[go: up one dir, main page]

JPH0342868A - C-mos thin film transistor device and manufacture thereof - Google Patents

C-mos thin film transistor device and manufacture thereof

Info

Publication number
JPH0342868A
JPH0342868A JP1178716A JP17871689A JPH0342868A JP H0342868 A JPH0342868 A JP H0342868A JP 1178716 A JP1178716 A JP 1178716A JP 17871689 A JP17871689 A JP 17871689A JP H0342868 A JPH0342868 A JP H0342868A
Authority
JP
Japan
Prior art keywords
source
type impurity
transistor
drain
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1178716A
Other languages
Japanese (ja)
Other versions
JP2850251B2 (en
Inventor
Hirobumi Watanabe
博文 渡辺
Noriyuki Terao
典之 寺尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Research Institute of General Electronics Co Ltd
Ricoh Co Ltd
Original Assignee
Ricoh Research Institute of General Electronics Co Ltd
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Research Institute of General Electronics Co Ltd, Ricoh Co Ltd filed Critical Ricoh Research Institute of General Electronics Co Ltd
Priority to JP1178716A priority Critical patent/JP2850251B2/en
Publication of JPH0342868A publication Critical patent/JPH0342868A/en
Priority to US08/078,409 priority patent/US5316960A/en
Application granted granted Critical
Publication of JP2850251B2 publication Critical patent/JP2850251B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To enhance an n-type impurity concentration and to reduce n-ch source.drain part resistances by forming the upper layer part of the source.drain parts of a n-ch transistor in an n-type impurity high concentration region, and forming the lower layer part of the n-ch, p-ch source.drain parts and n-ch, p-ch gate electrodes in p-type impurity high concentration regions. CONSTITUTION:Polysilicon is deposited on a quartz board 1, and p-ch, n-ch active layers 2 are formed. Then a thermal oxide film 3 is grown on the surface of the polysilicon by thermally oxidizing. Then, polysilicon is deposited to form a gate electrode 4. In this case, a resist pattern 5 formed by a photolithography remains as it is. Thereafter, a resist 6 is formed on the p-ch, P<+> ions 7 are implanted under predetermined conditions to form n-ch source.drain regions. Subsequently, after the whole resist is removed, B<+> ions 9 are implanted under predetermined conditions to simultaneously form p-ch source.drain regions and implant impurity in the electrodes 4 of both transistors. Then, the ions are activated. Here, born 10 is controlled to be implanted in the upper layer of the layer 2 and the lower layer of phosphorus 8 to sufficiently lower sheet resistances of the source.drain parts.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、C−MOS薄膜トランジスタ装置とその製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a C-MOS thin film transistor device and a method for manufacturing the same.

〔従来技術〕[Prior art]

従来からの単結晶ウェハプロセスにおけるCMOSトラ
ンジスタの作成方法はおおむねつぎの順序で行われてい
た。
A conventional method for manufacturing a CMOS transistor in a single crystal wafer process has generally been carried out in the following order.

(1)ウェハn (100)〜2Ω備を用いたpウェル
の形成 (2)PAD酸化膜、Si、N、膜の成長(3)アクテ
ィブホトリソ (4)p−チャネルホトリソ (5)ボロンイオン打込 (6)フィールド酸化 (7)ゲート酸化膜の成長 (8)vthコントロールホトリソ (9)ボロンイオン打込 (10)ポリシリコンの成長 (11)リン拡散(ゲート拡散) (12)ポリシリコンパターニング (13) n”拡散ホトリソ (14)砒素イオン打込:lXl0”aam−”(15
〉 ドライブイン (16) p”拡散ホトリソ (17)ボロンイオン打込:lX10”■−2(18)
PSG膜の成長 (19)アニール (13)〜(19)はソース・ドレイン領域の形成(2
0)コンタクトホトリソ (21)AQ配線形成 (22)シンター (23)パッシベーション膜の形成 この工程順から明らかなように、ゲート電極の低抵抗化
とソース・ドレイン領域の形成とは別々の工程で行われ
ていた。
(1) Formation of p-well using wafer n (100) ~ 2Ω equipment (2) Growth of PAD oxide, Si, N, films (3) Active photolithography (4) P-channel photolithography (5) Boron Ion implantation (6) Field oxidation (7) Gate oxide growth (8) VTH control photolithography (9) Boron ion implantation (10) Polysilicon growth (11) Phosphorus diffusion (gate diffusion) (12) Poly Silicon patterning (13) n” diffusion photolithography (14) Arsenic ion implantation: lXl0”aam-” (15
〉 Drive-in (16) p” diffusion photolithography (17) Boron ion implantation: lX10”■-2 (18)
Growth of PSG film (19) Annealing (13) to (19) is the formation of source/drain regions (2)
0) Contact photolithography (21) Formation of AQ wiring (22) Sintering (23) Formation of passivation film As is clear from this process order, reducing the resistance of the gate electrode and forming the source/drain regions are separate processes. It was done.

〔目的〕〔the purpose〕

本発明の第1の目的は、前記2つの工程を同一の工程で
行うことである。
The first object of the present invention is to perform the above two steps in the same step.

第一の目的を達成するためにnchトランジスタはソー
ス・ドレイン部分にP型とn型の不純物が導入されるこ
とになり、その結果当然n型不純物濃度をp型不純物濃
度より高くする必要があるがそれだけではソース・ドレ
イン部の抵抗が高いという問題が残る。
In order to achieve the first objective, P-type and n-type impurities are introduced into the source and drain parts of the nch transistor, and as a result, it is necessary to make the n-type impurity concentration higher than the p-type impurity concentration. However, this alone leaves the problem that the resistance of the source/drain portion is high.

そこで、本発明の第2の目的は、nchのソース・ドレ
イン部の抵抗を充分下げることである。
Therefore, a second object of the present invention is to sufficiently lower the resistance of the source/drain portion of the nch.

〔構成〕〔composition〕

本発明の1つは、薄膜状の第1の半導体層を能動素子と
して、又第1の半導体層の上層に絶縁膜を介して形成さ
れた第2の半導体層をゲート電極として構成されたC−
MOS薄膜トランジスタ装置においてnchトランジス
タのソース・ドレイン部分の上層部をn型不純物高濃度
領域とし、nchトランジスタのソース・ドレイン部分
およびpchトランジスタのソース・ドレイン部分のそ
れぞれの下層部およびnch。
One of the aspects of the present invention is to provide a semiconductor device having a thin film-like first semiconductor layer as an active element and a second semiconductor layer formed on the first semiconductor layer with an insulating film interposed therebetween as a gate electrode. −
In a MOS thin film transistor device, the upper layer part of the source/drain part of the nch transistor is an n-type impurity high concentration region, and the lower part of each of the source/drain part of the nch transistor and the source/drain part of the pch transistor and the nch.

pchのそれぞれのゲート電極をp型不純物高濃度領域
としたことを特徴とするC−MOS薄膜トランジスタ装
置(1)に関するものである。
The present invention relates to a C-MOS thin film transistor device (1) characterized in that each gate electrode of pch is a p-type impurity high concentration region.

前記C−MOS薄膜トランジスタ装!(I)を製造する
には、第1番目にnchトランジスタのソース・ドレイ
ン部分の上層部にのみにn型不純物の注入エネルギーを
制御してn型不純物を導入拡散させ、ついで第2番目に
pchトランジスタのソース・ドレイン部分、ゲート電
極およびnchトランジスタのソース・ドレイン部分、
ゲート電極にp型不純物の注入エネルギーを制御してp
型不純物を導入拡散させればよい。
The C-MOS thin film transistor device! In order to manufacture (I), firstly, the n-type impurity is introduced and diffused by controlling the implantation energy only into the upper layer of the source/drain part of the nch transistor, and then the second Source and drain portions of transistors, gate electrodes and source and drain portions of nch transistors,
By controlling the energy of implanting p-type impurities into the gate electrode,
It is sufficient to introduce and diffuse type impurities.

本発明の他の1つは、薄膜状の第1の半導体層を能動素
子として、又第1の半導体層の上層に絶縁膜を介して形
成された第2の半導体層をゲート電極として構成された
C−MOS薄膜トランジスタ装置において、pchトラ
ンジスタのソース・ドレイン部分の上層部をp型不純物
高濃度領域とし、pchトランジスタのソース・ドレイ
ン部分およびnchトランジスタのソース・ドレイン部
分のそれぞれの下層部、およびnch、pchのそれぞ
れのゲート電極をn型不純物高濃度領域としたことを特
徴とするC−MOS薄膜トランジスタ装置(II)に関
するものである。
Another aspect of the present invention is that a first semiconductor layer in the form of a thin film is used as an active element, and a second semiconductor layer formed on the first semiconductor layer with an insulating film interposed therebetween is configured as a gate electrode. In a C-MOS thin film transistor device, the upper layer of the source/drain portion of the PCH transistor is a p-type impurity high concentration region, and the lower layer portions of the source/drain portion of the PCH transistor and the source/drain portion of the nch transistor, and the lower layer portions of the source/drain portion of the nch transistor are The present invention relates to a C-MOS thin film transistor device (II) characterized in that each gate electrode of , pch is an n-type impurity high concentration region.

前記C−MOS薄膜トランジスタ装置(II)を製造す
るには、第1番目にpChトランジスタのソース・ドレ
イン部分の上層部にのみにp型不純物の注入エネルギー
を制御してp型不純物を導入拡散させ、ついで第2番目
にnchトランジスタのソース・ドレイン部分、ゲート
電極およびpchトランジスタのソース・ドレイン部分
、ゲート電極にn型不純物の注入エネルギーを制御して
n型不純物を導入拡散させればよい。
To manufacture the C-MOS thin film transistor device (II), first, the p-type impurity is introduced and diffused only into the upper layer of the source/drain portion of the pCh transistor by controlling the implantation energy of the p-type impurity. Second, n-type impurities may be introduced and diffused into the source/drain portions of the nch transistor, the gate electrode, and the source/drain portions of the pch transistor, and the gate electrode by controlling the implantation energy of the n-type impurities.

本発明の製法の特色は、注入エネルギーを制御すること
により不純物の飛程を制御している点である。したがっ
て、不純物の種類の選択は自由であるが、不純物の種類
により注入エネルギーはそれぞれ異なってくる。
A feature of the manufacturing method of the present invention is that the range of impurities is controlled by controlling the implantation energy. Therefore, the type of impurity can be freely selected, but the implantation energy differs depending on the type of impurity.

図面(第1〜4図)を参照して本発明を説明する。The present invention will be explained with reference to the drawings (FIGS. 1 to 4).

1は石英、ガラス等の絶縁基板であり、その上にポリシ
リコンよりなる活性層2が形成されており、この活性層
2の表面は熱酸化によりゲート酸化膜3が形成されてい
る。n型不純物高濃度領域は、nchトランジスタのソ
ース・ドレイン部分の上層部に形成(図中0000で表
示)されており、p型不純物高濃度領域はpQhトラン
ジスタのソース・ドレイン部分、nchトランジスタの
ソース・ドレイン部分のそれぞれの下層部およびnch
、pchのそれぞれのゲート電極に形成(図中××××
で表示)されている。
Reference numeral 1 denotes an insulating substrate made of quartz, glass, etc., on which an active layer 2 made of polysilicon is formed, and a gate oxide film 3 is formed on the surface of this active layer 2 by thermal oxidation. The n-type impurity high concentration region is formed in the upper layer of the source/drain portion of the nch transistor (indicated by 0000 in the figure), and the p-type impurity high concentration region is formed in the source/drain portion of the pQh transistor and the source of the nch transistor.・Each lower layer part of the drain part and nch
, formed on each gate electrode of pch (×××× in the figure)
).

〔実施例〕〔Example〕

実施例1 第1図に示すとおり石英基板1の上にPo1y  Si
をLP−CVD法を用いて1200人堆積し、フォトリ
ソエツチング技術でpch、nchトランジスタの活性
層2を形成する。ドライ02雰囲気中で1020℃で熱
酸化を行いPo1ySiの表面に800人の熱酸化膜3
を成長させる。
Example 1 As shown in FIG.
1,200 layers are deposited using the LP-CVD method, and the active layer 2 of the PCH and nch transistors is formed using the photolithography technique. Thermal oxidation was performed at 1020°C in a dry 02 atmosphere to form a thermal oxide film of 800% on the surface of Po1ySi.
grow.

次にPo1y  5itrLP−CVD法を用いて30
00人堆積しフォトリソエツチング技術でゲート電極4
を形成する。この時フォトリソで形成されたレジストパ
ターン5はそのまま残しておく(第1図)。次に第2図
に示すようにフォトリソ技術でpchトランジスタの上
にレジスト6を形成しイオン注入法でリン(P”)7を
注入エネルギー80KeV、ドーズ量4 X 10”a
toa+s/dの条件で注入する(第2図)。この工程
でnchトランジスタのソース・ドレイン領域が形成さ
れる。続いてレジストをO,プラズマアッシング法で全
面除去した後イオン注入法でボロン(B”)9を注入エ
ネルギー40KaV、ドーズ量2 X 10”ato闘
/dの条件で注入する(第3図)。
Next, using Po1y5itrLP-CVD method, 30
Gate electrode 4 was deposited using photolithography and etching technology.
form. At this time, the resist pattern 5 formed by photolithography is left as is (FIG. 1). Next, as shown in FIG. 2, a resist 6 is formed on the PCH transistor by photolithography, and phosphorus (P") 7 is implanted by ion implantation at an energy of 80 KeV and a dose of 4 x 10"a.
Inject under the conditions of toa+s/d (Figure 2). In this step, the source and drain regions of the nch transistor are formed. Subsequently, the resist is completely removed by O and plasma ashing, and then boron (B") 9 is implanted by ion implantation at an implantation energy of 40 KaV and a dose of 2.times.10" ato/d (FIG. 3).

この工程でpchトランジスタのソース・ドレイン領域
の形成とpch、nchトランジスタのゲート電極4の
不純物注入が同時に行なわれる。注入イオンの活性化は
N3雰囲気中で900℃、30分行う、ここでnchト
ランジスタの活性層2には80KaVで打込んだリン8
と40にeVで打込んだボロン10が混在しているが前
述エネルギーに於いてはリンの平均イオン飛程はボロン
のそれに比べ小さく活性層2の上層にリン8下層にボロ
ン10がコントロールされて注入されている。
In this step, the formation of the source/drain regions of the PCH transistor and the implantation of impurities into the gate electrodes 4 of the PCH and nch transistors are simultaneously performed. The implanted ions are activated at 900°C for 30 minutes in an N3 atmosphere.
Boron 10 implanted at eV and 40 eV is mixed, but at the energy mentioned above, the average ion range of phosphorus is smaller than that of boron, and boron 10 is controlled to be in the upper layer of active layer 2 and phosphorus 8 in the lower layer. Injected.

従って活性層2のソース・ドレイン部分のシート抵抗は
充分低く〜500Ω八程度Ω八ツた。平均イオン飛程が
ほぼ等しいリン90KeVボロン30KaVでは〜5に
Ωへ程度の非常に高いシート抵抗しか得られなかった。
Therefore, the sheet resistance of the source/drain portions of the active layer 2 was sufficiently low to about 500 Ω. When the average ion ranges are approximately equal to each other, 90 KeV for phosphorus and 30 KaV for boron, only a very high sheet resistance of ~5.OMEGA. is obtained.

なおこの時のゲート電極4のシート抵抗は〜200Ω八
であった。最後に層間1f!1m膜11とり、てLP−
CVD法でSiO。
Note that the sheet resistance of the gate electrode 4 at this time was ~200Ω8. Finally, 1f between layers! Take 1m membrane 11 and LP-
SiO by CVD method.

を堆積し、コンタクトホールをフォトリソエツチング技
術で形成する。メタル電極にはスパッタリング法でAQ
を堆積しフォトリソエツチング技術でパターニングして
本発明のC−MOSトランジスタ装!i(第4図)が完
成する。
is deposited, and contact holes are formed using photolithographic etching technology. AQ is applied to the metal electrode using sputtering method.
The C-MOS transistor device of the present invention is produced by depositing and patterning using photolithography technology! i (Figure 4) is completed.

実施例2 実施例1ではゲート電極4にボロン10を注入したがリ
ンを注入するプロセスも可能である。
Example 2 In Example 1, boron 10 was implanted into the gate electrode 4, but a process of implanting phosphorus is also possible.

即ち第1図までは全く同様であるが、第5図でボロン(
Bo)を注入エネルギー25KeV、ドーズ量5 X 
10”atoms/dの条件で注入する。次に第6図の
工程でリン(P9)を注入エネルギー100KeV、ド
ーズ量2 X 10”atoms/aJの条件で注入す
る。後の工程は実施例1と同様である。実施例1と異な
る点は前述のゲート電極の不純物がリンであることと、
異種の不純物が混在しているソース・ドレイン領域をも
ったトランジスタがnchではなくpchhランジスタ
であることである(第7図参照)。
In other words, the process is exactly the same up to Figure 1, but in Figure 5 boron (
Bo) was implanted at an energy of 25 KeV and a dose of 5
The implantation is performed under the conditions of 10"atoms/d. Next, in the process shown in FIG. 6, phosphorus (P9) is implanted under the conditions of an implantation energy of 100KeV and a dose of 2.times.10"atoms/aJ. The subsequent steps are the same as in Example 1. The difference from Example 1 is that the impurity of the gate electrode mentioned above is phosphorus;
A transistor having a source/drain region in which different types of impurities are mixed is a pchh transistor rather than an nch transistor (see FIG. 7).

なお、ゲート電極のシート抵抗、pchトランジスタの
ソース・ドレイン領域のシート抵抗は実施例1とほぼ同
等の値が得られた。
Note that the sheet resistance of the gate electrode and the sheet resistance of the source/drain region of the PCH transistor were approximately the same as in Example 1.

〔効果〕〔effect〕

本発明の構成とその製法により、従来、ゲート電極の低
抵抗化とソース・ドレイン領域の形成が別々に行われて
いたのを1つの工程で実施できるようになった。
With the configuration and manufacturing method of the present invention, it is now possible to perform the lowering of the resistance of the gate electrode and the formation of the source/drain regions in a single process, whereas conventionally these were performed separately.

また、本発明は、nchトランジスタのソース・ドレイ
ン部分を上層部と下層部に分けてn型不純物とp型不純
物の高濃度領域を形成することにより、nchトランジ
スタのソース・ドレイン領域を低抵抗とすることができ
た。
Further, the present invention makes the source/drain regions of the nch transistor low resistance by dividing the source/drain portions of the nch transistor into an upper layer portion and a lower layer portion and forming regions with high concentration of n-type impurities and p-type impurities. We were able to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図は、本発明のC−MOS薄膜トランジス
タ装置の製造工程を示すためのものであり、第5図〜第
7図は、その変形例を示す。 なお、いずれも各工程における製品の断面図である。 1・・・基板     2・・・活性層3・・・酸化膜
    4・・・ゲート電極5・・・レジストパターン 6・・・レジスト   7・・・リンイオン8・・・リ
ンの高濃度領域 9・・・ボロンイオン 10・・・ボロンの高濃度領域
11・・・層間絶縁膜  12・・・メタル電極第 図 ncnトフシンAγ
1 to 4 are for showing the manufacturing process of the C-MOS thin film transistor device of the present invention, and FIGS. 5 to 7 show modifications thereof. In addition, all are cross-sectional views of the product at each step. DESCRIPTION OF SYMBOLS 1... Substrate 2... Active layer 3... Oxide film 4... Gate electrode 5... Resist pattern 6... Resist 7... Phosphorus ion 8... Phosphorus high concentration region 9. ...Boron ion 10...High concentration region of boron 11...Interlayer insulating film 12...Metal electrode diagram ncn tofusin Aγ

Claims (1)

【特許請求の範囲】 1、薄膜状の第1の半導体層を能動素子として、又第1
の半導体層の上層に絶縁膜を介して形成された第2の半
導体層をゲート電極として構成されたC−MOS薄膜ト
ランジスタ装置において、nchトランジスタのソース
・ドレイン部分の上層部をn型不純物高濃度領域とし、
nchトランジスタのソース・ドレイン部分およびpc
hトランジスタのソース・ドレイン部分のそれぞれの下
層部、およびnch、pchのそれぞれのゲート電極を
p型不純物高濃度領域としたことを特徴とするC−MO
S薄膜トランジスタ装置。 2、第1番目にnchトランジスタのソース・ドレイン
部分の上層部にのみにn型不純物の注入エネルギーを制
御してn型不純物を導入拡散させ、ついで第2番目にp
chトランジスタのソース・ドレイン部分、ゲート電極
およびnchトランジスタのソース・ドレイン部分、ゲ
ート電極にp型不純物の注入エネルギーを制御してp型
不純物を導入拡散させることを特徴とする請求項1記載
のC−MOS薄膜トランジスタ装置の製造方法。 3、薄膜状の第1の半導体層を能動素子として、又第1
の半導体層の上層に絶縁膜を介して形成された第2の半
導体層をゲート電極として構成されたC−MOS薄膜ト
ランジスタ装置において、pchトランジスタのソース
・ドレイン部分の上層部をp型不純物高濃度領域とし、
pchトランジスタのソース・ドレイン部分およびnc
hトランジスタのソース・ドレイン部分のそれぞれの下
層部、およびnch、pchのそれぞれのゲート電極を
n型不純物高濃度領域としたことを特徴とするC−MO
S薄膜トランジスタ装置。 4、第1番目にpchトランジスタのソース・ドレイン
部分の上層部にのみにp型不純物の注入エネルギーを制
御してp型不純物を導入拡散させ、ついで第2番目にn
chトランジスタのソース・ドレイン部分、ゲート電極
およびpchトランジスタのソース・ドレイン部分、ゲ
ート電極にn型不純物の注入エネルギーを制御してn型
不純物を導入拡散させることを特徴とする請求項1記載
のC−MOS薄膜トランジスタ装置の製造方法。
[Claims] 1. A thin film-like first semiconductor layer as an active element;
In a C-MOS thin film transistor device configured using a second semiconductor layer formed on the upper layer of the semiconductor layer with an insulating film interposed therebetween as a gate electrode, the upper layer of the source/drain portion of the nch transistor is formed as an n-type impurity high concentration region. year,
source/drain part of nch transistor and pc
A C-MO characterized in that the lower layers of the source and drain portions of the h-transistor and the gate electrodes of the nch and pch are made into p-type impurity high concentration regions.
S thin film transistor device. 2. First, the n-type impurity is introduced and diffused by controlling the implantation energy only into the upper layer of the source/drain portion of the nch transistor, and then the second p-type impurity is introduced and diffused.
C according to claim 1, characterized in that the p-type impurity is introduced and diffused into the source/drain portion of the channel transistor, the gate electrode and the source/drain portion of the nch transistor, and the gate electrode by controlling the implantation energy of the p-type impurity. - A method for manufacturing a MOS thin film transistor device. 3. The thin film-like first semiconductor layer is used as an active element, and the first semiconductor layer is used as an active element.
In a C-MOS thin film transistor device configured with a second semiconductor layer formed on top of a semiconductor layer via an insulating film as a gate electrode, the top layer of the source/drain portion of the PCH transistor is formed as a p-type impurity high concentration region. year,
Source/drain part of pch transistor and nc
A C-MO characterized in that the lower layer portions of the source and drain portions of the h-transistor and the gate electrodes of the nch and pch are made into n-type impurity high concentration regions.
S thin film transistor device. 4. First, the p-type impurity is introduced and diffused by controlling the implantation energy only into the upper layer of the source/drain portion of the pch transistor, and then the second n-type impurity is introduced and diffused.
C according to claim 1, characterized in that the n-type impurity is introduced and diffused into the source/drain portion of the ch transistor, the gate electrode, and the source/drain portion of the pch transistor, and the gate electrode by controlling the implantation energy of the n-type impurity. - A method for manufacturing a MOS thin film transistor device.
JP1178716A 1989-07-11 1989-07-11 C-MOS thin film transistor device and method of manufacturing the same Expired - Lifetime JP2850251B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1178716A JP2850251B2 (en) 1989-07-11 1989-07-11 C-MOS thin film transistor device and method of manufacturing the same
US08/078,409 US5316960A (en) 1989-07-11 1993-06-17 C-MOS thin film transistor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1178716A JP2850251B2 (en) 1989-07-11 1989-07-11 C-MOS thin film transistor device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0342868A true JPH0342868A (en) 1991-02-25
JP2850251B2 JP2850251B2 (en) 1999-01-27

Family

ID=16053317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1178716A Expired - Lifetime JP2850251B2 (en) 1989-07-11 1989-07-11 C-MOS thin film transistor device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2850251B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5320975A (en) * 1992-03-27 1994-06-14 International Business Machines Corporation Method of forming thin film pseudo-planar FET devices and structures resulting therefrom
JPH08242004A (en) * 1995-12-22 1996-09-17 Semiconductor Energy Lab Co Ltd Insulated-gate electric field effect semiconductor device and its production
JPH08250747A (en) * 1991-05-16 1996-09-27 Semiconductor Energy Lab Co Ltd Insulated-gate field-effect semiconductor device
US6017783A (en) * 1991-05-16 2000-01-25 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device using an insulated gate electrode as a mask
US6323069B1 (en) 1992-03-25 2001-11-27 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a thin film transistor using light irradiation to form impurity regions
US7097712B1 (en) 1992-12-04 2006-08-29 Semiconductor Energy Laboratory Co., Ltd. Apparatus for processing a semiconductor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250747A (en) * 1991-05-16 1996-09-27 Semiconductor Energy Lab Co Ltd Insulated-gate field-effect semiconductor device
US6017783A (en) * 1991-05-16 2000-01-25 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a semiconductor device using an insulated gate electrode as a mask
US6555843B1 (en) 1991-05-16 2003-04-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for forming the same
US6323069B1 (en) 1992-03-25 2001-11-27 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing a thin film transistor using light irradiation to form impurity regions
US6569724B2 (en) 1992-03-25 2003-05-27 Semiconductor Energy Laboratory Co., Ltd. Insulated gate field effect transistor and method for forming the same
US6887746B2 (en) 1992-03-25 2005-05-03 Semiconductor Energy Lab Insulated gate field effect transistor and method for forming the same
US5320975A (en) * 1992-03-27 1994-06-14 International Business Machines Corporation Method of forming thin film pseudo-planar FET devices and structures resulting therefrom
US7097712B1 (en) 1992-12-04 2006-08-29 Semiconductor Energy Laboratory Co., Ltd. Apparatus for processing a semiconductor
JPH08242004A (en) * 1995-12-22 1996-09-17 Semiconductor Energy Lab Co Ltd Insulated-gate electric field effect semiconductor device and its production

Also Published As

Publication number Publication date
JP2850251B2 (en) 1999-01-27

Similar Documents

Publication Publication Date Title
JPS61501948A (en) CMOS integrated circuit techniques
US5316960A (en) C-MOS thin film transistor device manufacturing method
JPH09102550A (en) LDD CMOS formation method
JP2809810B2 (en) Method for manufacturing semiconductor device
JPH0342868A (en) C-mos thin film transistor device and manufacture thereof
KR920007200A (en) BiCMOS field effect transistor and its manufacturing method
JPH04206836A (en) Manufacture of semiconductor device
JPH04287929A (en) Manufacture of semiconductor device
JPS60180158A (en) Manufacturing method of semiconductor device
JPH11121394A (en) Method of manufacturing semiconductor device
JPH023270A (en) HCT semiconductor device manufacturing method
JPS6097662A (en) Manufacture of semiconductor device
KR0167667B1 (en) Semiconductor manufacturing method
JPH03101220A (en) Manufacture of semiconductor device
JPH0225072A (en) Manufacture of semiconductor device
JPH01147869A (en) Manufacture of semiconductor device
JPH03231456A (en) Manufacture of semiconductor device
JPH03155156A (en) Manufacture of semiconductor device
JPS63153862A (en) Manufacture of semiconductor device
JP2828264B2 (en) Method for manufacturing semiconductor device
JPH01246871A (en) Manufacture of bipolar transistor
JPH023915A (en) Manufacture of semiconductor device
JPH01218069A (en) Manufacture of semiconductor integrated circuit device
JPH01171274A (en) Manufacture of thin film transistor
JPS59105366A (en) Manufacturing method of MOS type transistor