[go: up one dir, main page]

JPH04273434A - Optical cvd method - Google Patents

Optical cvd method

Info

Publication number
JPH04273434A
JPH04273434A JP3475691A JP3475691A JPH04273434A JP H04273434 A JPH04273434 A JP H04273434A JP 3475691 A JP3475691 A JP 3475691A JP 3475691 A JP3475691 A JP 3475691A JP H04273434 A JPH04273434 A JP H04273434A
Authority
JP
Japan
Prior art keywords
cvd
light
film
irradiated
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3475691A
Other languages
Japanese (ja)
Other versions
JP2770578B2 (en
Inventor
Fumihiko Uesugi
文彦 上杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP3034756A priority Critical patent/JP2770578B2/en
Priority to US07/717,603 priority patent/US5393577A/en
Publication of JPH04273434A publication Critical patent/JPH04273434A/en
Application granted granted Critical
Publication of JP2770578B2 publication Critical patent/JP2770578B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To permit pattern transfer which allows excellent space selection by using spatially shaped ultrashort wavelength light. CONSTITUTION:After the process of cleaning a poly film 13 by electron beam shower 17, ultrashort wavelength light 15 such as synchrotron irradiation beams, etc., is space-shaped in thermal CVD using a mask 16, thermal CVD reaction at the irradiating part is suppressed, and the film of Al wiring 14 is formed selectively at the non-irradiating part. Since the wavelength of the irradiation light is short and that the influence by vapor phase active pieces is eliminated, a patterned film shaped as an inverted opening of the mask 16 is formed and the blur of the pattern is suppressed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、各種材料のCVDにお
いて、レジスト塗布、露光、レジスト剥離などのプロセ
ス無しで、光利用によって空間選択性良くパターニング
できるCVD方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a CVD method for patterning various materials with good spatial selectivity by utilizing light without processes such as resist coating, exposure, and resist peeling.

【0002】0002

【従来の技術】熱CVD中に光を照射し、光照射部での
CVD膜成長を抑制することによって直接CVD膜のパ
ターニングを行う光反転CVDは、光照射部に膜を成長
させる通常の光CVD方法に比べて、気相分解による降
り積もりの影響を除去できるため、パターン転写の分解
能を向上させることが出来る。この方法の従来例として
、岸田の発明による特開昭62−116786号公報(
特願昭60−254582号)「表面選択処理方法」や
、杉田らの発表による第36回応用物理学関係連合講演
会(1989年春季)第2分冊592頁、講演番号2p
−L−5「シンクロトロン放射光を用いたポジ型パター
ン転写CVD」例がある。これらの方法を要約してまと
めると、基板・吸着子間結合の振動エネルギーに共鳴す
る赤外光照射による吸着子の脱離、または、真空紫外光
照射による基板・吸着子間結合切断による吸着子の脱離
を利用するものである。
[Prior Art] Photo-reversal CVD, which directly patterns a CVD film by irradiating light during thermal CVD and suppressing the growth of the CVD film in the light-irradiated area, uses ordinary light to grow a film in the light-irradiated area. Compared to the CVD method, it is possible to eliminate the influence of accumulation due to vapor phase decomposition, and thus it is possible to improve the resolution of pattern transfer. As a conventional example of this method, Japanese Patent Application Laid-open No. 116786/1986 (invented by Kishida)
Patent Application No. 60-254582) "Surface selective treatment method" and Sugita et al.'s presentation at the 36th Applied Physics Association Lectures (Spring 1989) Volume 2, page 592, lecture number 2p.
-L-5 There is an example of "positive pattern transfer CVD using synchrotron radiation". To summarize these methods, the adsorbent is detached by infrared light irradiation that resonates with the vibrational energy of the bond between the substrate and the adsorbent, or the adsorbent is detached by severing the bond between the substrate and the adsorbent by vacuum ultraviolet light irradiation. This method takes advantage of the detachment of

【0003】0003

【発明が解決しようとする課題】上述の従来法によるC
VD膜のパターニング方法は、基板上の所望の部分にの
み光を照射し、この光照射部でのCVDを抑制すること
によってパターニングを行っている。CVDの抑制を、
基板・吸着子間結合の振動エネルギーに共鳴する赤外光
照射による吸着子の脱離で行う場合、赤外光によって基
板が加熱されるので、吸着子の脱離だけでなく熱分解に
よる堆積が生じ、CVDの抑制は不十分になる。また、
真空紫外光照射による基板・吸着子間結合切断による吸
着子の脱離によってCVDの抑制を行う場合、基板・吸
着子間の結合切断だけでなく、吸着子内の結合切断によ
る光化学的CVDが生じ、CVDの抑制は不十分になる
[Problem to be solved by the invention] C by the above conventional method
A method for patterning a VD film is to perform patterning by irradiating light only onto a desired portion of a substrate and suppressing CVD at the light irradiated portion. Suppression of CVD,
When the adsorbent is detached by irradiation with infrared light that resonates with the vibrational energy of the bond between the substrate and the adsorbent, the substrate is heated by the infrared light, so not only the adsorbent is detached but also deposited due to thermal decomposition. This results in insufficient control of CVD. Also,
When CVD is suppressed by detachment of the adsorbent due to the bond breaking between the substrate and the adsorbent due to vacuum ultraviolet light irradiation, photochemical CVD occurs not only due to the bond breaking between the substrate and the adsorbent but also due to the bond breaking within the adsorbent. , CVD control becomes insufficient.

【0004】また、このようなCVD抑制のメカニズム
からくる不十分さ以外に、光源の種類の制約がある。結
合の振動エネルギーに共鳴する赤外光照射によって吸着
子を脱離させる方法では、照射光のエネルギーを振動エ
ネルギーに共鳴させる必要がある。また、吸着子の種類
は通常一種類ではないので、全ての吸着子を脱離させる
には、それぞれに共鳴した光を使用しなければならない
ので、用意すべき光源の数が多くなり、装置構成上の障
害になる。
[0004] In addition to the insufficiency caused by such a CVD suppression mechanism, there are also restrictions on the type of light source. In the method of detaching adsorbents by irradiation with infrared light that resonates with the vibrational energy of the bond, it is necessary to make the energy of the irradiated light resonate with the vibrational energy. In addition, since there is usually more than one type of adsorbent, in order to desorb all the adsorbents, it is necessary to use light that resonates with each adsorbent, which increases the number of light sources that must be prepared, and the equipment configuration. It becomes an obstacle above.

【0005】一方、紫外光照射によって基板・吸着子間
結合を切断して吸着子を脱離させる方法では、吸着子の
価電子励起によって、結合性軌道にある電子を反結合性
軌道へ移動させることによって行う。このことは、光励
起の始状態と、終状態が決まっていることを意味するの
で、このエネルギーに相当する波長の光の使用に限定さ
れる。また、更に波長が短い真空紫外光を用いた場合、
吸着子のイオン化が起こり、これによって吸着子・基板
間の結合が切れて吸着子の脱離が起き、真空紫外光照射
領域でのCVDを抑制できる。この場合、用いる光のエ
ネルギーは、イオン化の閾値エネルギーより大きければ
良いので、上記2つの方法に比べて波長の制約が緩くな
る。しかし、価電子励起によるイオン化では、吸着子脱
離によるCVDの抑制はまだ不十分であるという問題が
あり、実用的でなかった。
On the other hand, in a method in which the adsorbent is detached by breaking the bond between the substrate and the adsorbent using ultraviolet light irradiation, the electrons in the bonding orbital are moved to the antibonding orbital by excitation of the valence electrons of the adsorbent. To do something. This means that the initial state and final state of photoexcitation are determined, so the use of light with a wavelength corresponding to this energy is limited. In addition, when vacuum ultraviolet light with an even shorter wavelength is used,
Ionization of the adsorbent occurs, which breaks the bond between the adsorbent and the substrate, causing desorption of the adsorbent, thereby suppressing CVD in the vacuum ultraviolet light irradiation region. In this case, the energy of the light used only needs to be greater than the ionization threshold energy, so the restrictions on the wavelength are less strict than in the above two methods. However, ionization by valence electron excitation has the problem that CVD caused by adsorbent desorption is still insufficiently suppressed, and is not practical.

【0006】また、光の回折効果によるCVD膜のパタ
ーニング上の問題がある。光照射領域はマスクの開口部
の形状で決まり、パターニング後のCVD膜のエッジ形
状の切れの良さは、マスクの開口部での光の回折による
非照射部への光の回り込みを、如何に抑えるかよって決
まる。この回り込みの大きさは、光の波長に比例するの
で、赤外光を使用するよりも、もっと波長の短い真空紫
外光を使う方が回折による光の回り込みを抑えることが
出来る。しかし、これまでに使用されている波長では、
まだ回折効果の抑制は不十分である。
[0006] Furthermore, there is a problem in patterning the CVD film due to the diffraction effect of light. The light irradiation area is determined by the shape of the opening in the mask, and the sharpness of the edge shape of the CVD film after patterning is the best way to suppress light from going around to non-irradiated areas due to light diffraction at the opening in the mask. It depends. Since the magnitude of this wraparound is proportional to the wavelength of the light, it is better to use vacuum ultraviolet light, which has a shorter wavelength, than to use infrared light to suppress the wraparound of light due to diffraction. However, at the wavelengths used so far,
Suppression of diffraction effects is still insufficient.

【0007】本発明の目的は、光照射部での吸着子の脱
離促進による効果的なCVD抑制を行い、しかも、所望
の波長を発する光源の選択幅を大きく採れ、また、同時
に、光の回折効果を抑え、光照射部と非照射部の境界の
エッジの切れが良くて空間選択性がよい光反転パターニ
ングCVD方法を提供することにある。
It is an object of the present invention to effectively suppress CVD by promoting the detachment of adsorbents at the light irradiation part, and to have a wide selection range of light sources that emit a desired wavelength. It is an object of the present invention to provide a light inversion patterning CVD method that suppresses diffraction effects, has sharp edges at the boundary between light irradiated areas and non-irradiated areas, and has good spatial selectivity.

【0008】[0008]

【課題を解決するための手段】本発明の光CVD方法に
よれば、熱CVD中に光を照射するCVD方法において
、基板、または、原料ガスを構成する原子の内、少なく
とも一種類の原子の内殻をイオン化できるエネルギーの
光を照射し、光照射部でのCVDを抑制することによっ
て、光非照射部にのみCVD膜を形成し、直接CVD膜
のパターニングを行うことを特徴とする。
[Means for Solving the Problems] According to the photo-CVD method of the present invention, in a CVD method in which light is irradiated during thermal CVD, at least one type of atoms among atoms constituting a substrate or a source gas is The method is characterized in that by irradiating light with an energy that can ionize the inner shell and suppressing CVD in the light irradiated area, a CVD film is formed only in the non-light irradiated area, and the CVD film is directly patterned.

【0009】また、熱CVD中に光を照射するCVD方
法において、光照射によって照射部の表面組成を非照射
部のそれと変え、照射部でのCVD反応を抑制すること
によってCVD膜のパターニングを行うことを特徴とす
る。
[0009] Furthermore, in a CVD method in which light is irradiated during thermal CVD, patterning of the CVD film is performed by changing the surface composition of the irradiated area to that of the non-irradiated area through light irradiation and suppressing the CVD reaction in the irradiated area. It is characterized by

【0010】また、上記の光CVD方法において上述の
CVD中の光照射の工程に先立って、基板の清浄表面を
露出させる工程を含むことを特徴とする。その表面の清
浄化には電子や粒子のビームまたは高エネルギーの光の
照射により行なうことができる。
[0010] Furthermore, the above-mentioned photo-CVD method is characterized in that it includes a step of exposing the clean surface of the substrate prior to the step of light irradiation during the above-mentioned CVD. The surface can be cleaned by electron or particle beams or by high-energy light irradiation.

【0011】[0011]

【作用】本発明の作用上の特徴は、(1)基板、または
、吸着子を構成する原子の内、少なくとも1つの原子の
内殻励起による吸着子の分解・脱離の促進、あるいは、
このような短波長光を用いた表面組成改質による吸着阻
害と、(2)内殻励起可能な光の波長が従来使用されて
いた光に比べて短波長であることによる回折効果の抑制
との2つの要因に帰着する。
[Operation] The operational features of the present invention are (1) promotion of decomposition and desorption of the adsorbent by inner shell excitation of at least one atom among the atoms constituting the substrate or the adsorbent;
(2) inhibition of adsorption due to surface composition modification using short-wavelength light, and (2) suppression of diffraction effects due to the wavelength of light that can excite the inner shell being shorter than that of conventionally used light. This comes down to two factors.

【0012】本発明の方法によるCVDの抑制方法の1
つは、内殻励起で形成された内殻ホールのカスケード的
なオージェ遷移によって形成された、吸着子の不安定な
多価イオンの分解・脱離によって行われる。これまで、
気相中での有機金属化合物やSiH4 などの分解反応
では、これを構成する原子の内殻を励起する方が、価電
子を励起するよりも、解離度の高い分解生成物ができる
ことが知られている。これらのことは、例えば、ナガオ
カ(Nagaoka)らによってケミカル  フィジク
ス  レターズ誌(Chem.Phy.Lett.)第
154巻(1988)の363ページから368ページ
に発表された論文や、ヤギシタ(Yagisita)ら
によってケミカル  フィジクス  レターズ誌(Ch
em.Phy.Lett.)第132巻(1986)の
437ページから440ページに発表された論文に見ら
れる。
[0012] Method 1 of suppressing CVD by the method of the present invention
The first is the decomposition and desorption of unstable multivalent ions from the adsorbent, which are formed by the cascade Auger transition of the core holes formed by core excitation. Until now,
In the decomposition reactions of organometallic compounds and SiH4 in the gas phase, it is known that excitation of the inner shells of the constituent atoms produces decomposition products with a higher degree of dissociation than excitation of the valence electrons. ing. These things are discussed, for example, in the paper published by Nagaoka et al. in Chemical Physics Letters, Volume 154 (1988), pages 363 to 368, and by Yagishita et al. Chemical Physics Letters (Ch.
em. Phy. Lett. ) Volume 132 (1986), pages 437 to 440.

【0013】このような、これまでに報告されている気
相反応だけではなく、基板上の吸着分子についても内殻
を励起する方が解離度が上がるだけでなく、解離生成物
の脱離が促進されることが、本発明者の実験結果から分
かった。従って、従来の赤外光や、真空紫外光を用いて
CVDを抑制するよりも、内殻を励起できる程の短波長
の光を用いた方が、CVDの抑制効果がある。そのため
、光照射部にCVDを行う場合に問題となる、光照射領
域以外への気相生成活性種の拡散による空間選択性の低
下を、光照射部での拡散してくる活性種の脱離、吸着分
子の脱離によるCVD抑制でパターニングを行うことに
よって、従来技術に比べて顕著に空間選択性を向上させ
ることができる。
[0013] In addition to the gas-phase reactions that have been reported so far, excitation of the inner shell of adsorbed molecules on the substrate not only increases the degree of dissociation but also increases the rate of desorption of dissociation products. It was found from the experimental results of the present inventor that this was promoted. Therefore, rather than suppressing CVD using conventional infrared light or vacuum ultraviolet light, using light with a short wavelength sufficient to excite the inner shell is more effective in suppressing CVD. Therefore, when CVD is performed on the light irradiation area, the decrease in spatial selectivity due to the diffusion of active species generated in the gas phase to areas other than the light irradiation area can be avoided by the desorption of the active species that diffuse in the light irradiation area. By performing patterning by suppressing CVD by desorption of adsorbed molecules, spatial selectivity can be significantly improved compared to conventional techniques.

【0014】また、本発明の方法による第2のCVDの
抑制方法は、吸着子の光分解による表面組成の改質によ
って、原料ガスの吸着を阻害するものである。本発明者
の実験結果から、この改質の効果は、内殻を励起できな
い波長の光でも生じるが、内殻励起可能な波長の光を用
いた方が顕著に現れることが分かった。従って、このよ
うな波長の光を用いると、照射部と非照射部の組成の差
を大きくでき、その結果、照射部でのCVD抑制効果が
大きくなる。また、この表面改質によるCVDの抑制は
、光の照射部と非照射部との吸着反応の速度差を利用し
ている。
A second method for suppressing CVD according to the method of the present invention is to inhibit the adsorption of source gas by modifying the surface composition of adsorbents through photodecomposition. From the experimental results of the present inventors, it was found that although this modification effect occurs even with light of a wavelength that cannot excite the inner shell, it is more pronounced when using light of a wavelength that can excite the inner shell. Therefore, when light of such a wavelength is used, the difference in composition between the irradiated part and the non-irradiated part can be increased, and as a result, the CVD suppressing effect in the irradiated part is increased. Furthermore, CVD suppression by this surface modification utilizes the difference in rate of adsorption reaction between the light irradiated area and the non-irradiated area.

【0015】基板表面が清浄表面であれば、この表面は
活性なので、吸着分子の分解反応が低温で始まる。従っ
て、光照射による表面改質工程に先立って、表面を清浄
化する工程を行うことによって、CVD抑制効果を広い
温度領域に渡り実現できる。空間選択性については、光
照射領域以外へ気相生成活性種が拡散しても、照射部で
の密な表面組成改質に比べて改質される度合が低いので
CVDを抑制するに至らず、従来技術に比べて空間選択
性を非常に向上させることができる。
[0015] If the substrate surface is a clean surface, this surface is active and the decomposition reaction of the adsorbed molecules starts at a low temperature. Therefore, by performing a step of cleaning the surface prior to a surface modification step by light irradiation, the CVD suppressing effect can be achieved over a wide temperature range. Regarding spatial selectivity, even if the active species generated in the gas phase diffuse to areas other than the light irradiation area, the degree of modification is lower than that of the dense surface composition modification in the irradiation area, so it does not suppress CVD. , the spatial selectivity can be greatly improved compared to the prior art.

【0016】また、光照射部でのCVD抑制によって膜
をパターニングする場合、基板上への光照射領域を決め
るマスクの開口部の端で回折された回折光が、非照射部
にも照射される。その結果、回折されずに直進する光に
よる照射部だけでなく、非照射部でも回折光によってC
VDが部分的に抑制されてしまい、所望の形状にCVD
膜をパターニングできない。しかし、用いる光の波長が
内殻励起可能なほど短波長になると、これまで使用され
ている赤外光や価電子励起可能な真空紫外光に比べて、
回折光の強度、及び、回り込みが2〜3桁小さくなるの
で、直進する光による照射部だけでCVDを抑制でき、
所望の形状にCVD膜をパターニングできる。
Furthermore, when patterning a film by suppressing CVD in the light irradiation area, the diffracted light diffracted at the edge of the opening of the mask that determines the light irradiation area on the substrate also irradiates the non-irradiation area. . As a result, not only the irradiated area by the light that goes straight without being diffracted, but also the non-irradiated area is caused by the diffracted light.
VD is partially suppressed, and CVD is not applied to the desired shape.
The film cannot be patterned. However, when the wavelength of the light used becomes short enough to excite the inner shell, compared to the infrared light or vacuum ultraviolet light that has been used so far, which can excite valence electrons,
Since the intensity of the diffracted light and the wraparound are reduced by 2 to 3 orders of magnitude, CVD can be suppressed only by the irradiation area with the straight light.
A CVD film can be patterned into a desired shape.

【0017】以上説明したように本発明の光CVD方法
によれば、マスクパターンを反転した、空間選択性の良
い、高品質のCVD膜が形成できる。
As explained above, according to the photo-CVD method of the present invention, a high-quality CVD film with good spatial selectivity and an inverted mask pattern can be formed.

【0018】[0018]

【実施例】以下、本発明光CVD方法の第1の実施例に
ついて図1を参照しながら説明する。本実施例では、S
iデバイスの形成において、Al配線を選択的に形成す
る場合について述べる。
Embodiment A first embodiment of the photo-CVD method of the present invention will be described below with reference to FIG. In this example, S
A case will be described in which Al wiring is selectively formed in the formation of an i-device.

【0019】図1(a)は、Si基板11上に熱酸化膜
12がパターニングされており、この上の全面にpol
y−Si膜13が成膜されている。
In FIG. 1(a), a thermal oxide film 12 is patterned on a Si substrate 11, and a pol film is formed on the entire surface of the thermal oxide film 12.
A y-Si film 13 is formed.

【0020】図1(b)には、図1(a)の基板上に、
Al配線14を光15を用いて直接パターニングしなが
ら堆積させ、Al配線14をpoly−Si膜13を介
してSi基板11に対して電気的コンタクトを形成する
方法を示してある。具体的成膜方法を以下に示す。
In FIG. 1(b), on the substrate of FIG. 1(a),
A method is shown in which the Al wiring 14 is deposited while being directly patterned using light 15, and electrical contact is formed between the Al wiring 14 and the Si substrate 11 via the poly-Si film 13. A specific film forming method is shown below.

【0021】図1(a)の構造を持つ基板をCVDチャ
ンバに装着し、Al原料としてのジメチルアルミニウム
ハイドライド、Al(CH3 )2Hをチャンバ内に導
入し、基板温度を300℃にして熱CVDを行う。光1
5としてAl原子、C原子、Si原子の内殻を励起でき
る100eVよりも高エネルギーのシンクロトロン放射
光を用い、マスク16で配線形成領域に光15を当てな
いようにして、この光の当たらない部分にのみAlのC
VDを行いAl配線14を形成する。即ちマスクパター
ンを反転した配線となる。このようにして、Al配線1
4を光15を用いて直接パターニングしながら堆積させ
、電気的コンタクトを形成することができる。
A substrate having the structure shown in FIG. 1(a) was placed in a CVD chamber, dimethylaluminum hydride, Al(CH3)2H, as an Al raw material was introduced into the chamber, and the substrate temperature was set at 300° C. to perform thermal CVD. conduct. light 1
As step 5, synchrotron radiation with energy higher than 100 eV that can excite the inner shells of Al atoms, C atoms, and Si atoms is used, and a mask 16 is used to prevent the light 15 from hitting the wiring formation area. C of Al only in the part
VD is performed to form Al wiring 14. In other words, the wiring is an inversion of the mask pattern. In this way, the Al wiring 1
4 can be deposited with direct patterning using light 15 to form electrical contacts.

【0022】この後、堆積させたAlをマスクにして、
poly−Siをプラズマエッチングで取り除いてAl
配線形成プロセスが終了する。この方法でAl配線を形
成した後、この配線とコンタクトを形成していない配線
との間の抵抗を測定したところ電気的リークはなく、絶
緑は良好であった。
After this, using the deposited Al as a mask,
Poly-Si is removed by plasma etching and Al
The wiring formation process ends. After forming an Al wiring using this method, the resistance between this wiring and a wiring with no contact formed therein was measured and found that there was no electrical leakage and that the insulation was good.

【0023】本発明の第2の実施例について説明する。 第1の実施例と同じSiデバイスの形成プロセスにおけ
るAl配線の形成について図2を用いて述べる。図2は
CVD工程を説明する断面模式図である。先の実施例と
同じ構造の基板を超高真空のチャンバーに設置し、図2
(a)の様に、電子ビームシャワー17を照射し、po
ly−Si膜13の表面を終端している水素原子を取り
除いて清浄表面を出す。
A second embodiment of the present invention will be described. The formation of Al wiring in the same Si device formation process as in the first example will be described with reference to FIG. FIG. 2 is a schematic cross-sectional view illustrating the CVD process. A substrate with the same structure as in the previous example was placed in an ultra-high vacuum chamber, and
As shown in (a), the electron beam shower 17 is irradiated and the po
Hydrogen atoms terminating on the surface of the ly-Si film 13 are removed to reveal a clean surface.

【0024】次に、Al原料としてのAl(CH3 )
2 Hをチャンバ内に導入し、基板温度を200℃にし
て熱CVDを行う。清浄表面が出ていないときは、25
0℃以下ではCVDは生じないが、清浄表面を出すこと
によって、200℃でもCVDが生じる。光15として
Al原子、C原子、Si原子の内殻を励起可能な4nm
近傍の波長の放射光を用い、マスク16で配線形成領域
に光15を当てないようにして、この光の当たらない部
分にのみ即ちマスクの開口形状を反転した部分に、Al
のCVDを行い図2(b)に示すようにAl配線14を
形成する。このようにして、Al配線14を光15を用
いて直接パターニングしながら堆積させ、電気的コンタ
クトを形成することができる。
Next, Al(CH3) as an Al raw material
2 H is introduced into the chamber, the substrate temperature is set at 200° C., and thermal CVD is performed. If the clean surface is not exposed, 25
Although CVD does not occur below 0°C, CVD occurs even at 200°C by exposing a clean surface. 4 nm that can excite the inner shells of Al atoms, C atoms, and Si atoms as light 15
Using synchrotron radiation of a nearby wavelength, the mask 16 is used to prevent the light 15 from hitting the wiring formation area, and the Al
CVD is performed to form Al wiring 14 as shown in FIG. 2(b). In this way, the Al wiring 14 can be deposited while being directly patterned using the light 15 to form electrical contacts.

【0025】この後、堆積させたAlをマスクにして、
poly−Siをプラズマエッチングで取り除いてAl
配線形成プロセスが終了する。光照射部でのCVDの抑
制効果は、poly−Si膜13の清浄化を行わなかっ
た第1の実施例に比べて、大きい。また本実施例は回折
光の回り込みが十分小さいので、マスクの反転パターン
を正確に反映し、エッジでの切れの良いパターンが形成
できた。
After this, using the deposited Al as a mask,
Poly-Si is removed by plasma etching and Al
The wiring formation process ends. The effect of suppressing CVD in the light irradiation section is greater than that in the first example in which the poly-Si film 13 was not cleaned. Furthermore, in this example, the wraparound of the diffracted light was sufficiently small, so the inverted pattern of the mask was accurately reflected, and a pattern with sharp edges could be formed.

【0026】この例では、清浄表面を出すのに、電子ビ
ームシャワーを用いたが、これ以外にも、イオンビーム
や高エネルギーの光を照射してもよい。また、デバイス
の構造上、加熱による清浄化が出来れば、この方法でも
よい。
In this example, an electron beam shower was used to produce a clean surface, but ion beams or high-energy light may also be used. Further, if cleaning by heating is possible due to the structure of the device, this method may be used.

【0027】以上の実施例では、Al(CH3 )2 
Hを原料としたAlの反転CVDについて述べたが、原
料はこれに限られることはなく、トリイソブチルアルミ
ニウム、Al−iso(C4 H9 )3 等の他の有
機金属でも良いし、塩素原子を含んでいても良い。また
、基板も実施例に限らず、他の半導体基板でも有効であ
る。
In the above examples, Al(CH3)2
Although the inverse CVD of Al using H as a raw material has been described, the raw material is not limited to this, and other organic metals such as triisobutylaluminum and Al-iso(C4H9)3 may be used, and materials that do not contain chlorine atoms may also be used. It's okay to stay. Further, the substrate is not limited to the embodiment, and other semiconductor substrates are also effective.

【0028】また、反転CVDさせるものも、Alに限
らず、CuやAu等の金属を初め、SiやGaAs等の
半導体やこれらの混晶であってもよいし、SiO2 を
初めとする絶緑膜であっても良い。これらの成長するも
のに応じて、基板や原料ガスや,光のエネルギー、基板
温度などの成長条件を、作用の項で述べた原理に合うよ
うに変えればよい。
Furthermore, the material to be subjected to reverse CVD is not limited to Al, but may also be metals such as Cu and Au, semiconductors such as Si and GaAs, and mixed crystals thereof, as well as non-green materials such as SiO2. It may be a film. Depending on what is to be grown, growth conditions such as the substrate, raw material gas, light energy, substrate temperature, etc. may be changed to suit the principles described in the operation section.

【0029】[0029]

【発明の効果】本発明によれば、各種材料のCVDにお
いて、レジスト塗布、露光、レジスト剥離などのプロセ
ス無しで、高エネルギー光の利用によって、所望の微細
パターン形状においても、マスクパターンを反転した、
空間選択性良くパターニングできる光CVD方法を得る
ことができる。
[Effects of the Invention] According to the present invention, in CVD of various materials, a mask pattern can be reversed even in a desired fine pattern shape by using high-energy light without processes such as resist coating, exposure, and resist peeling. ,
An optical CVD method that allows patterning with good spatial selectivity can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の光CVD方法を配線形成を例にして説
明するための図である。
FIG. 1 is a diagram for explaining the photo-CVD method of the present invention using wiring formation as an example.

【図2】本発明の光CVD方法を配線形成を例にして説
明するための図である。
FIG. 2 is a diagram for explaining the photo-CVD method of the present invention using wiring formation as an example.

【符号の説明】[Explanation of symbols]

11  Si基板 12  熱酸化膜 13  poly−Si膜 14  Al配線 15  光 16  マスク 17  電子ビームシャワー 11 Si substrate 12 Thermal oxide film 13 Poly-Si film 14 Al wiring 15 Light 16 Mask 17 Electron beam shower

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  熱CVD中に光を照射するCVD方法
において、基板、または、原料ガスを構成する原子の内
、少なくとも一種類の原子の内殻をイオン化できるエネ
ルギーの光を照射し、光照射部でのCVDを抑制するこ
とによってCVD膜のパターニングを行うことを特徴と
する光CVD方法。
Claim 1: In a CVD method in which light is irradiated during thermal CVD, light is irradiated with energy capable of ionizing the inner shell of at least one type of atoms among the atoms constituting the substrate or the source gas, and the light irradiation is performed. A photo-CVD method characterized in that patterning of a CVD film is performed by suppressing CVD in the area.
【請求項2】  熱CVD中に光を照射するCVD方法
において、光照射によって照射部の表面組成を非照射部
と変え、照射部でのCVD反応を抑制することによって
、非照射部のみにCVD膜を選択的に形成することを特
徴とする光CVD方法。
2. In a CVD method in which light is irradiated during thermal CVD, the surface composition of the irradiated area is changed from that of the non-irradiated area by light irradiation, and the CVD reaction in the irradiated area is suppressed, thereby causing CVD to occur only in the non-irradiated area. A photo-CVD method characterized by selectively forming a film.
【請求項3】  請求項2記載の光CVD方法において
基板の清浄表面を露出させる工程の後に、光照射を用い
たCVD工程を行なうことを特徴とする請求項2記載の
光CVD方法。
3. The photo-CVD method according to claim 2, wherein after the step of exposing the clean surface of the substrate, a CVD step using light irradiation is performed.
JP3034756A 1990-06-19 1991-02-28 Photo CVD method Expired - Lifetime JP2770578B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3034756A JP2770578B2 (en) 1991-02-28 1991-02-28 Photo CVD method
US07/717,603 US5393577A (en) 1990-06-19 1991-06-19 Method for forming a patterned layer by selective chemical vapor deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3034756A JP2770578B2 (en) 1991-02-28 1991-02-28 Photo CVD method

Publications (2)

Publication Number Publication Date
JPH04273434A true JPH04273434A (en) 1992-09-29
JP2770578B2 JP2770578B2 (en) 1998-07-02

Family

ID=12423163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3034756A Expired - Lifetime JP2770578B2 (en) 1990-06-19 1991-02-28 Photo CVD method

Country Status (1)

Country Link
JP (1) JP2770578B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0778776A (en) * 1993-07-14 1995-03-20 Nec Corp Hot cvd method
JPH10259481A (en) * 1997-03-19 1998-09-29 Sanyo Electric Co Ltd Formation of amorphous carbon coating

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0452278A (en) * 1990-06-19 1992-02-20 Nec Corp Photo inversion cvd method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0452278A (en) * 1990-06-19 1992-02-20 Nec Corp Photo inversion cvd method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0778776A (en) * 1993-07-14 1995-03-20 Nec Corp Hot cvd method
JPH10259481A (en) * 1997-03-19 1998-09-29 Sanyo Electric Co Ltd Formation of amorphous carbon coating

Also Published As

Publication number Publication date
JP2770578B2 (en) 1998-07-02

Similar Documents

Publication Publication Date Title
US5344522A (en) Pattern forming process and process for preparing semiconductor device utilizing said pattern forming process
US5393577A (en) Method for forming a patterned layer by selective chemical vapor deposition
JPH0622212B2 (en) Dry etching method
EP0909988A1 (en) Photolithographic processing method
JPS61278146A (en) Optical treatment method
JPH04273434A (en) Optical cvd method
JP2890693B2 (en) Optical reversal CVD method
JP2765259B2 (en) Thermal CVD method
JP2770620B2 (en) Thermal CVD method
JP2968657B2 (en) Thermal CVD method
JP2782757B2 (en) Etching method
JP2748819B2 (en) Patterning method
JP2966036B2 (en) Method of forming etching pattern
JP2586700B2 (en) Wiring formation method
JPH03155621A (en) Dry etching method
JP2522050B2 (en) Atomic layer dry etching method
JP3009072B2 (en) Semiconductor surface etching method
JP2709175B2 (en) Method of forming etching pattern
JP2756364B2 (en) Optical surface treatment method and treatment device
JPH10209132A (en) How to remove organic matter
JPH07118475B2 (en) Substrate surface treatment method
JP2709188B2 (en) Semiconductor device fine processing method and apparatus
JP2001003176A (en) Method for forming fine structure pattern
JPH02183530A (en) Manufacture of semiconductor element
JPH02272729A (en) Dry etching method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980317