time or location, which is useful for manufacturing semiconductor devices, etc. Can be effectively applied in many cases.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例のための装置の断面
図、第2図は本発明の一実施例によるりんガラス
膜被覆シリコン基板の断面図である。 1…シリコン基板、2…反応室、5…SiH4
ンベ、6…NH3ボンベ、7…長波長レーザ光、
10…P2O5ボンベ、11…N2Oボンベ、12…
りんガラス下層、13…りんガラス上層、17…
短波長レーザ光。
FIG. 1 is a cross-sectional view of an apparatus for an embodiment of the present invention, and FIG. 2 is a cross-sectional view of a silicon substrate coated with a phosphor glass film according to an embodiment of the present invention. 1... Silicon substrate, 2... Reaction chamber, 5... SiH 4 cylinder, 6... NH 3 cylinder, 7... Long wavelength laser beam,
10...P 2 O 5 cylinder, 11...N 2 O cylinder, 12...
Phosphorus glass lower layer, 13... Phosphorus glass upper layer, 17...
Short wavelength laser light.

Claims (1)

【特許請求の範囲】 1 複数の異なる反応ガスを反応室に導入し、該
反応ガスに光を照射して光誘起反応を生じさせる
光による反応誘起方法において、個々の反応ガス
の反応に対応した波長を有する光の同時照射によ
り、各反応ガスを個々に励起することを特徴とす
る光による反応誘起方法。 2 特許請求の範囲第1項記載の方法において、
各光の光源の光度比を変化させることにより時間
的または場所的に組成の異なる反応生成物を形成
することを特徴とする光による反応誘起方法。
[Claims] 1. In a light reaction induction method in which a plurality of different reaction gases are introduced into a reaction chamber and the reaction gases are irradiated with light to cause a photoinduced reaction, A method for inducing a reaction using light, characterized in that each reaction gas is individually excited by simultaneous irradiation with light having a wavelength. 2. In the method described in claim 1,
1. A method for inducing a reaction by light, which comprises forming reaction products having different compositions in time or location by changing the luminous intensity ratio of each light source.
JP7470384A 1984-04-13 1984-04-13 Induction of reaction by light Granted JPS60220139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7470384A JPS60220139A (en) 1984-04-13 1984-04-13 Induction of reaction by light

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7470384A JPS60220139A (en) 1984-04-13 1984-04-13 Induction of reaction by light

Publications (2)

Publication Number Publication Date
JPS60220139A JPS60220139A (en) 1985-11-02
JPH0153577B2 true JPH0153577B2 (en) 1989-11-14

Family

ID=13554850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7470384A Granted JPS60220139A (en) 1984-04-13 1984-04-13 Induction of reaction by light

Country Status (1)

Country Link
JP (1) JPS60220139A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7075146B2 (en) 2004-02-24 2006-07-11 Micron Technology, Inc. 4F2 EEPROM NROM memory arrays with vertical devices
US7095075B2 (en) 2003-07-01 2006-08-22 Micron Technology, Inc. Apparatus and method for split transistor memory having improved endurance
US7157771B2 (en) 2004-01-30 2007-01-02 Micron Technology, Inc. Vertical device 4F2 EEPROM memory
US7241654B2 (en) 2003-12-17 2007-07-10 Micron Technology, Inc. Vertical NROM NAND flash memory array

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3750091T2 (en) * 1986-12-25 1994-09-22 Kawasaki Steel Co OPTICAL CVD PROCESS.
JP5468835B2 (en) * 2009-07-27 2014-04-09 リンテック株式会社 Light irradiation apparatus and light irradiation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59216629A (en) * 1983-05-24 1984-12-06 Nec Corp Optical gaseous phase growing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59216629A (en) * 1983-05-24 1984-12-06 Nec Corp Optical gaseous phase growing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7095075B2 (en) 2003-07-01 2006-08-22 Micron Technology, Inc. Apparatus and method for split transistor memory having improved endurance
US7241654B2 (en) 2003-12-17 2007-07-10 Micron Technology, Inc. Vertical NROM NAND flash memory array
US7339239B2 (en) 2003-12-17 2008-03-04 Micron Technology, Inc. Vertical NROM NAND flash memory array
US7157771B2 (en) 2004-01-30 2007-01-02 Micron Technology, Inc. Vertical device 4F2 EEPROM memory
US7332773B2 (en) 2004-01-30 2008-02-19 Micron Technology, Inc. Vertical device 4F2 EEPROM memory
US7075146B2 (en) 2004-02-24 2006-07-11 Micron Technology, Inc. 4F2 EEPROM NROM memory arrays with vertical devices
US7282762B2 (en) 2004-02-24 2007-10-16 Micron Technology, Inc. 4F2 EEPROM NROM memory arrays with vertical devices

Also Published As

Publication number Publication date
JPS60220139A (en) 1985-11-02

Similar Documents

Publication Publication Date Title
US5114834A (en) Photoresist removal
US5112645A (en) Phototreating method and apparatus therefor
JPS6173332A (en) Optical treating device
JPH0153577B2 (en)
JPS59165422A (en) Dry process apparatus
JPS61216449A (en) Method and apparatus for forming pattern thin-film
JP4174610B2 (en) Etching method
JP3125004B2 (en) Substrate surface processing method
JPS6043824A (en) Manufacture of semiconductor device
RU2099810C1 (en) Process forming topology of integrated microcircuits
JPH0415910A (en) Formation of etching pattern
JP2851280B2 (en) Micro lens and manufacturing method thereof
JPH0974067A (en) Doping method and doping device
JPH0673354B2 (en) Wiring forming method and device
JP3300781B2 (en) Method of forming oxide film
JP2719174B2 (en) Manufacturing method of metal film
JPS6245035A (en) Manufacture of semiconductor device
JPH0456447B2 (en)
JP3432013B2 (en) Method of forming oxide film
JPS6142141A (en) Selective photo chemical reaction apparatus
JPH09148306A (en) Method for microprocessing wafer and apparatus using the same
JPS59194439A (en) Method for forming pattern of semiconductor device
JPS6197912A (en) CVD equipment
JPH0114313B2 (en)
JPH04273434A (en) Optical cvd method