JP3010591B2 - Ultrasonic transmitter - Google Patents
Ultrasonic transmitterInfo
- Publication number
- JP3010591B2 JP3010591B2 JP5130819A JP13081993A JP3010591B2 JP 3010591 B2 JP3010591 B2 JP 3010591B2 JP 5130819 A JP5130819 A JP 5130819A JP 13081993 A JP13081993 A JP 13081993A JP 3010591 B2 JP3010591 B2 JP 3010591B2
- Authority
- JP
- Japan
- Prior art keywords
- arm current
- amplitude
- voltage
- frequency
- mechanical arm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Transducers For Ultrasonic Waves (AREA)
- Apparatuses For Generation Of Mechanical Vibrations (AREA)
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、圧電セラミックを用い
た超音波送信器に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic transmitter using piezoelectric ceramic.
【0002】[0002]
【従来の技術】従来、超音波を利用した距離センサー
や、移動体に取り付けて走行路面の凹凸を検知する超音
波検知器を用いた各種計測器が商品化されているが、こ
の超音波を送信する際に超音波振動板に印加する電圧信
号の周波数は予め計測した振動板の共振周波数近傍に固
定して、送信するのが一般的である。2. Description of the Related Art Conventionally, various types of measuring instruments using ultrasonic sensors, such as a distance sensor using an ultrasonic wave and an ultrasonic detector attached to a moving body and detecting unevenness on a traveling road surface, have been commercialized. In general, the frequency of the voltage signal applied to the ultrasonic diaphragm during transmission is fixed near the resonance frequency of the diaphragm measured in advance and transmitted.
【0003】[0003]
【発明が解決しようとする課題】しかし、圧電セラミッ
クと金属板からなる振動板にその振動板の共振周波数の
交流電圧を印加して、超音波を発生させるが、超音波送
信器に用いる超音波振動板の共振周波数はその超音波振
動板の周辺温度によって変化する。そのため、一定な周
波数で一定電圧で圧電セラミックを駆動すると、発生す
る超音波の出力音圧は温度によって大きく変化する。例
えば、距離センサーと使用する際には受信波形のS/N
比が安定せず、計測が不安定になるという課題を有して
いた。However, an ultrasonic wave is generated by applying an AC voltage having a resonance frequency of the vibration plate to a vibration plate made of a piezoelectric ceramic and a metal plate. The resonance frequency of the diaphragm changes depending on the temperature around the ultrasonic diaphragm. Therefore, when the piezoelectric ceramic is driven at a constant frequency and a constant voltage, the output sound pressure of the generated ultrasonic wave greatly changes depending on the temperature. For example, when used with a distance sensor, the S / N of the received waveform
There was a problem that the ratio was not stable and the measurement became unstable.
【0004】本発明は、このような従来の超音波送信器
の課題を考慮し、周辺の温度変化等による出力音圧の変
化を防ぎ、安定な音圧の超音波の送信が可能となる超音
波送信器の提供を目的とするものである。[0004] The present invention takes into consideration such problems of the conventional ultrasonic transmitter, and prevents a change in output sound pressure due to a change in ambient temperature or the like, and enables transmission of ultrasonic waves with stable sound pressure. It is intended to provide a sound wave transmitter.
【0005】[0005]
【課題を解決するための手段】本発明は、超音波を発生
させる圧電セラミックと振動板からなる超音波発信板
と、外部からの周波数指令信号によって所定の周波数の
信号を出力する発信器と、前記圧電セラミックに流入す
る電流の内、圧電セラミックの変位速度に寄与する機械
腕電流を検出する機械腕電流検出器と、その機械腕電流
の振幅を検知する整流回路と、前記機械腕電流の振幅と
機械腕電流振幅設置値を入力とし、周波数指令信号を出
力する制御器を備え、前記機械腕電流の振幅と機械腕電
流振幅設置値が一致するように前記周波数指令信号を出
力するものである。According to the present invention, there is provided an ultrasonic transmitting plate comprising a piezoelectric ceramic and a vibration plate for generating ultrasonic waves, a transmitter for outputting a signal of a predetermined frequency in response to an external frequency command signal, Of the current flowing into the piezoelectric ceramic, a mechanical arm current detector that detects a mechanical arm current that contributes to the displacement speed of the piezoelectric ceramic, a rectifier circuit that detects the amplitude of the mechanical arm current, and an amplitude of the mechanical arm current and <br/> machinery inputs the arm current amplitude installed value, comprising a controller for outputting a frequency command signal, said frequency command signal so that the amplitude and the machine arm current amplitude installed value of the mechanical arm current matches Is output.
【0006】[0006]
【作用】本発明では、圧電セラミックの変位速度に寄与
する機械腕電流を検出する機械腕電流検出器を備え、機
械腕電流の振幅と所定の機械腕電流設置値が一致するよ
うに周波数指令信号を出力することにより、周辺温度に
よらずに、振動板からの出力音圧を安定にかつ所定の大
きさにすることができる。According to the present invention, there is provided a mechanical arm current detector for detecting a mechanical arm current that contributes to the displacement speed of the piezoelectric ceramic, and a frequency command signal is provided so that the amplitude of the mechanical arm current and a predetermined mechanical arm current setting value match. Is output, the sound pressure output from the diaphragm can be stably set to a predetermined value regardless of the ambient temperature.
【0007】以上のように、振動板からの出力を安定か
つ、一定にすることにより超音波を用いた各種の計測の
動作が安定し、計測精度の低下を防ぐことができる。As described above, by making the output from the diaphragm stable and constant, various measurement operations using ultrasonic waves can be stabilized, and a decrease in measurement accuracy can be prevented.
【0008】[0008]
【実施例】以下、本発明の詳細について実施例とともに
説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below along with embodiments.
【0009】図1は本発明の一実施例の構成を示すもの
である。1は送信器、2は圧電体の円板、3は振動板、
4は送信器3を駆動する電圧を出力する増幅器、5は外
部からの周波数指令信号108によって所定の周波数の
交流信号101を出力する周波数可変発振器、6機械腕
電流検出器、7は機械腕電流の振幅を検知する整流回
路、8は制御器である。FIG. 1 shows the configuration of an embodiment of the present invention. 1 is a transmitter, 2 is a piezoelectric disk, 3 is a diaphragm,
Reference numeral 4 denotes an amplifier for outputting a voltage for driving the transmitter 3; 5, a frequency variable oscillator for outputting an AC signal 101 having a predetermined frequency in response to an external frequency command signal 108; 6, a mechanical arm current detector; A rectifier circuit for detecting the amplitude of the control signal;
【0010】図5は圧電体の電気的等価回路であり、図
6は機械腕電流のアドミタンス特性である。機械腕電流
については、例えば、特願昭62ー95614(超音波
モータ装置)に紹介されている。図6に示すように、共
振周波数f0で機械腕電流の振幅の大きさが最大とな
り、その付近で駆動電圧102と機械腕電流の位相が90
#から-90#に大きく変化する。FIG. 5 shows an electrical equivalent circuit of the piezoelectric body, and FIG. 6 shows the admittance characteristics of the mechanical arm current. The mechanical arm current is introduced, for example, in Japanese Patent Application No. 62-95614 (ultrasonic motor device). As shown in FIG. 6, at the resonance frequency f0, the magnitude of the amplitude of the mechanical arm current becomes maximum, and the drive voltage 102 and the phase of the mechanical arm current become 90 around that.
It changes greatly from # to -90 #.
【0011】送信器1の音圧出力は圧電体に流入する機
械腕電流の大きさとほぼ比例関係にある。発振器5は増
幅器4に送信器共振周波数近傍の周波数の交流信号10
1を出力し、増幅器4はその信号を所定の電圧まで増幅
して、送信器1を駆動し超音波を発生させる。The sound pressure output of the transmitter 1 is substantially proportional to the magnitude of the mechanical arm current flowing into the piezoelectric body. The oscillator 5 supplies the amplifier 4 with an AC signal 10 having a frequency near the transmitter resonance frequency.
1 and the amplifier 4 amplifies the signal to a predetermined voltage and drives the transmitter 1 to generate an ultrasonic wave.
【0012】振動体1に流入する電流のうち、直接圧電
効果に寄与する機械腕電流を機器腕電流検出器6で検出
する。機械腕電流検出器6では、図5に示す圧電体の電
気的等価回路の圧電効果に寄与しない電気腕のコンデン
サー容量と等価なコンデンサー103と電流検出抵抗1
04を準備し、図1の機械腕電流検出器6の内部に示す
ように圧電体に流れる電流とコンデンサー103に流れ
る電流を各々電流検出抵抗104と105を用いて求
め、その両者の差をとることにより電気腕に流れる電流
を相殺して機械腕電流に比例した電圧106を検出する
(以下機械腕電流比例電圧とよぶ)。機器腕電流検出器
6の出力である機器腕電流比例電圧106は交流であ
り、整流器7でその振幅に比例した電圧107に変換す
る。A mechanical arm current which directly contributes to the piezoelectric effect among the currents flowing into the vibrating body 1 is detected by an equipment arm current detector 6. The mechanical arm current detector 6 includes a capacitor 103 and a current detection resistor 1 equivalent to the capacitor of the electric arm which does not contribute to the piezoelectric effect of the electric equivalent circuit of the piezoelectric body shown in FIG.
4, the current flowing in the piezoelectric body and the current flowing in the capacitor 103 are obtained by using current detection resistors 104 and 105, respectively, as shown inside the mechanical arm current detector 6 in FIG. As a result, the current flowing through the electric arm is canceled to detect a voltage 106 proportional to the mechanical arm current (hereinafter, referred to as a mechanical arm current proportional voltage). The device arm current proportional voltage 106 output from the device arm current detector 6 is an alternating current, and is converted by the rectifier 7 into a voltage 107 proportional to the amplitude thereof.
【0013】制御器8には送信器5に、流入させたい機
械腕電流に比例した電圧である機器腕電流振幅設置値1
09と振幅に比例した電圧である機器腕電流振幅設置値
109と振幅に比例した電圧107を入力とし、その両
者が一致するように周波数指令信号108を周波数可変
発振器5に出力する。例えば、機器腕電流振幅設置値1
09と振幅に比例した電圧107との差を誤差とし、そ
の誤差の積分値や比例値や微分値の各々の和を周波数指
令信号108とすること、いわゆるPID制御によっ
て、両者が一致するように構成できる。このようにして
送信器1を駆動すると圧電体1に流入する機器腕電流の
振幅が所定の大きさになるように周波数可変発振器5の
周波数が自動的に追尾される。The controller 8 supplies the transmitter 5 with the equipment arm current amplitude setting value 1 which is a voltage proportional to the mechanical arm current to be flowed.
09 and an apparatus arm current amplitude setting value 109 which is a voltage proportional to the amplitude and a voltage 107 proportional to the amplitude are input, and a frequency command signal 108 is output to the frequency variable oscillator 5 so that the two coincide. For example, the device arm current amplitude setting value 1
The difference between the voltage 09 and the voltage 107 proportional to the amplitude is defined as an error, and the sum of the integrated value, the proportional value, and the differential value of the error is used as the frequency command signal 108, that is, so-called PID control so that the two values match. Can be configured. When the transmitter 1 is driven in this manner, the frequency of the variable frequency oscillator 5 is automatically tracked so that the amplitude of the device arm current flowing into the piezoelectric body 1 becomes a predetermined magnitude.
【0014】図2は本発明に関連する技術の構成を示
す。図1と同じ構成要素の説明は省略する。図6に示す
ように、機械腕電流比例電圧106と駆動信号102の
位相差は共振周波数近傍で大きく変化する。そこで位相
検出器7で機械腕電流比例電圧106と駆動信号102
の位相差を検出し、位相差信号119を出力する。制御
器8では所定の位相差設定値110と位相差信号111
9が一致するように周波数可変発振器5に周波数指令信
号108を出力する。この制御も周波数変化に対する位
相差107の変化を考慮して例えばPID制御などで実
現できる。FIG. 2 shows a configuration of a technique related to the present invention . The description of the same components as those in FIG. 1 is omitted. As shown in FIG. 6, the phase difference between the mechanical arm current proportional voltage 106 and the drive signal 102 greatly changes near the resonance frequency. Then, the phase detector 7 detects the mechanical arm current proportional voltage 106 and the drive signal 102.
, And a phase difference signal 119 is output. The controller 8 sets a predetermined phase difference setting value 110 and a phase difference signal 111
The frequency command signal 108 is output to the variable frequency oscillator 5 so that 9 coincides. This control can also be realized by, for example, PID control in consideration of a change in the phase difference 107 with respect to a frequency change.
【0015】図3は、本発明に関連する他の例の構成を
示す。図1および図2と同じ構成要素の説明は省略す
る。圧電体の電極の1部を分離し、圧電体での変位を検
出するセンサ電極10を構成する。そのセンサ電極10
出力を検出するセンサー電圧検出部9で、インピーダン
ス変換し、センサーの出力電圧121(以下センサー電
圧と呼ぶ)を検出する。図7に、センサー電圧121の
振幅とセンサー電圧と駆動電圧の位相差の周波数特性を
示す。共振周波数f0でセンサー電圧の振幅が最大とな
り、位相差は共振周波数近傍で90#から-90#まで大きく
変化する。機械腕電流と同様に、送信器1の音圧出力は
センサー電圧121のの振幅の大きさとほぼ比例関係に
ある。発振器5は増幅器6に送信器共振周波数近傍の周
波数の交流信号101を出力し、増幅器4はその信号を
所定の電圧まで増幅して、送信器1を駆動し超音波を発
生させる。整流器7でセンサー電圧121の振幅に比例
した電圧122を検出する。制御器8にはセンサー電圧
の振幅の設置値111とセンサー電圧の振幅値122を
入力とし、その両者が一致するように周波数指令信号1
08を周波数可変発振器5に出力する。例えば、センサ
ー電圧設置値111と振幅に比例した電圧122との差
を誤差とし、その誤差の積分値や比例値や微分値の和を
周波数指令信号108とすること、いわゆるPID制御
によって、両者が一致するように構成できる。このよう
にして送信器1を駆動すると圧電体の電極の一部に設け
た圧電体の振幅を検出するセンサー電圧の振幅が所定の
大きさになるように可変発振器5の周波数が自動的に追
尾される。FIG. 3 shows the configuration of another example related to the present invention .
Show. The description of the same components as those in FIGS. 1 and 2 is omitted. A part of the electrode of the piezoelectric body is separated to constitute a sensor electrode 10 for detecting displacement of the piezoelectric body. The sensor electrode 10
The output of the sensor is detected by a sensor voltage detecting unit 9 that detects an output, and an output voltage 121 (hereinafter, referred to as a sensor voltage) of the sensor is detected. FIG. 7 shows the frequency characteristics of the amplitude of the sensor voltage 121 and the phase difference between the sensor voltage and the drive voltage. At the resonance frequency f0, the amplitude of the sensor voltage becomes maximum, and the phase difference greatly changes from 90 # to -90 # near the resonance frequency. Similar to the mechanical arm current, the sound pressure output of the transmitter 1 is substantially proportional to the amplitude of the sensor voltage 121. The oscillator 5 outputs an AC signal 101 having a frequency near the transmitter resonance frequency to the amplifier 6, and the amplifier 4 amplifies the signal to a predetermined voltage and drives the transmitter 1 to generate ultrasonic waves. The rectifier 7 detects a voltage 122 proportional to the amplitude of the sensor voltage 121. The controller 8 receives the setting value 111 of the amplitude of the sensor voltage and the amplitude value 122 of the sensor voltage as inputs, and sets the frequency command signal 1 so that the two coincide.
08 to the variable frequency oscillator 5. For example, the difference between the sensor voltage setting value 111 and the voltage 122 proportional to the amplitude is regarded as an error, and the integral of the error, the proportional value, and the sum of the differential values are used as the frequency command signal 108, so-called PID control. Can be configured to match. When the transmitter 1 is driven in this manner, the frequency of the variable oscillator 5 is automatically tracked so that the amplitude of the sensor voltage for detecting the amplitude of the piezoelectric member provided on a part of the electrode of the piezoelectric member becomes a predetermined value. Is done.
【0016】図4は、本発明に関連する他の例の構成を
示す。図1、図2、および図3と同じ構成要素の説明は
省略する。図3と同様に圧電体の電極の1部を分離し、
圧電体ので変位を検出するセンサ電極10を構成する。
そのセンサ電極10出力を検出する検出部9で、インピ
ーダンス変換し、センサーの出力電圧121を検出す
る。図7に示したように、共振周波数f0でセンサー電
圧の振幅が最大となり、位相差は共振周波数近傍で90#
から-90#まで大きく変化する。そこで位相検出器7でセ
ンサー電圧121と駆動信号102の位相差を検出し、
位相差信号123を出力する。制御器8では所定のセン
サー電圧の位相差設定値124と位相差信号123が一
致するように周波数可変発振器5に周波数指令信号10
8を出力する。この制御器においても図7に示すように
周波数変化に対する位相差107の変化を考慮して例え
ばPID制御などで実現できる。周波数可変発振器5は
増幅器6に送信器共振周波数近傍の周波数の交流信号1
01を出力し、増幅器4はその信号を所定の電圧まで増
幅して、送信器1を駆動し超音波を発生させる。このよ
うにして送信器1を駆動すると圧電体の電極の一部に設
けた圧電体の振幅を検出するセンサー電圧の振幅が所定
の大きさになるように周波数可変発振器5の周波数が自
動的に追尾される。FIG. 4 shows a configuration of another example related to the present invention .
Show. The description of the same components as those in FIGS. 1, 2, and 3 will be omitted. A part of the electrode of the piezoelectric body is separated as in FIG.
The sensor electrode 10 for detecting the displacement of the piezoelectric body is formed.
The detection unit 9 that detects the output of the sensor electrode 10 performs impedance conversion and detects an output voltage 121 of the sensor. As shown in FIG. 7, the amplitude of the sensor voltage becomes maximum at the resonance frequency f0, and the phase difference is 90 # near the resonance frequency.
To -90 #. Then, the phase detector 7 detects the phase difference between the sensor voltage 121 and the drive signal 102,
The phase difference signal 123 is output. The controller 8 sends the frequency command signal 10 to the variable frequency oscillator 5 such that the phase difference set value 124 of the predetermined sensor voltage matches the phase difference signal 123.
8 is output. This controller can also be realized by, for example, PID control in consideration of a change in the phase difference 107 with respect to a frequency change as shown in FIG. The variable frequency oscillator 5 supplies the amplifier 6 with an AC signal 1 having a frequency near the transmitter resonance frequency.
01, the amplifier 4 amplifies the signal to a predetermined voltage and drives the transmitter 1 to generate an ultrasonic wave. When the transmitter 1 is driven in this manner, the frequency of the frequency variable oscillator 5 is automatically adjusted so that the amplitude of the sensor voltage for detecting the amplitude of the piezoelectric member provided on a part of the electrode of the piezoelectric member becomes a predetermined value. Will be tracked.
【0017】なお、上記4つ例では円板状の圧電体と振
動体の図で説明したが、送信器の構成は円板状に限定さ
れるものでなく圧電体で超音波が励起される構造であれ
ばどのような形状のものでもよい。In the above four examples, the explanation has been made with reference to the figures of the disk-shaped piezoelectric body and the vibrating body. However, the configuration of the transmitter is not limited to the disk-shaped one, and ultrasonic waves are excited by the piezoelectric body. Any shape may be used as long as it has a structure.
【0018】[0018]
【発明の効果】以上述べたところから明らかなように、
このように本発明によれば、周辺の温度変化等による出
力音圧の変化を防ぎ、安定な音圧の超音波の送信が可能
となる。As is apparent from the above description,
According to the present invention prevents a change in the output sound pressure due to temperature changes in the peripheral, it is possible to transmit ultrasound stable sound pressure.
【0019】また、複数個の超音波送信器を用いる時に
は、各々の音圧が安定化することにより、送信される超
音波の指向性が安定する。その結果、超音波を利用した
距離センサー等の応用分野において、計測の信頼性、安
定性を向上させることができ、その実用的効果は大き
い。When a plurality of ultrasonic transmitters are used, the directivity of the transmitted ultrasonic waves is stabilized by stabilizing the sound pressure of each. As a result, in application fields such as a distance sensor using ultrasonic waves, the reliability and stability of measurement can be improved, and the practical effect is great.
【図1】本発明の第1の実施例の構成図である。FIG. 1 is a configuration diagram of a first embodiment of the present invention.
【図2】本発明に関連する技術の例の構成図である。FIG. 2 is a configuration diagram of an example of a technique related to the present invention.
【図3】本発明に関連する技術の例の構成図である。FIG. 3 is a configuration diagram of an example of a technique related to the present invention.
【図4】本発明に関連する技術の例の構成図である。FIG. 4 is a configuration diagram of an example of a technique related to the present invention.
【図5】本発明に用いた圧電体の電気的等価回路であ
る。FIG. 5 is an electrical equivalent circuit of a piezoelectric body used in the present invention.
【図6】本発明に用いた圧電体に流れる機械腕電流の大
きさと駆動電圧との位相差の周波数応答特性図である。FIG. 6 is a frequency response characteristic diagram of a phase difference between a magnitude of a mechanical arm current flowing through a piezoelectric body used in the present invention and a drive voltage.
【図7】本発明に用いた圧電体の設けたセンサー電極の
出力の振幅の大きさと駆動電圧との位相差の周波数応答
特性図である。FIG. 7 is a frequency response characteristic diagram of the phase difference between the magnitude of the output amplitude of the sensor electrode provided with the piezoelectric body used in the present invention and the drive voltage.
1 送信器 2 圧電体 3 振動板 4 増幅器 5 周波数可変発振器 6 機械腕電流検出器 7 整流回路 8 制御器 9 センサー電圧検出部 10 センサー電極 101 交流信号 102 駆動信号 103 コンデンサー 104 電流検出抵抗 106 機械腕電流比例電圧 107 機械腕電流振幅 108 周波数指令信号 109 機械腕電流振幅設定値 110 機械腕電流位相差設定値 119 機械腕電流位相差 111 センサー電圧振幅設定値 121 センサー電圧 122 センサー電圧振幅 123 センサー電圧位相差 124 センサー電圧設定値 DESCRIPTION OF SYMBOLS 1 Transmitter 2 Piezoelectric body 3 Diaphragm 4 Amplifier 5 Variable frequency oscillator 6 Mechanical arm current detector 7 Rectifier circuit 8 Controller 9 Sensor voltage detector 10 Sensor electrode 101 AC signal 102 Drive signal 103 Capacitor 104 Current detection resistor 106 Machine arm Current proportional voltage 107 Machine arm current amplitude 108 Frequency command signal 109 Machine arm current amplitude set value 110 Machine arm current phase difference set value 119 Machine arm current phase difference 111 Sensor voltage amplitude set value 121 Sensor voltage 122 Sensor voltage amplitude 123 Sensor voltage level Phase difference 124 Sensor voltage setting
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H04R 17/00 331 B06B 1/06 G01S 7/521 G01S 7/524 H03B 5/32 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) H04R 17/00 331 B06B 1/06 G01S 7/521 G01S 7/524 H03B 5/32
Claims (1)
板からなる超音波発信板と、外部からの周波数指令信号
によって、前記圧電セラミック駆動用周波数信号を出力
する発信器と、前記圧電セラミックに流入する電流の
内、圧電セラミックの変位速度に寄与する機械腕電流を
検出する機械腕電流検出器と、前記機械腕電流の振幅と
機械腕電流振幅設置値を入力とし、前記機械腕電流の振
幅と機械腕電流振幅設置値が一致するように前記周波数
指令信号を出力する制御器とを備えたことを特徴とする
超音波送信器。An ultrasonic transmission plate comprising a piezoelectric ceramic for generating ultrasonic waves and a vibration plate; a transmitter for outputting a frequency signal for driving the piezoelectric ceramic in response to an external frequency command signal; of current, and a mechanical arm current detector for detecting a contributing mechanical arm current displacement speed of the piezoelectric ceramic, an input amplitude and <br/> machinery arm current amplitude installed value of the mechanical arm current, the machine ultrasonic transmitter characterized by comprising a controller for the amplitude and the machine arm current amplitude installed value of the arm current outputs said frequency command signal to match.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5130819A JP3010591B2 (en) | 1993-06-01 | 1993-06-01 | Ultrasonic transmitter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5130819A JP3010591B2 (en) | 1993-06-01 | 1993-06-01 | Ultrasonic transmitter |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06343200A JPH06343200A (en) | 1994-12-13 |
JP3010591B2 true JP3010591B2 (en) | 2000-02-21 |
Family
ID=15043460
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5130819A Expired - Fee Related JP3010591B2 (en) | 1993-06-01 | 1993-06-01 | Ultrasonic transmitter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3010591B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022208042A1 (en) * | 2021-03-30 | 2022-10-06 | Cirrus Logic International Semiconductor Limited | Circuitry for estimating displacement of a piezoelectric transducer |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20020066637A (en) * | 2001-02-13 | 2002-08-21 | 엘지이노텍 주식회사 | Frequency shifting device of generating system for ultrasonic wave signal |
JP2006003124A (en) * | 2004-06-15 | 2006-01-05 | Nippon Soken Inc | Ultrasonic sensor device |
JP5058530B2 (en) * | 2006-08-24 | 2012-10-24 | 伊藤超短波株式会社 | Ultrasonic transducer drive circuit |
WO2010048594A2 (en) * | 2008-10-23 | 2010-04-29 | Versatile Power,Inc. | System and method of driving ultrasonic transducers |
KR101335607B1 (en) | 2012-01-09 | 2013-12-02 | 조소연 | Ultrasonic transducer, electric pulse generator, and ultrasonic generation apparatus including the same |
DE102018124024A1 (en) * | 2018-09-28 | 2020-04-02 | Valeo Schalter Und Sensoren Gmbh | Method for operating an ultrasonic sensor of a vehicle with reduced diagnosis in a measuring operation of the ultrasonic sensor, and ultrasonic sensor device |
JP7390915B2 (en) * | 2020-02-07 | 2023-12-04 | 株式会社フコク | Ultrasonic vibrator drive method, drive circuit, and ultrasonic atomization device |
JP7377180B2 (en) * | 2020-08-31 | 2023-11-09 | 株式会社東芝 | Drive circuit, transducer system, and inspection equipment |
-
1993
- 1993-06-01 JP JP5130819A patent/JP3010591B2/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022208042A1 (en) * | 2021-03-30 | 2022-10-06 | Cirrus Logic International Semiconductor Limited | Circuitry for estimating displacement of a piezoelectric transducer |
US11849643B2 (en) | 2021-03-30 | 2023-12-19 | Cirrus Logic Inc. | Circuitry for estimating displacement of a piezoelectric transducer |
GB2621480A (en) * | 2021-03-30 | 2024-02-14 | Cirrus Logic Int Semiconductor Ltd | Circuitry for estimating displacement of a piezoelectric transducer |
Also Published As
Publication number | Publication date |
---|---|
JPH06343200A (en) | 1994-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3536497B2 (en) | Vibration type angular velocity detector | |
KR900008300B1 (en) | Angular velocity sensor | |
US4164865A (en) | Acoustical wave flowmeter | |
JPS63259424A (en) | Method and device to measurement of drive and vibration characteristic of piezoelectric transducer | |
JP3010591B2 (en) | Ultrasonic transmitter | |
EP1467178A2 (en) | Capacitance-sensing vibratory gyro and method for detecting change in capacitance | |
US4578650A (en) | Resonance drive oscillator circuit | |
JPS6013452B2 (en) | temperature detection device | |
US6177756B1 (en) | Piezoelectric gyro and method of driving the piezoelectric gyro | |
JP3178212B2 (en) | Oscillation circuit | |
US5902931A (en) | Vibration gyroscope | |
US5783897A (en) | Vibrating gyroscope | |
EP0533163B1 (en) | Vibratory gyroscope | |
US6316942B1 (en) | Electrical potential sensor | |
JP2007203199A (en) | Ultrasonic oscillator driver | |
JPH01321876A (en) | Ultrasonic motor driving device | |
JP2003156524A (en) | Potential fixing device and potential fixing method | |
JPS6215476A (en) | Ultrasonic sensor | |
JP3039344B2 (en) | Vibrating gyroscope and method of adjusting characteristics of vibrating gyroscope | |
JP2003294449A (en) | Driving unit for vibration type angular velocity sensor | |
JPH027879A (en) | Driver of ultrasonic motor | |
JPH01262000A (en) | Amplitude measuring device for ultrasonic vibrator transducer | |
JP2003004559A (en) | Belt tension measuring apparatus | |
JP3395394B2 (en) | Vibration control device | |
JP2764987B2 (en) | Ultrasonic vibration detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071210 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081210 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |