[go: up one dir, main page]

JPH023915A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH023915A
JPH023915A JP15327388A JP15327388A JPH023915A JP H023915 A JPH023915 A JP H023915A JP 15327388 A JP15327388 A JP 15327388A JP 15327388 A JP15327388 A JP 15327388A JP H023915 A JPH023915 A JP H023915A
Authority
JP
Japan
Prior art keywords
ion
implanted
impurity concentration
oxide film
drain region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15327388A
Other languages
Japanese (ja)
Inventor
Yoko Toyama
遠山 陽子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP15327388A priority Critical patent/JPH023915A/en
Publication of JPH023915A publication Critical patent/JPH023915A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To shorten manufacturing process, and reduce the cost of a product by dissociating a part of compound ion, simultaneously implanting two kinds of ion, and forming a double-diffusion layer having different depths dependent on the mass difference. CONSTITUTION:An element isolation oxide film 2, a gate oxide film 3 and a gate electrode 4 are formed on a P-type silicon substrate 1. PF3 ion gas is accelerated to dissociate P ion in a part of the gas, and PF3 ion and P ion are simultaneously implanted. P ion whose mass is small is deeply implanted. PF3 ion whose mass is large is implanted to a shallow depth. A source region 5 and a drain region 6 of high impurity concentration, and a source region 51 and a drain region 61 of low impurity concentration are simultaneously formed by annealing. An interlayer insulating layer 7 is formed; a contact window is made; an electrode 8 of aluminum film is formed on the regions 5, 6. Thereby, the number of impurity introducing processes is reduced, manufacturing process is shortened, and manufacturing cost is reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、1回の拡散工程で同一領域に二重の拡散層を
形成する半導体装置の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a semiconductor device in which double diffusion layers are formed in the same region in one diffusion step.

従来の技術 従来の二重拡散層の製造方法を第2図に示したNチャン
ネルMOSトランジスタの工程断面図を参照して説明す
る。
2. Description of the Related Art A conventional method for manufacturing a double diffusion layer will be described with reference to a process cross-sectional view of an N-channel MOS transistor shown in FIG.

まず、P形シリコン基板1の上に選択酸化法により素子
分離酸化膜2を形成した後、トランジスタ形成領域上に
ゲート酸化膜3を形成し、この後表面にポリシリコン膜
を成長させ写真食刻法により、ホトレジストに覆われて
いない部分のポリシリコン膜をエツチングした後に、ホ
トレジストを除去し、ゲート電極4を形成するく第2図
a)。
First, an element isolation oxide film 2 is formed on a P-type silicon substrate 1 by selective oxidation, a gate oxide film 3 is formed on a transistor formation region, and then a polysilicon film is grown on the surface and photo-etched. After etching the polysilicon film in the portions not covered with the photoresist by a method, the photoresist is removed and the gate electrode 4 is formed (FIG. 2a).

次に、砒素のイオン(As+)を注入して高不純物濃度
のソース領域5とドレイン領域6を形成する(第2図b
)。続いて、リンのイオン(P+)を注入して深い領域
まで低不純物濃度のソース領域51とドレイン領域61
を形成する(第2図C)。
Next, arsenic ions (As+) are implanted to form a source region 5 and a drain region 6 with high impurity concentration (Fig. 2b).
). Subsequently, phosphorus ions (P+) are implanted to deeply form the source region 51 and drain region 61 with low impurity concentration.
(Fig. 2C).

これにより、二重拡散層を用いた、いわゆるDDD(D
ouble Diffused Drain)構造のソ
ース・ドレイン領域が形成される。
As a result, so-called DDD (D
Source/drain regions having a double diffused drain structure are formed.

この後、層間絶縁層7を付着し、コンタクト窓を設け、
ソース領域5とドレイン領域6の上に例えばアルミニウ
ム膜による電極8を形成してNチャンネルMO3t−ラ
ンジスタを完成させる〈第2図d)。
After this, an interlayer insulating layer 7 is deposited, a contact window is provided,
An electrode 8 made of, for example, an aluminum film is formed on the source region 5 and drain region 6 to complete an N-channel MO3t transistor (FIG. 2d).

発明が解決しようとする課題 このような従来の方法では、DDD構造のソース・ドレ
イン領域の形成に、2回のイオン注入工程が必要であり
、工程が長くなるという問題があった。
Problems to be Solved by the Invention In such conventional methods, two ion implantation steps are required to form the source/drain regions of the DDD structure, resulting in a long process.

課題を解決するための手段 本発明の半導体装置の製造方法は、イオン注入に化合物
イオンを利用し、そのうち一部分のみを解離させて、二
種のイオンを同時に注入することにより、深さの異なる
二重拡散層を同時に形成するものである。
Means for Solving the Problems The method for manufacturing a semiconductor device of the present invention utilizes compound ions for ion implantation, dissociates only a portion of them, and implants two types of ions at the same time. A heavy diffusion layer is formed at the same time.

作用 本発明の半導体装置の製造方法によれば、質量の異なる
二種のイオンを同時にイオン注入するため、質量の差に
より加速される度合いが異なり、打ち込まれる深さの差
により二重拡散層が形成される。
Effect: According to the semiconductor device manufacturing method of the present invention, since two types of ions with different masses are implanted simultaneously, the degree of acceleration differs due to the difference in mass, and the double diffusion layer is formed due to the difference in implantation depth. It is formed.

実施例 本発明の半導体装置の製造方法の一実施例を、第1図に
示したNチャンネルMOSトランジスタの工程断面図を
参照しで説明する。第1図において、第2図と同一部分
には同一番号を付す。
Embodiment An embodiment of the method of manufacturing a semiconductor device according to the present invention will be described with reference to the process cross-sectional view of an N-channel MOS transistor shown in FIG. In FIG. 1, the same parts as in FIG. 2 are given the same numbers.

まず、P形シリコン基板1の上に選択酸化法により素子
分離酸化膜2を形成した後、トランジスタ形成領域上に
ゲート酸化膜3を形成し、この後、表面にポリシリコン
膜を形成して写真食刻法によりゲート電極4を形成する
(第1図a)。
First, an element isolation oxide film 2 is formed on a P-type silicon substrate 1 by selective oxidation, a gate oxide film 3 is formed on a transistor formation region, and then a polysilicon film is formed on the surface. A gate electrode 4 is formed by etching (FIG. 1a).

次に、例えば3×1015CI11−3のドーズ量のP
F3+を100KeVのエネルギーで加速し、そのうち
例えば5 ×10”cm”のPF3+をP+に解離させ
物イオンの一部が解離する事を利用するものである。
Next, for example, P at a dose of 3×1015 CI11-3
This method utilizes the fact that F3+ is accelerated with an energy of 100 KeV, and of which, for example, 5 x 10" cm of PF3+ is dissociated into P+ and a part of the product ions are dissociated.

量の軽いP+は深さ0.4μmの深い所まで注入され、
質量の大きいPF3+は深さ0.2μmで浅く注入され
る。この後、アニールを行うことにより高不純物濃度の
ソース領域5とドレイン領域6および低不純物濃度のソ
ース領域51とドレイン領域61が同時に形成される(
第1図b)。続いて、層間絶縁層7を形成し、コンタク
ト窓を設け、ソース領域5とドレイン領域6の上にアル
ミニウム膜による電極8を形成することによりDDD構
造のMOSトランジスタが完成する(第1図C)。
A light amount of P+ was injected to a depth of 0.4 μm,
PF3+, which has a large mass, is shallowly implanted to a depth of 0.2 μm. Thereafter, by performing annealing, the source region 5 and drain region 6 with high impurity concentration and the source region 51 and drain region 61 with low impurity concentration are formed simultaneously (
Figure 1 b). Subsequently, an interlayer insulating layer 7 is formed, a contact window is provided, and an electrode 8 made of an aluminum film is formed on the source region 5 and drain region 6, thereby completing a DDD structure MOS transistor (FIG. 1C). .

なお、本実施例では、NヂャンネルMO8の場合につい
て説明を行ったが、PチャンネルMO8゜相補形MO8
およびバイポーラトランジスタ等の二重拡散層形成にも
使用できる事はもちろんであり、また、イオン源として
PF3+以外のリン(P)化合物、あるいはBF2+な
どのボロン(B)化合物等、他の化合物でも使用できる
事は言うまでもない。
In this embodiment, the case of N-channel MO8 was explained, but P-channel MO8゜complementary MO8
Of course, it can also be used to form double diffusion layers in bipolar transistors, etc., and can also be used as an ion source with other compounds such as phosphorus (P) compounds other than PF3+ or boron (B) compounds such as BF2+. It goes without saying that it can be done.

発明の効果 本発明の半導体装置の製造方法によれば、質量の異なる
二種のイオンを同時にイオン注入して二重拡散層を形成
することができるため、従来の方法よりも不純物導入工
程の回数が少な(なり、製造日程の短縮および製品価格
の低下が図られる。
Effects of the Invention According to the method for manufacturing a semiconductor device of the present invention, a double diffusion layer can be formed by simultaneously implanting two types of ions with different masses, so the number of impurity introduction steps can be reduced compared to conventional methods. As a result, manufacturing schedules can be shortened and product prices can be lowered.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体装置の製造方法の一実施例を示
すNチャンネルMOSトランジスタの工程断面図、第2
図は従来のNチャンネルMOSトランジスタの工程断面
図である。 1・・・・・・P形シリコン基板、2・・・・・・素子
分離酸化膜、3・・・・・・ゲート酸化膜、4・・・・
・・ゲート電極、5・・・・・・高不純物濃度のソース
領域、51・・・・・・低不純物濃度のソース領域、6
・・・・・・高不純物濃度のドレイン領域、61・・・
・・・低不純物濃度のドレイン領域、7・・・・・・層
間絶縁膜、8・・・・・・電極。 代理人の氏名 弁理士 中尾敏男 ほか1名第 図 第 図 \ δ /
FIG. 1 is a process cross-sectional view of an N-channel MOS transistor showing one embodiment of the method for manufacturing a semiconductor device of the present invention, and FIG.
The figure is a process cross-sectional view of a conventional N-channel MOS transistor. 1... P-type silicon substrate, 2... Element isolation oxide film, 3... Gate oxide film, 4...
... Gate electrode, 5 ... Source region with high impurity concentration, 51 ... Source region with low impurity concentration, 6
...Drain region with high impurity concentration, 61...
. . . Drain region with low impurity concentration, 7 . . . Interlayer insulating film, 8 . . . Electrode. Name of agent: Patent attorney Toshio Nakao and one other person Fig. Fig. \ δ /

Claims (1)

【特許請求の範囲】[Claims] 1回のイオン注入で、同一原料ガスにより発生した二種
のイオンを同時に半導体基板中に注入することにより、
二重拡散層を形成することを特徴とする半導体装置の製
造方法。
By simultaneously implanting two types of ions generated from the same raw material gas into the semiconductor substrate in one ion implantation,
A method for manufacturing a semiconductor device, comprising forming a double diffusion layer.
JP15327388A 1988-06-21 1988-06-21 Manufacture of semiconductor device Pending JPH023915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15327388A JPH023915A (en) 1988-06-21 1988-06-21 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15327388A JPH023915A (en) 1988-06-21 1988-06-21 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH023915A true JPH023915A (en) 1990-01-09

Family

ID=15558858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15327388A Pending JPH023915A (en) 1988-06-21 1988-06-21 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH023915A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2881875A1 (en) * 2005-02-09 2006-08-11 St Microelectronics Sa METHOD FOR FORMING MOS TRANSISTORS
CN106298476A (en) * 2015-06-01 2017-01-04 中国科学院微电子研究所 Method for manufacturing semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2881875A1 (en) * 2005-02-09 2006-08-11 St Microelectronics Sa METHOD FOR FORMING MOS TRANSISTORS
US7416950B2 (en) 2005-02-09 2008-08-26 Stmicroelectronics S.A. MOS transistor forming method
CN106298476A (en) * 2015-06-01 2017-01-04 中国科学院微电子研究所 Method for manufacturing semiconductor device
CN106298476B (en) * 2015-06-01 2019-07-12 中国科学院微电子研究所 A method of manufacturing a semiconductor device

Similar Documents

Publication Publication Date Title
US4345366A (en) Self-aligned all-n+ polysilicon CMOS process
JPH0536917A (en) Manufacture of complementary semiconductor device
JP3189872B2 (en) Method for forming triple well of semiconductor device
JP2724459B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH02264464A (en) Manufacture of semiconductor device
JPH023915A (en) Manufacture of semiconductor device
JPH0342868A (en) C-mos thin film transistor device and manufacture thereof
JPS60180158A (en) Manufacturing method of semiconductor device
JPH03155156A (en) Manufacture of semiconductor device
JPH08227936A (en) Semiconductor device and fabrication thereof
JPH11121394A (en) Method of manufacturing semiconductor device
JPS63185064A (en) Manufacture of semiconductor device
JPH05315617A (en) Method for manufacturing isolated field effect transistor
JPS60105267A (en) Manufacturing method of semiconductor device
JPS61287160A (en) Manufacture of mos type semiconductor device
JPS62293637A (en) Manufacture of semiconductor device
JPS6142960A (en) Manufacture of semiconductor device
KR100218367B1 (en) Manufacturing process of dual gate semiconductor device
JPH05110001A (en) Manufacture of semiconductor device
JPH0410547A (en) Manufacture of semiconductor device
JPS62210677A (en) Manufacture of semiconductor device
JPH0715971B2 (en) Manufacturing method of complementary MOS integrated circuit
JPH0316232A (en) Manufacture of charge coupled device
JPH08335628A (en) Manufacture of semiconductor device
JPH0774355A (en) Semiconductor device and manufacture thereof