[go: up one dir, main page]

JPH027879A - Driver of ultrasonic motor - Google Patents

Driver of ultrasonic motor

Info

Publication number
JPH027879A
JPH027879A JP63158534A JP15853488A JPH027879A JP H027879 A JPH027879 A JP H027879A JP 63158534 A JP63158534 A JP 63158534A JP 15853488 A JP15853488 A JP 15853488A JP H027879 A JPH027879 A JP H027879A
Authority
JP
Japan
Prior art keywords
resistance element
mechanical arm
arm current
amplitude
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63158534A
Other languages
Japanese (ja)
Inventor
Takashi Fukunaga
福永 隆
Masahiro Takada
雅弘 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63158534A priority Critical patent/JPH027879A/en
Publication of JPH027879A publication Critical patent/JPH027879A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To reduce the fluctuation of moving speed by providing an amplitude detection means of mechanical arm current and by correcting the detected gain of the mechanical arm current in temperature under the working environmental temperature of a motor. CONSTITUTION:An ultrasonic motor drive circuit connects a piezoelectric body 9 and a temperature sensing resistance element 5 in series to an electrode section of a motor section. At the same time it connects a capacitor 11 of a capacity equal to the capacity C0 in a working environmental maximum temperature of a piezoelectric body to a fixed resistance element 6 in series and connects them to the above series connection body in parallel. The difference 14 of each potential between the temperature sensing resistance element 5 and the fixed resistance element 6 is found and the mechanical arm current (f) is detected. This current (f) is then compared with the set value (h) with its current amplitude controller 12 through an amplitude detector 13. A voltage control frequency oscillator 1 outputs a designated driving frequency signal (a) based on the frequency control signal (i) and applies driving signals (e) and (d) to the electrode section 7, etc., through a 90 deg. phase setter 2, etc. The driving frequency is thereby decided according to the amplitude of mechanical arm current and the fluctuation of rotating speed is reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、圧電体を用いて駆動力を発生する超音波モー
タに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an ultrasonic motor that generates driving force using a piezoelectric material.

従来の技術 近年、圧電セラミック等を用いて、電気−機械変換素子
を用いて種々の超音波振動を励振することにより、回転
あるいは走行運動を得る超音波モータが高いエネルギー
密度を有することから注目されている。
2. Description of the Related Art In recent years, ultrasonic motors that obtain rotational or running motion by exciting various ultrasonic vibrations using electro-mechanical transducers using piezoelectric ceramics, etc., have attracted attention because of their high energy density. ing.

第3図に超音波モータの分解斜視図を示す。特開昭60
−190178号公報に示すように、振動体の底面には
、円板形状で放射状に例えば8分割し、460ごとの逆
方向に分極した圧電体16と圧電体16を互いに空間的
な位相を9oOずらしてはシあわせ、圧電体15と圧電
体16の各々に時間的な位置の900異なる数10kH
zの駆動信号d、eの印加により、圧電体15.16に
は、互いに時間的にも空間的にも位相の90’異なった
定在波が生ずる。2つの前記定在波の振幅が等しくなる
ようにすると、振動体17には前記定在波が合成されて
、円周方向に進む、曲げ振動波が生じる。19 、20
は電極部である。また21はばね、22はねじである。
FIG. 3 shows an exploded perspective view of the ultrasonic motor. Tokukai 1986
As shown in Japanese Patent No. 190178, on the bottom surface of the vibrating body, a piezoelectric material 16 which is radially divided into 8 parts in a disc shape and polarized in opposite directions every 460 parts is arranged with a spatial phase of 9oO. By shifting and aligning, the piezoelectric bodies 15 and 16 each have a temporal position of 900 different values of several 10 kHz.
By applying the drive signals d and e of z, standing waves whose phases differ by 90' from each other both temporally and spatially are generated in the piezoelectric bodies 15 and 16. When the amplitudes of the two standing waves are made equal, the standing waves are combined in the vibrating body 17 to generate a bending vibration wave that travels in the circumferential direction. 19, 20
is the electrode part. Further, 21 is a spring, and 22 is a screw.

第β図は、振動体23のA点が進行波に依って、長軸2
W、短軸2uの楕円運動をしている様子を示し、振動体
23に加圧設置された移動体24が楕円の頂点で接触す
ることにより、波の進行波とは逆方向にあげるV=f−
u(fは進行波の周波数)■の速度で運動している事を
示している。移動体22は、振動体23との間の摩擦力
で波の進行波とは逆方向に駆動され、外部に対してなす
仕事がこの摩擦力に対して無視できない時、移動体22
と振動体23の間にすべりが生じ、速度はVより小さく
なる。
In Fig. β, point A of the vibrating body 23 is moved along the long axis 2 due to the traveling wave.
W shows an elliptical motion of the minor axis 2u, and when the movable body 24 pressurized to the vibrating body 23 comes into contact with the apex of the ellipse, V = raised in the opposite direction to the traveling wave of the wave. f-
It shows that it is moving at a speed of u (f is the frequency of the traveling wave). The movable body 22 is driven in the direction opposite to the traveling wave by the frictional force between it and the vibrating body 23, and when the work done to the outside cannot be ignored with respect to this frictional force, the movable body 22
A slip occurs between the vibrating body 23 and the vibrating body 23, and the velocity becomes smaller than V.

第2図は、圧電体16又は16の電気的等価回路図であ
り、圧電効果には寄与しない容量C0と圧電効果に寄与
するり、C1、Rとの並列に結合したものと考えられ、
coに流れる電流は電気腕電流と呼ばれ、L 、 C1
,Hに流れる電流を機械腕電流と呼ばれる。前記機械腕
電流と前記短軸の振幅2uとは比例関係にある。機械腕
のアドミタンスY(s)は次式で与えられる。
FIG. 2 is an electrical equivalent circuit diagram of the piezoelectric body 16 or 16, and it is thought that the capacitance C0 that does not contribute to the piezoelectric effect and the capacitance C0 that contributes to the piezoelectric effect or are coupled in parallel with C1 and R,
The current flowing through co is called electric arm current, and L, C1
, H is called the mechanical arm current. The mechanical arm current and the short axis amplitude 2u are in a proportional relationship. The admittance Y(s) of the mechanical arm is given by the following equation.

Y(s)=(s/L)/(s2+(R/L)g+(1/
LC1)(ただし8はラプラス演算子 s = j 2
πf)上式において共振周波数は1/(2πLC1)で
与えられる。圧電体11.12に印加する電圧と周波数
を一定にしても、周囲温度や機械的負荷の変動によって
、前記圧電体15.18の電気的アドミタンスが変化し
て(R、L 、 C1が変化して)移動速度が変化して
しまう。
Y(s)=(s/L)/(s2+(R/L)g+(1/
LC1) (However, 8 is the Laplace operator s = j 2
πf) In the above equation, the resonance frequency is given by 1/(2πLC1). Even if the voltage and frequency applied to the piezoelectric body 11.12 are constant, the electrical admittance of the piezoelectric body 15.18 changes due to changes in ambient temperature or mechanical load (R, L, C1 change). ) Movement speed changes.

以上に説明したように、超音波モータの移動速度は、進
行波の周波数Wと楕円運動の短軸Uの積で決まり、短軸
Uの大きさは機械腕電流に比例する。周波数Wの変動幅
に比べ短軸Uの変動幅は大きく、移動速度はほぼ機械腕
電流により決まる。
As explained above, the moving speed of the ultrasonic motor is determined by the product of the frequency W of the traveling wave and the short axis U of the elliptical motion, and the size of the short axis U is proportional to the mechanical arm current. The fluctuation range of the short axis U is larger than the fluctuation range of the frequency W, and the moving speed is determined almost by the mechanical arm current.

圧電体15.16の機械的負荷が一定であれば、電気的
インピーダンスは一定であシ一定電圧、−定周波数であ
れば、機械腕電流は、一定である。
If the mechanical load on the piezoelectric body 15, 16 is constant, the electrical impedance is constant, and if the voltage and frequency are constant, the mechanical arm current is constant.

発明が解決しようとする課題 しかしながら、実際には、移動体が移動しているため機
械腕的負荷が変動したり、温度変化によって電気的イン
ピーダンスが変動し、その結果、機械腕電流が変化して
移動速度が大きく変動するという問題点がある。
Problems to be Solved by the Invention However, in reality, as the moving body moves, the load on the mechanical arm fluctuates, and the electrical impedance fluctuates due to temperature changes, and as a result, the mechanical arm current changes. There is a problem that the movement speed fluctuates greatly.

特に温度変化による圧電体の電気腕インピーダンスの容
量変化が大きく機械腕電流のみを検出するのが非常に困
難であり、その結果モータ回転が不安定になるという問
題点がある。
In particular, there is a problem in that the capacitance of the electrical arm impedance of the piezoelectric material changes greatly due to temperature changes, making it extremely difficult to detect only the mechanical arm current, resulting in unstable motor rotation.

本発明は、上記の問題点を解決して、モータの使用環境
温度によらずに機械腕電流を正確に検出し、機械腕電流
の振幅を制御することによシ、回転速度の変動の軽減と
安定化を実現するとともに、回転速度が選択可能な超音
波モータ駆動装置を提供することにある。
The present invention solves the above problems by accurately detecting the mechanical arm current regardless of the operating environment temperature of the motor and controlling the amplitude of the mechanical arm current, thereby reducing fluctuations in rotational speed. An object of the present invention is to provide an ultrasonic motor drive device that achieves stability and allows selection of rotational speed.

課題を解決するだめの手段 超音波モータの圧電体に印加する2つの電気信号のどち
らか一方の電気信号と直列に、前記圧電体の電気腕イン
ピーダンスのモータ使用環境最高温度時の容量と等しい
容量のコンデンサと固定抵抗素子を接続し、前記固定抵
抗素子と並列に、モータの使用環境温度によらずに、前
記コンデンサに流れる電流値と、前記圧電体の電気腕に
流れる電流値と常に一致する様な温度特性を持った感温
抵抗素子を介して圧電体の電極群の一つに接続し、前記
固定抵抗素子と前記可変抵抗素子の各電位差を検出する
ことによって、機械腕電流を正確に検出することができ
る。
Means for Solving the Problem A capacitance equal to the capacitance of the electrical arm impedance of the piezoelectric body at the highest temperature in the motor operating environment is connected in series with one of the two electric signals applied to the piezoelectric body of the ultrasonic motor. A capacitor and a fixed resistance element are connected in parallel with the fixed resistance element, so that the current value flowing through the capacitor always matches the current value flowing through the electric arm of the piezoelectric body, regardless of the operating environment temperature of the motor. The mechanical arm current can be accurately measured by connecting one of the electrodes of the piezoelectric material through a temperature-sensitive resistance element having various temperature characteristics and detecting the potential difference between the fixed resistance element and the variable resistance element. can be detected.

作   用 上記の様に超音波モータの圧電体に流れる機械腕電流を
検出し、前記機械腕電流の振幅を所定値に制御すること
によシ、振動体の進行波の振幅が所定の大きさになシ、
機械的負荷、温度の各変動に対して回転速度の変動の軽
減と回転の安定化を実現するとともに、回転速度が選択
可能な超音波モータ駆動装置を提供する。機械腕電流の
振幅を制御する具体的方法として、駆動電圧の周波数を
変化させる方法や駆動電圧の波形の振幅を変化させる方
法がある。
Function As described above, by detecting the mechanical arm current flowing through the piezoelectric body of the ultrasonic motor and controlling the amplitude of the mechanical arm current to a predetermined value, the amplitude of the traveling wave of the vibrating body can be adjusted to a predetermined magnitude. Nashi,
Provided is an ultrasonic motor drive device that achieves reduction of fluctuations in rotational speed and stabilization of rotation with respect to fluctuations in mechanical load and temperature, as well as selectable rotational speed. Specific methods for controlling the amplitude of the mechanical arm current include a method of changing the frequency of the drive voltage and a method of changing the amplitude of the waveform of the drive voltage.

実施例 以下、図面に従って、本発明の実施例について詳細な説
明を行なう。第1図は、本発明の超音波モータ駆動回路
のブロック図である。又、第2図は圧電体の等何回路で
ある。電極部子には、圧電体9と感温抵抗素子6とを直
列接続するとともに、第2図における圧電体の電気腕イ
ンピーダンスのモータ使用環境最高温度時の容量C0と
等しい容量のコンデンサ11と固定抵抗素子6を直列接
続し、前記圧電体と感温抵抗素子よりなる直列接続体と
並列に接続する。感温抵抗素子5と固定抵抗素子6の各
電位の差を差動増幅器14を用いて求めることにより電
気腕電流jを相殺して機械腕電流fを検出する。電気腕
インピーダンスの容量C0は温度が低下すると小さくな
る傾向があるので、モータ環境温度によらず電気腕電流
jを相殺するために、固定抵抗素子6に流れる電流値と
電気腕に流れる電流値が常に一致する様な温度特性を持
った感温抵抗素子を用いる。機械腕電流fは交流である
ので振幅検出器13を用いて機械腕電流振幅qを求め、
機械腕電流振幅制御器12において、機械腕電流振幅設
定値りと比較する。前記機械腕電流振幅信号qが機械腕
電流設定値りよシ低いときには、駆動周波数aを低くし
て、機械腕電流振幅信号qが機械腕電流振幅設定値りと
等しくなるように周波数制御信号iを出力し、機械腕電
流振幅信号qが機械腕電流振幅設定値りよシ大きいとき
には、駆動周波数aを高くして、機械腕電流振幅信号q
が機械腕電流振幅設定値りと等しくなるように周波数制
御信号iを出力する。電圧制御周波数発振器1は、周波
数制御信号iに基づき、所定の駆動周波数信号とを出力
する。900位相器2は、互いに時間的に位相の900
異なる交流信号すと交流信号Cを出力する。電力増幅器
3.4は交流信号すと交流信号Cを各々増幅し、電極部
7、圧電体および電極部8.圧電体10に駆動信号e、
dを印加する。
Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram of an ultrasonic motor drive circuit according to the present invention. FIG. 2 shows a piezoelectric circuit. A piezoelectric body 9 and a temperature-sensitive resistance element 6 are connected in series to the electrode part, and a capacitor 11 having a capacitance equal to the capacitance C0 of the electrical arm impedance of the piezoelectric body at the maximum temperature of the motor usage environment in FIG. 2 is fixed to the electrode part. Resistance elements 6 are connected in series and connected in parallel with the series connection body consisting of the piezoelectric body and the temperature-sensitive resistance element. By determining the potential difference between the temperature-sensitive resistance element 5 and the fixed resistance element 6 using the differential amplifier 14, the electrical arm current j is canceled out and the mechanical arm current f is detected. The capacitance C0 of the electric arm impedance tends to decrease as the temperature decreases, so in order to cancel out the electric arm current j regardless of the motor environmental temperature, the current value flowing through the fixed resistance element 6 and the current value flowing through the electric arm are adjusted. A temperature-sensitive resistance element with temperature characteristics that always match is used. Since the mechanical arm current f is alternating current, the amplitude detector 13 is used to find the mechanical arm current amplitude q,
The mechanical arm current amplitude controller 12 compares the mechanical arm current amplitude with a set value. When the mechanical arm current amplitude signal q is lower than the mechanical arm current setting value, the driving frequency a is lowered and the frequency control signal i is adjusted so that the mechanical arm current amplitude signal q becomes equal to the mechanical arm current amplitude setting value. When the mechanical arm current amplitude signal q is larger than the mechanical arm current amplitude setting value, the driving frequency a is increased and the mechanical arm current amplitude signal q is output.
The frequency control signal i is outputted so that it becomes equal to the mechanical arm current amplitude setting value. The voltage controlled frequency oscillator 1 outputs a predetermined drive frequency signal based on the frequency control signal i. The 900 phase shifters 2 are 900 phase shifters 2 that are in phase with each other in time.
When different AC signals are output, an AC signal C is output. The power amplifier 3.4 amplifies the AC signal C and the AC signal C, respectively, and connects the electrode section 7, the piezoelectric body, and the electrode section 8. A drive signal e is applied to the piezoelectric body 10,
Apply d.

以上の様に、機械腕電流の振幅にしたがって駆動周波数
を決めることにより、機械腕電流の振幅を機械腕電流振
幅設定値に制御してやれば、機械的負荷、温度、電源電
圧の各変動に対し、回転数の変動を軽減することができ
る。また、機械腕電流設定値りを変えることにより、回
転数の大きさを選ぶことをできる。
As described above, if the amplitude of the mechanical arm current is controlled to the mechanical arm current amplitude set value by determining the drive frequency according to the amplitude of the mechanical arm current, the amplitude of the mechanical arm current can be controlled to the mechanical arm current amplitude setting value, and the fluctuations in the mechanical load, temperature, and power supply voltage can be Fluctuations in rotational speed can be reduced. Furthermore, the magnitude of the rotation speed can be selected by changing the mechanical arm current setting value.

本実施例の説明では、円板型超音波モータを用いて説明
したが、本発明は、円板型超音波モータに限定されるも
のではなく、円環型超音波モータや直線移動のリニア超
音波モータにも適応できる。
Although this embodiment has been explained using a disc type ultrasonic motor, the present invention is not limited to the disc type ultrasonic motor, and the present invention is not limited to the disc type ultrasonic motor. Also applicable to sonic motors.

発明の効果 以上に説明したように、超音波モータの機械腕電流の振
幅と回転数が比例関係にあることを考慮し、機械腕電流
の振幅を検出する手段を設け、モータの使用環境温度に
よって機械腕電流の検出ゲインを温度補正し、この振幅
を一定に制御すると、超音波モータの温度変動に対し移
動体の移動速度の変動を小さくできる。また振幅の設定
値を選ぶことにより移動速度を選択でき、これらの実用
的効果は大きい。
Effects of the Invention As explained above, considering that the amplitude of the mechanical arm current of an ultrasonic motor and the rotation speed are in a proportional relationship, a means for detecting the amplitude of the mechanical arm current is provided, and the By temperature-correcting the detection gain of the mechanical arm current and controlling its amplitude to a constant value, it is possible to reduce fluctuations in the moving speed of the moving body relative to temperature fluctuations of the ultrasonic motor. Furthermore, the moving speed can be selected by selecting the amplitude setting value, which has a great practical effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の超音波モータ駆動装置のブ
ロック構成図、第2図は同モータの電気等価回路図、第
3図は円板型超音波モータの分解斜視図、第4図は同モ
ータの原理説明図である。 1・・・・・・電圧制御周波数発振器、2・・・・・・
90°位相器、3.4・・・・・・電力増幅器、9,1
o・・・・・・超音波モータの圧電体、12・・・・・
・機械腕電流制御器、13・・・・・・振幅検出器、1
4・・・・・・差動増幅器。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 図 島勅千引洛串 第 図
Fig. 1 is a block configuration diagram of an ultrasonic motor drive device according to an embodiment of the present invention, Fig. 2 is an electrical equivalent circuit diagram of the motor, Fig. 3 is an exploded perspective view of a disc-type ultrasonic motor, and Fig. 4 The figure is an explanatory diagram of the principle of the motor. 1... Voltage controlled frequency oscillator, 2...
90° phase shifter, 3.4...Power amplifier, 9,1
o...Piezoelectric body of ultrasonic motor, 12...
・Mechanical arm current controller, 13...Amplitude detector, 1
4...Differential amplifier. Name of agent: Patent attorney Toshio Nakao and one other person

Claims (1)

【特許請求の範囲】[Claims] 弾性体と4分の1波長相当分だけ互いに位置的に位相の
ずれた2つの電極群を有する圧電体とを貼り合せて圧電
駆動体を構成し、前記駆動体上に移動体を設置し、前記
2つの電極群に互いに時間的に位置の90°異なる2つ
の電気信号を印加して前記移動体を回転させる超音波モ
ータにおいて、前記2つの電気信号のいずれか一方と直
列に、前記圧電体の電気腕インピーダンスの容量と等し
い容量のコンデンサと固定抵抗素子を接続し、前記固定
抵抗素子と並列に、モータの使用環境温度によらずに、
前記固定抵抗素子に流れる電流値と、前記圧電体の電気
腕に流れる電流値と常に一致する様な温度特性を持った
感温抵抗素子を介して前記2つの電極群の一つに接続し
、前記固定抵抗素子と前記可変抵抗素子の各電位差を検
出することによって、圧電体の機械腕電流を検出し、前
記電気信号による前記機械腕電流の振幅を所定の大きさ
に制御することを特徴とする超音波モータ駆動装置。
A piezoelectric driving body is formed by bonding an elastic body and a piezoelectric body having two electrode groups that are positioned out of phase with each other by an amount equivalent to a quarter wavelength, and a moving body is installed on the driving body, In the ultrasonic motor that rotates the movable body by applying two electric signals temporally different in position by 90 degrees to the two electrode groups, the piezoelectric body is connected in series with either one of the two electric signals. Connect a capacitor with a capacitance equal to the capacitance of the electric arm impedance and a fixed resistance element in parallel with the fixed resistance element, regardless of the operating environment temperature of the motor.
connected to one of the two electrode groups via a temperature-sensitive resistance element having temperature characteristics such that a current value flowing through the fixed resistance element always matches a current value flowing through the electric arm of the piezoelectric body; A mechanical arm current of the piezoelectric body is detected by detecting each potential difference between the fixed resistance element and the variable resistance element, and the amplitude of the mechanical arm current according to the electric signal is controlled to a predetermined magnitude. Ultrasonic motor drive device.
JP63158534A 1988-06-27 1988-06-27 Driver of ultrasonic motor Pending JPH027879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63158534A JPH027879A (en) 1988-06-27 1988-06-27 Driver of ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63158534A JPH027879A (en) 1988-06-27 1988-06-27 Driver of ultrasonic motor

Publications (1)

Publication Number Publication Date
JPH027879A true JPH027879A (en) 1990-01-11

Family

ID=15673826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63158534A Pending JPH027879A (en) 1988-06-27 1988-06-27 Driver of ultrasonic motor

Country Status (1)

Country Link
JP (1) JPH027879A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5438859A (en) * 1991-09-24 1995-08-08 Murata Manufacturing Co. Ltd. Acceleration sensor having fault diagnosing device
FR2769149A1 (en) * 1997-09-26 1999-04-02 Daimler Benz Ag PROGRESSIVE WAVE MOTOR PROVIDED WITH A TEMPERATURE MEASURING DEVICE AND TEMPERATURE MEASURING METHOD
CN102520226A (en) * 2011-12-06 2012-06-27 广东电网公司电力科学研究院 Low current compensation method for electric energy measurement

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5438859A (en) * 1991-09-24 1995-08-08 Murata Manufacturing Co. Ltd. Acceleration sensor having fault diagnosing device
US5517845A (en) * 1991-09-24 1996-05-21 Murata Manufacturing Co., Ltd. Acceleration sensor having fault diagnosing device
FR2769149A1 (en) * 1997-09-26 1999-04-02 Daimler Benz Ag PROGRESSIVE WAVE MOTOR PROVIDED WITH A TEMPERATURE MEASURING DEVICE AND TEMPERATURE MEASURING METHOD
DE19742447A1 (en) * 1997-09-26 1999-04-08 Daimler Chrysler Ag Travelling wave motor with temperature measuring device, e.g. for robot systems
DE19742447C2 (en) * 1997-09-26 1999-09-23 Daimler Chrysler Ag Traveling wave motor with temperature measuring device and method for temperature measurement
CN102520226A (en) * 2011-12-06 2012-06-27 广东电网公司电力科学研究院 Low current compensation method for electric energy measurement

Similar Documents

Publication Publication Date Title
US4578650A (en) Resonance drive oscillator circuit
JP2737420B2 (en) Ultrasonic motor drive system
JPS6356178A (en) Driving of ultrasonic motor
JPH027879A (en) Driver of ultrasonic motor
JP3010591B2 (en) Ultrasonic transmitter
JPH01321876A (en) Ultrasonic motor driving device
JPH02101974A (en) Ultrasonic motor drive
JPH01160379A (en) Driving gear of ultrasonic motor
JP2650337B2 (en) Ultrasonic motor drive
JPH01198282A (en) Driver for supersonic motor
JP2537996B2 (en) Ultrasonic motor drive
JP2506895B2 (en) Ultrasonic motor controller
JP3198041B2 (en) Ultrasonic motor speed controller
JP2577485B2 (en) Driving method of ultrasonic motor
JP3240071B2 (en) Ultrasonic motor drive
JP2604731B2 (en) Ultrasonic motor drive
JP4076689B2 (en) Piezoelectric actuator
JPH0667233B2 (en) Ultrasonic motor device
JPH11237403A (en) External force detecting sensor and its offset voltage regulating method
JP3641902B2 (en) Drive device
JPS63262072A (en) Ultrasonic motor device
JPH0710187B2 (en) Ultrasonic motor driving method
JP3141525B2 (en) Ultrasonic motor drive control method
JP2538088B2 (en) Driving method for ultrasonic motor
JPH01114379A (en) Ultrasonic motor device