[go: up one dir, main page]

JPH01198282A - Driver for supersonic motor - Google Patents

Driver for supersonic motor

Info

Publication number
JPH01198282A
JPH01198282A JP63020530A JP2053088A JPH01198282A JP H01198282 A JPH01198282 A JP H01198282A JP 63020530 A JP63020530 A JP 63020530A JP 2053088 A JP2053088 A JP 2053088A JP H01198282 A JPH01198282 A JP H01198282A
Authority
JP
Japan
Prior art keywords
amplitude
mechanical arm
frequency
arm current
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63020530A
Other languages
Japanese (ja)
Other versions
JPH0736710B2 (en
Inventor
Masahiro Takada
雅弘 高田
Takashi Fukunaga
福永 隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63020530A priority Critical patent/JPH0736710B2/en
Publication of JPH01198282A publication Critical patent/JPH01198282A/en
Publication of JPH0736710B2 publication Critical patent/JPH0736710B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/14Drive circuits; Control arrangements or methods
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/16Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
    • H02N2/166Motors with disc stator

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To suppress fluctuation of speed and to stabilize the operation, by driving a supersonic motor with a frequency higher than a resonant frequency and detecting the amplitude of current flowing through a mechanical arm thereafter controlling the amplitude to a predetermined level. CONSTITUTION:In the drive circuit for a supersonic motor, a piezoelectric member 9 and a resistor 5 are connected in series with an electrode section 7 and a series circuit of a capacitor 11 and a resistor element 6 is connected in parallel therewith. Potential difference between the resistor elements 5 and 6 is obtained through a differential amplifier 14 and employed for cancelling the current flowing through an electrical arm and for detecting the current (f) flowing through a mechanical arm. An amplitude controller 12 for mechanical arm current and an amplitude detector 13 are further provided, and a voltage- controlled oscillator 1 provides a predetermined drive frequency signal (a) based on a frequency control signal (i). Driving is carried out with a voltage having frequency higher than a resonant frequency except the unstable rotation area (in the vicinity of resonant frequency). When the amplitude is controlled to be constant, fluctuation of moving speed can be suppressed against fluctuation of mechanical load or temperature.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、圧電体を用いて駆動力を発生する超音波モー
タ装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an ultrasonic motor device that generates driving force using a piezoelectric body.

従来の技術 近年、圧電セラミック等を用いて、電気−機械変換素子
を用いて種々の超音波振動を励振することにより、回転
あるいは走行運動を得る超音波モータが高いエネルギー
密度を有することから注目されている。
2. Description of the Related Art In recent years, ultrasonic motors that obtain rotational or running motion by exciting various ultrasonic vibrations using electro-mechanical transducers using piezoelectric ceramics, etc., have attracted attention because of their high energy density. ing.

第7図に超音波モータの分解斜視図を示す。特開昭60
−190178号公報に示すように、振動体の底面には
、円板形状で放射状に例えば8分割し、45°ごとの逆
方向に分極した圧電体11と圧電体22を互いに空間的
な位相を90”ずらしてはりあわせ、圧電体21と圧電
体22の各々に時間的な位相の90”異なる数10kH
zの駆動信号d、eの印加により、圧電体21,22に
は、互いに時間的にも空間的にも位相の90″異なった
定在波が生ずる。2つの前記定在波の振幅が等しくなる
ようにすると、振動体23には前記定在波が合成されて
、円周方向に進む、曲げ振動波が生じる。24.25は
電極部である。また26はばね、27はねじである。
FIG. 7 shows an exploded perspective view of the ultrasonic motor. Tokukai 1986
As shown in Japanese Patent No. 190178, on the bottom surface of the vibrating body, a piezoelectric material 11 and a piezoelectric material 22, which are disk-shaped and radially divided into eight parts, and polarized in opposite directions every 45 degrees, are arranged so that the spatial phase of the piezoelectric material 11 and the piezoelectric material 22 are mutually adjusted. The piezoelectric bodies 21 and 22 are pasted together with a 90" difference in temporal phase by several tens of kilohertz (90").
By applying the drive signals d and e of z, standing waves whose phases differ from each other by 90'' both temporally and spatially are generated in the piezoelectric bodies 21 and 22.If the amplitudes of the two standing waves are equal, When this is done, the standing waves are synthesized in the vibrating body 23, and a bending vibration wave that propagates in the circumferential direction is generated. Reference numerals 24 and 25 are electrode parts, 26 is a spring, and 27 is a screw. .

第8図は、振動体23のA点が進行波に依って、長軸2
W、短軸2uの楕円運動をしている様子を示し、振動体
23に加圧設置された移動体24が楕円の頂点で接触す
ることにより、波の進行波とは逆方向にあげるv−f−
u(fは進行波の周波数)■ の速度で運動している事
を示している。移動体22は、振動体23との間の摩擦
力で波の進行波とは逆方向に駆動され、外部に対してな
す仕事がこの摩擦力に対して無視できない時、移動体2
2と振動体23の間にすべりが生じ、速度はVより小さ
くなる。
FIG. 8 shows that point A of the vibrating body 23 is moved along the long axis by the traveling wave.
W shows an elliptical movement of the short axis 2u, and when the moving body 24, which is pressurized and installed on the vibrating body 23, comes into contact with the apex of the ellipse, the wave is raised in the opposite direction to the traveling wave v- f-
It shows that it is moving at a speed of u (f is the frequency of the traveling wave). The moving body 22 is driven in the direction opposite to the traveling wave by the frictional force between it and the vibrating body 23, and when the work done to the outside cannot be ignored with respect to this frictional force, the moving body 2
2 and the vibrating body 23, and the speed becomes smaller than V.

第2図は、圧電体21又は22の電気的等価回路図であ
り、圧電効果には寄与しない容量COと圧電効果に寄与
するり、C1,R,との並列に結合したものと考えられ
、Coに流れる電流は電気腕電流と呼ばれ、L、C1,
Rに流れる電流を機械腕電流と呼ばれる。前記機械腕電
流と前記短軸の振幅2uとは比例関係にある。機械腕の
アドミタンスY(s)は次式で与えられる。
FIG. 2 is an electrical equivalent circuit diagram of the piezoelectric body 21 or 22, and it is thought that the capacitance CO, which does not contribute to the piezoelectric effect, contributes to the piezoelectric effect, or is coupled in parallel with C1, R, The current flowing through Co is called electric arm current, and L, C1,
The current flowing through R is called the mechanical arm current. The mechanical arm current and the short axis amplitude 2u are in a proportional relationship. The admittance Y(s) of the mechanical arm is given by the following equation.

(Sはラプラス演算子 s=j 2πf)Y(s)=(
s/ L )/(s 2+(R/L)s+(1/LC1
))■(1)式において共振周波数は1/(2πLC1
)で与えられる。圧電体11.12に印加する電圧と周
波数を一定にしても、周囲温度や機械的負荷の変動によ
って、前記圧電体11.12の電気的アドミタンスが変
化して(R,L、C1が変化して)移動速度が変化して
しまう。
(S is Laplace operator s=j 2πf) Y(s)=(
s/L)/(s2+(R/L)s+(1/LC1
)) ■ In equation (1), the resonance frequency is 1/(2πLC1
) is given by Even if the voltage and frequency applied to the piezoelectric body 11.12 are constant, the electrical admittance of the piezoelectric body 11.12 changes due to changes in ambient temperature and mechanical load (R, L, C1 change). ) Movement speed changes.

以上に説明したように、超音波モータの移動速度は、進
行波の周波数Wと楕円運動の短軸Uの積で決まり、短軸
Uの大きさは機械腕電流に比例する。周波数Wの変動幅
に比べ短軸Uの変動幅は大きく、移動速度はほぼ機械腕
電流により決まる。
As explained above, the moving speed of the ultrasonic motor is determined by the product of the frequency W of the traveling wave and the short axis U of the elliptical motion, and the size of the short axis U is proportional to the mechanical arm current. The fluctuation range of the short axis U is larger than the fluctuation range of the frequency W, and the moving speed is determined almost by the mechanical arm current.

圧電体11.12の機械的負荷が一定であれば、電気的
インピーダンスは一定であり一定電圧、−定周波数であ
れば、機械腕電流は、一定である。。
If the mechanical load on the piezoelectric body 11, 12 is constant, the electrical impedance is constant, and if the voltage and frequency are constant, the mechanical arm current is constant. .

発明が解決しようとする課題 しかしながら、実際には、移動体が移動しているため機
械腕的負荷が変動したり、温度変化によって電気的イン
ピーダンスが変動し、その結果、機械腕電流が変化して
移動速度が太き(変動するという問題点や、実際には(
2)式どうりの機械腕電流が流れるのではな(、共振周
波数より低い周波数では機械腕電流は大幅に減少し、こ
の周波数領域では回転数が大幅に低下するか又は停止す
る。共振周波数近傍においても機械腕の各定数が少しで
も変化し共振周波数変化すると機械腕電流が大幅に減少
するため回転が不安定であるという問題点がある。
Problems to be Solved by the Invention However, in reality, as the moving body moves, the load on the mechanical arm fluctuates, and the electrical impedance fluctuates due to temperature changes, and as a result, the mechanical arm current changes. The problem is that the movement speed is large (varies), and in reality (
2) The mechanical arm current flows according to the formula (at frequencies lower than the resonant frequency, the mechanical arm current decreases significantly, and in this frequency range, the rotation speed decreases significantly or stops. Near the resonant frequency There is also a problem in that if the constants of the mechanical arm change even slightly and the resonance frequency changes, the mechanical arm current will decrease significantly, resulting in unstable rotation.

本発明は、上記の問題点を解決して、機械的負荷、温度
の各変動に対して、超音波モータの共振周波数近傍を除
き、前記共振周波数より高い周波数の周波電圧で駆動し
、機械腕電流の振幅を制御して、移動速度の変動の軽減
と回転の安定化を実現し、また移動速度の選べる、超音
波モータ装置を提供することにある。
The present invention solves the above-mentioned problems by driving the ultrasonic motor with a frequency voltage higher than the resonant frequency except in the vicinity of the resonant frequency in response to changes in mechanical load and temperature. An object of the present invention is to provide an ultrasonic motor device that controls the amplitude of the current, reduces fluctuations in moving speed, stabilizes rotation, and allows the user to select the moving speed.

課題を解決するための手段 圧電体に周波電圧の駆動信号を印加し、この圧電体と弾
性体とから構成される振動体に弾性波を励振することに
より前記振動体上に加圧接触して設置された移動体を移
動させる超音波モータにおいて、前記圧電体に流入する
機械腕電流の振幅を検出する手段を有し、前記超音波モ
ータの共振周波数近傍を除き、前記共振周波数より高い
周波数の周波電圧で駆動し、前記機械腕電流の振幅を所
定の大きさに制御する。
Means for Solving the Problems By applying a frequency voltage drive signal to a piezoelectric body and exciting an elastic wave to a vibrating body composed of the piezoelectric body and an elastic body, the piezoelectric body is brought into pressure contact with the vibrating body. An ultrasonic motor for moving an installed moving object has means for detecting the amplitude of a mechanical arm current flowing into the piezoelectric body, and detects a frequency higher than the resonance frequency except for a region near the resonance frequency of the ultrasonic motor. It is driven by a frequency voltage, and the amplitude of the mechanical arm current is controlled to a predetermined magnitude.

作用 超音波モータの共振周波数近傍を除き、前記共振周波数
より高い周波数の周波電圧で駆動し、圧電体に流入する
機械腕電流の振幅を検出する機械腕電流検出手段とを有
し、前記機械腕電流の振幅を所定値に制御することによ
り、振動体の進行波の振幅が所定の大きさになり、機械
的負荷、温度の各変動に対して移動速度の変動を軽減と
回転の安定化を実現し、また移動速度の選べる、超音波
モータ装置を提供する。機械腕電流の振幅を制御する具
体的方法例として、駆動電圧の周波数を変化させる方法
や駆動電圧の波形の振幅を変化させる方法がある。
a mechanical arm current detection means for detecting the amplitude of a mechanical arm current flowing into the piezoelectric body, the mechanical arm being driven by a frequency voltage higher than the resonant frequency except for the vicinity of the resonant frequency of the ultrasonic motor; By controlling the amplitude of the current to a predetermined value, the amplitude of the traveling wave of the vibrating body becomes a predetermined value, reducing fluctuations in moving speed and stabilizing rotation in response to changes in mechanical load and temperature. To provide an ultrasonic motor device that achieves this goal and allows you to select the moving speed. Examples of specific methods for controlling the amplitude of the mechanical arm current include a method of changing the frequency of the drive voltage and a method of changing the amplitude of the waveform of the drive voltage.

実施例 以下、図面に従って、本発明の実施例について詳細な説
明を行う。第1図は、超音波モータを駆動させる具体回
路のブロック図である。第2図は圧電体の等化回路であ
る。電極部7には圧電体9と抵抗素子5とを直列接続し
、第2図における圧電体の電気腕インピーダンス(L、
C□、Rの直列成分)との容量COと等しい容量のコン
デンサー11と抵抗素子5と等しい抵抗素子6を直列接
続し、前記圧電体と抵抗素子より成る直列接続体と並列
に接続する。電極部7の抵抗素子5と抵抗素子6の各電
位の差を差動増幅器14を用いて求めることにより、電
気腕電流jを相殺して機械腕電流fを検出する。機械腕
電流fは交流であるので振幅検出器13を用いて機械腕
電流振幅gを求め、機械腕電流振幅制御器12において
、機械腕電流振幅設定値りと比較する。前記機械腕電流
振幅信号gが機械腕電流設定値りより低いときには、駆
動周波数aを低くして、機械腕電流振幅信号gが機械腕
電流振幅設定値りと等しくなるように周波数制御信号i
を出力し、機械腕電流振幅信号gが機械腕電流振幅設定
値りより大きいときには、駆動周波数aを高くして、機
械腕電流振幅信号gが機械腕電流振幅設定値りと等しく
なるように周波数制御信号iを出力する。電圧制御周波
数発振器1は、周波数制御信号iに基づき、所定の駆動
周波数信号aを出力する。90”位相器2は、互いに時
間的に位相の90°異なる交流信号すと交流信号Cを出
力する。電力増幅器3.4は交流信号すと交流信号Cを
各々増幅し、電極部7、圧電体および電極部8.圧電体
10に駆動信号e、dを印加する。
EXAMPLES Hereinafter, examples of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram of a specific circuit for driving an ultrasonic motor. FIG. 2 shows a piezoelectric equalization circuit. A piezoelectric body 9 and a resistance element 5 are connected in series to the electrode part 7, and the electric arm impedance (L,
A capacitor 11 having a capacitance equal to the capacitance CO with respect to C (series components of C□, R) and a resistor element 6 equal to the resistor element 5 are connected in series, and are connected in parallel with the series connection body consisting of the piezoelectric body and the resistor element. By determining the potential difference between the resistive elements 5 and 6 of the electrode section 7 using the differential amplifier 14, the mechanical arm current f is detected by canceling the electrical arm current j. Since the mechanical arm current f is alternating current, the amplitude detector 13 is used to determine the mechanical arm current amplitude g, and the mechanical arm current amplitude controller 12 compares it with the mechanical arm current amplitude setting value. When the mechanical arm current amplitude signal g is lower than the mechanical arm current amplitude setting value, the driving frequency a is lowered and the frequency control signal i is set so that the mechanical arm current amplitude signal g becomes equal to the mechanical arm current amplitude setting value.
is output, and when the mechanical arm current amplitude signal g is larger than the mechanical arm current amplitude setting value, the driving frequency a is increased and the frequency is increased so that the mechanical arm current amplitude signal g becomes equal to the mechanical arm current amplitude setting value. Outputs control signal i. The voltage controlled frequency oscillator 1 outputs a predetermined drive frequency signal a based on the frequency control signal i. The 90" phase shifter 2 outputs the AC signal C and the AC signal C whose phases are different from each other by 90 degrees in time. The power amplifier 3.4 amplifies the AC signal C and the AC signal C, respectively. Body and electrode part 8. Drive signals e and d are applied to the piezoelectric body 10.

第3図は、本実施例に用いた超音波モータの一定な温度
、負荷時の回転数と機械腕電流の振幅の周波数特性曲線
の実験値である。また第第■式にもとづき、電圧一定と
して計算した機械腕電流の振幅の周波数特性曲線の計算
値を並記する。計算値では機械腕電流の振幅は共振周波
数に対称であるが実験値は、共振周波数より低い周波数
では機械腕電流は大幅に減少し、この周波数領域では回
転数が大幅に低下するか又は停止する。共振周波数近傍
においても機械腕の各定数が少しでも変化し共振周波数
近傍すると機械腕電流が大幅に減少するため回転が不安
定である。よって駆動周波数が共振周波数より高い周波
数領域においてのみ安定に回転する。そのため本発明で
は回転の不安定な領域、すなわち共振周波数近傍を除き
、前記共振周波数より高い周波数の周波電圧で駆動する
FIG. 3 shows experimental values of the frequency characteristic curve of the rotation speed and the amplitude of the mechanical arm current at a constant temperature and load of the ultrasonic motor used in this example. Also, based on Equation (2), the calculated values of the frequency characteristic curve of the amplitude of the mechanical arm current calculated assuming a constant voltage are also listed. The calculated value shows that the amplitude of the mechanical arm current is symmetrical to the resonant frequency, but the experimental value shows that at frequencies lower than the resonant frequency, the mechanical arm current decreases significantly, and in this frequency range, the rotation speed decreases significantly or stops. . Even in the vicinity of the resonance frequency, each constant of the mechanical arm changes even slightly, and when the constant of the mechanical arm approaches the resonance frequency, the mechanical arm current decreases significantly, making the rotation unstable. Therefore, it rotates stably only in a frequency range where the drive frequency is higher than the resonance frequency. Therefore, in the present invention, the motor is driven with a frequency voltage higher than the resonant frequency, except in an unstable region of rotation, that is, near the resonant frequency.

以下、本実施例の動作を第3図を用いて説明する。モー
タ起動時、例えば駆動開始点がA点にあるとすると、機
械腕電流の振幅は設定値よりも小さいため、駆動周波数
を減少させて動作点をA点からB点に移動させ機械腕電
流の振幅を機械腕電流振幅設定値に一致させる。逆に動
作点がC点の位置のような位置にあり、機械腕電流の振
幅が設定値よりも大きい時には、駆動周波数を増加させ
て動作点をC点からB点に移動させ機械腕電流の振幅を
機械腕電流振幅設定値りに一致させる。
The operation of this embodiment will be explained below with reference to FIG. When starting the motor, for example, if the drive start point is at point A, the amplitude of the mechanical arm current is smaller than the set value, so the driving frequency is decreased to move the operating point from point A to point B, and the mechanical arm current is changed. Match the amplitude to the mechanical arm current amplitude setting. Conversely, when the operating point is at a position such as point C and the amplitude of the mechanical arm current is larger than the set value, the driving frequency is increased to move the operating point from point C to point B, and the mechanical arm current is increased. Match the amplitude to the mechanical arm current amplitude setting value.

結局動作点は、B点近傍に収束し、超音波モータには設
定値に等しい機械腕電流が流れ移動体は機械腕電流に比
例した回転数で回転する。回転中に、機械的負荷、温度
、駆動電圧の各変動によって圧電体のインピーダンスが
変化しても、前述のように動作点は常にB点にあるよう
に周波数自動追尾がかかり、常に超音波モータには設定
値に等しい振幅の機械腕電流が流れ移動体は第0式にも
とづき、回転するが、周波数の変化幅はUの変動幅に比
べ十分小さいので機械腕電流の振幅にはば比例した回転
数で回転する。
Eventually, the operating point converges near point B, and a mechanical arm current equal to the set value flows through the ultrasonic motor, causing the moving body to rotate at a rotational speed proportional to the mechanical arm current. Even if the impedance of the piezoelectric body changes due to variations in mechanical load, temperature, and drive voltage during rotation, automatic frequency tracking is applied so that the operating point is always at point B as described above, and the ultrasonic motor is always A mechanical arm current with an amplitude equal to the set value flows and the moving object rotates based on the 0th equation, but the frequency change width is sufficiently small compared to the fluctuation range of U, so it is proportional to the amplitude of the mechanical arm current. Rotates at the number of revolutions.

以上のように回転の不安定な共振周波数近傍を除き、前
記共振周波数より高い周波数の周波電圧で駆動し、かつ
機械腕電流の振幅にしたがって駆動周波数を決めること
により、機械腕電流の振幅を機械腕電流振幅設定値に制
御でき、機械的負荷、温度、電源電圧の各変動に対し、
回転数の変動を軽減することができる。また、機械腕電
流設定値りを変えることにより、第4図の範囲で、任意
に回転数の大きさを選ぶことができる。
As described above, the amplitude of the mechanical arm current can be controlled by driving with a frequency voltage higher than the resonance frequency, excluding the vicinity of the resonance frequency where rotation is unstable, and by determining the driving frequency according to the amplitude of the mechanical arm current. The arm current amplitude can be controlled to the set value, and can be controlled against changes in mechanical load, temperature, and power supply voltage.
Fluctuations in rotational speed can be reduced. Further, by changing the mechanical arm current setting value, the rotation speed can be arbitrarily selected within the range shown in FIG.

第5図は、本発明の超音波モータの駆動方法を実現する
他の一実施例の具体回路のブロック図である。90°位
相器2、機械腕電流検出器5、機械腕電流検出器出器8
は第一の実施例と同じであるので説明は省略する。
FIG. 5 is a block diagram of a concrete circuit of another embodiment for realizing the ultrasonic motor driving method of the present invention. 90° phase shifter 2, mechanical arm current detector 5, mechanical arm current detector output 8
Since it is the same as the first embodiment, the explanation will be omitted.

特開昭60−233641号公報に示すように、位相検
出器51において、機械腕電流fとその印加電圧mとの
位相差k(以下、位相差にと呼ぶ)を検出し、機械腕電
流位相制御器52において位相差kが位相差設定値に等
しくなるように周波数制御信号iを電圧制御周波数発振
器1に出力する。増幅度可変電力増幅器3.4は増幅度
制御信号mにより増幅度の可変な電力増幅器である。
As shown in Japanese Unexamined Patent Publication No. 60-233641, a phase detector 51 detects a phase difference k (hereinafter referred to as phase difference) between a mechanical arm current f and its applied voltage m, and determines the mechanical arm current phase. The controller 52 outputs the frequency control signal i to the voltage controlled frequency oscillator 1 so that the phase difference k becomes equal to the phase difference setting value. The variable amplification power amplifier 3.4 is a power amplifier whose amplification is variable according to the amplification control signal m.

駆動信号dと駆動信号eの波形の振幅は同じとする。機
械腕電流振幅制御器12は機械腕電流振幅gと機械腕電
流振幅設定値りが等しくなるように増幅度制御信号mを
出力する。
It is assumed that the waveform amplitudes of the drive signal d and the drive signal e are the same. The mechanical arm current amplitude controller 12 outputs an amplification degree control signal m so that the mechanical arm current amplitude g and the mechanical arm current amplitude setting value are equal.

第6図は、第2の実施例に用いた超音波モータの一定な
温度、負荷時の、機械腕電流の振幅、位相差の周波数特
性曲線である。周波数によって位相差kが位相設定値と
等しくなっている回転状態において、回転数を上げるに
は駆動信号e、dの振幅を上げて機械腕電流の振幅を増
加させ、逆に回転数を上げるには駆動信号e、dの振幅
を下げて機械腕電流の振幅を減少させればよいことがわ
かる。
FIG. 6 is a frequency characteristic curve of the amplitude and phase difference of the mechanical arm current of the ultrasonic motor used in the second embodiment at a constant temperature and load. In a rotating state where the phase difference k is equal to the phase setting value depending on the frequency, to increase the rotation speed, increase the amplitude of the drive signals e and d to increase the amplitude of the mechanical arm current; It can be seen that the amplitude of the mechanical arm current can be reduced by lowering the amplitude of the drive signals e and d.

以下本実施例の動作を第6図を用いて説明する。位相に
よる周波数追尾、例えば駆動開始点がE点にあるとする
と、機械腕電流の振幅は設定値よりも小さいため、駆動
信号e、dの振幅を減少させて動作点をE点からD点に
移動させ機械腕電流の振幅を機械腕電流振幅設定値に一
致させる。
The operation of this embodiment will be explained below with reference to FIG. Frequency tracking by phase, for example, if the drive start point is at point E, the amplitude of the mechanical arm current is smaller than the set value, so the amplitude of the drive signals e and d is decreased to move the operating point from point E to point D. Move the mechanical arm current amplitude to match the mechanical arm current amplitude setting value.

逆に動作点がF点ののような位置にあり、機械腕電流の
振幅が設定値よりも大きい時には、駆動信号e、dの振
幅を増加させて動作点をF点からD点に移動させ機械腕
電流の振幅を機械腕電流振幅設定値に一致させる。
Conversely, when the operating point is at a position such as point F and the amplitude of the mechanical arm current is larger than the set value, the amplitude of drive signals e and d is increased to move the operating point from point F to point D. Match the amplitude of the mechanical arm current to the mechanical arm current amplitude setting value.

結局動作点は、D点近傍に収束し、超音波モータには設
定値に等しい機械腕電流が流れ移動体は機械腕電流に比
例した回転数で回転する。回転中に、機械的負荷、温度
の各変動によって圧電体のインピーダンスが変化しても
、前述のように動作点は常にD点にあるように駆動信号
A、Bの振幅が制御され、常に超音波モータには機械腕
電流振幅設定値に等しい振幅の機械腕電流が流れ移動体
は機械腕電流の振幅に比例した回転数で回転する。
Eventually, the operating point converges near point D, and a mechanical arm current equal to the set value flows through the ultrasonic motor, causing the moving body to rotate at a rotational speed proportional to the mechanical arm current. Even if the impedance of the piezoelectric body changes due to changes in mechanical load and temperature during rotation, the amplitudes of the drive signals A and B are controlled so that the operating point is always at point D as described above, and the amplitude of the drive signals A and B is always kept at point D. A mechanical arm current having an amplitude equal to the mechanical arm current amplitude setting value flows through the sonic motor, and the moving body rotates at a rotation speed proportional to the amplitude of the mechanical arm current.

なお第2の実施例では電力増幅器の増幅度を変化させて
駆動信号の波形の振幅を変化させたが、パルス幅変調(
PWM)等で等価的に回転に寄与する駆動周波数成分の
振幅を変化させてもよい。
In the second embodiment, the amplitude of the drive signal waveform was changed by changing the amplification degree of the power amplifier, but pulse width modulation (
PWM) or the like may be used to equivalently change the amplitude of the drive frequency component that contributes to the rotation.

また、本実施例の説明では、円板型超音波モータを用い
て説明したが、本発明は、円板型超音波モータに限定さ
れるものではな(、円環型超音波モータや直線移動のリ
ニア超音波モータにも適応できる。
Furthermore, although the present embodiment has been explained using a disc type ultrasonic motor, the present invention is not limited to the disc type ultrasonic motor (an annular type ultrasonic motor, a linear movement motor, etc.). It can also be applied to linear ultrasonic motors.

発明の効果 以上に説明したように、共振周波数近傍を除き、この共
振周波数より高い周波数領域の周波電圧でのみ回転が安
定し、かつ超音波モータの機械腕電流の振幅と回転数が
比例関係にあることを考慮し、機械腕電流の振幅を検出
する手段を設けて、機械腕電流の振幅に応じて、例えば
駆動周波数、または2つの駆動信号の波形の振幅を変化
させて、機械腕電流の振幅を常に一定に制御すると、超
音波モータの機械的負荷、温度の各変動に対し移動体の
移動速度の変動を小さ(できる。また駆動周波数によっ
て機械腕電流の振幅を制御する場合には、電源電圧変動
に対しても回転数の変動を軽減することができる。また
機械腕電流の設定値を選ぶことにより移動速度を選択で
き、これらの実用的効果は大きい。これらの効果により
超音波モータの利用範囲が拡大し、例えば、自動車、航
空機、船舶等の輸送機のように電圧変動や温度変動の激
しい所にも超音波モータの応用が可能となる。
Effects of the Invention As explained above, rotation is stable only at frequency voltages in a frequency range higher than the resonance frequency, except near the resonance frequency, and the amplitude of the mechanical arm current of the ultrasonic motor and the rotation speed are in a proportional relationship. Taking this into consideration, a means for detecting the amplitude of the mechanical arm current is provided, and the driving frequency or the amplitude of the waveforms of the two driving signals is changed depending on the amplitude of the mechanical arm current. If the amplitude is always controlled at a constant value, the fluctuations in the moving speed of the moving object can be minimized due to changes in the mechanical load of the ultrasonic motor and temperature.Also, when controlling the amplitude of the mechanical arm current by the drive frequency, It is possible to reduce fluctuations in the rotation speed due to fluctuations in the power supply voltage.Moreover, by selecting the set value of the mechanical arm current, the moving speed can be selected, which has great practical effects.These effects make it possible to The scope of use of ultrasonic motors has expanded, and it has become possible to apply ultrasonic motors to places where voltage and temperature fluctuations are severe, such as in transportation vehicles such as automobiles, aircraft, and ships.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の超音波モータの駆動装置の
ブロック図、第2図は同モータの電気等価回路図、第3
図は第1図の構成における超音波モータの回転数と機械
腕電流の振幅の実施例の周波数特性曲線と機械腕電流の
振幅の計算値の周波数特性曲線、第4図は同モータの回
転数と機械腕電流の大きさの関係を示す特性図、第5図
は本発明の異なる実施例の超音波モータの駆動装置のブ
ロック図、第6図は機械腕電流の振幅、位相差の周波数
特性曲線、第7図は円板型超音波モータの分解斜視図、
第8図は同モータの原理説明図である。 1・・・電圧制御周波数発振器、2・・・90°位相器
、3.4・・・・・・電力増幅器、9.10・・・超音
波モータの圧電体12・・・機械腕電流検出器、13・
・・振幅検出器、14・・・差動増幅器。 代理人の氏名 弁理士 中尾敏男 はが1名第3図  
   h、−徹桓H■唱歌イl第4図 形1弦I宛9誠組ので1喘 況         − 区          嚢裏@−彌吐 [F]      ミ           を恢 2/、22−一万電穣 ?3−−−込動抹 zs−aIk部 23−1シシ!ff4本
FIG. 1 is a block diagram of an ultrasonic motor driving device according to an embodiment of the present invention, FIG. 2 is an electrical equivalent circuit diagram of the motor, and FIG.
The figure shows an example frequency characteristic curve of the rotational speed of the ultrasonic motor and the amplitude of the mechanical arm current in the configuration shown in Fig. 1, and a frequency characteristic curve of the calculated value of the amplitude of the mechanical arm current, and Fig. 4 shows the rotational speed of the same motor. FIG. 5 is a block diagram of an ultrasonic motor drive device according to a different embodiment of the present invention, and FIG. 6 is a characteristic diagram showing the amplitude and phase difference frequency characteristics of the mechanical arm current. curve, Figure 7 is an exploded perspective view of a disc-type ultrasonic motor,
FIG. 8 is a diagram explaining the principle of the motor. 1... Voltage controlled frequency oscillator, 2... 90° phase shifter, 3.4... Power amplifier, 9.10... Piezoelectric body of ultrasonic motor 12... Mechanical arm current detection Vessel, 13.
... Amplitude detector, 14... Differential amplifier. Name of agent: Patent attorney Toshio Nakao (1 person) Figure 3
h, - Tetsuhan H ■ Singing I l 4th figure 1st string I 9 Makoto group so 1st condition - Ward bag back @ - Yatou [F] Mi wo 2/, 22-10,000 electric lines? 3---Including movement zs-aIk part 23-1! 4 ffs

Claims (3)

【特許請求の範囲】[Claims] (1) 圧電体に周波電圧の駆動信号を印加する手段と
、前記圧電体と弾性体とから構成される振動体と、前記
振動体上に加圧接触して装置される移動体と、前記駆動
信号にもとづき前記圧電体に流入する機械腕電流の振幅
を検出する手段を具備し、前記駆動信号は前記圧電体の
共振周波数近傍を除き、その共振周波数より高い周波数
の周波電圧とし、前記駆動信号でもって前記機械腕電流
の振幅を所定の大きさに制御することを特徴とする超音
波モータ駆動装置。
(1) means for applying a frequency voltage drive signal to a piezoelectric body; a vibrating body composed of the piezoelectric body and an elastic body; a movable body that is placed in pressurized contact with the vibrating body; The drive signal includes means for detecting the amplitude of the mechanical arm current flowing into the piezoelectric body based on a drive signal, and the drive signal is a frequency voltage having a frequency higher than the resonance frequency of the piezoelectric body except near the resonance frequency, and the drive signal is a frequency voltage higher than the resonance frequency of the piezoelectric body, An ultrasonic motor drive device characterized in that the amplitude of the mechanical arm current is controlled to a predetermined magnitude using a signal.
(2) 駆動信号の周波数を変化させて、機械腕電流の
振幅を所定の大きさに制御することを特徴とする特許請
求の範囲第1項記載の超音波モータ駆動装置。
(2) The ultrasonic motor drive device according to claim 1, wherein the amplitude of the mechanical arm current is controlled to a predetermined magnitude by changing the frequency of the drive signal.
(3) 駆動信号の波形の振幅を変化させて、機械腕電
流の振幅を所定の大きさに制御することを特徴とする特
許請求の範囲第1項記載の超音波モータ駆動装置。
(3) The ultrasonic motor drive device according to claim 1, wherein the amplitude of the mechanical arm current is controlled to a predetermined magnitude by changing the amplitude of the waveform of the drive signal.
JP63020530A 1988-01-29 1988-01-29 Ultrasonic motor driving method Expired - Lifetime JPH0736710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63020530A JPH0736710B2 (en) 1988-01-29 1988-01-29 Ultrasonic motor driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63020530A JPH0736710B2 (en) 1988-01-29 1988-01-29 Ultrasonic motor driving method

Publications (2)

Publication Number Publication Date
JPH01198282A true JPH01198282A (en) 1989-08-09
JPH0736710B2 JPH0736710B2 (en) 1995-04-19

Family

ID=12029711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63020530A Expired - Lifetime JPH0736710B2 (en) 1988-01-29 1988-01-29 Ultrasonic motor driving method

Country Status (1)

Country Link
JP (1) JPH0736710B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0426382A (en) * 1990-05-16 1992-01-29 Matsushita Electric Ind Co Ltd Driving method for ultrasonic motor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6434185A (en) * 1987-02-09 1989-02-03 Nikon Corp Power source frequency optimizing device for ultrasonic motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6434185A (en) * 1987-02-09 1989-02-03 Nikon Corp Power source frequency optimizing device for ultrasonic motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0426382A (en) * 1990-05-16 1992-01-29 Matsushita Electric Ind Co Ltd Driving method for ultrasonic motor

Also Published As

Publication number Publication date
JPH0736710B2 (en) 1995-04-19

Similar Documents

Publication Publication Date Title
EP0602635B1 (en) A method and an apparatus for controlling a moving velocity of an ultrasonic motor
JPH06237584A (en) Speed control method and speed controller for ultrasonic motor
JPS6356178A (en) Driving of ultrasonic motor
JPH01198282A (en) Driver for supersonic motor
JPH01160379A (en) Driving gear of ultrasonic motor
JP2986654B2 (en) Piezoelectric vibration control device
JPS622869A (en) Supersonic motor drive device
JPH01321876A (en) Ultrasonic motor driving device
JPH027879A (en) Driver of ultrasonic motor
JP2548248B2 (en) Ultrasonic motor controller
JP2537996B2 (en) Ultrasonic motor drive
JP2650337B2 (en) Ultrasonic motor drive
JP2506895B2 (en) Ultrasonic motor controller
JP2683237B2 (en) Ultrasonic motor drive circuit
JPS63262072A (en) Ultrasonic motor device
JP2001078472A5 (en)
JPH02101974A (en) Ultrasonic motor drive
JP2794692B2 (en) Ultrasonic motor drive circuit
JP2577485B2 (en) Driving method of ultrasonic motor
JP2689435B2 (en) Ultrasonic motor drive
JPH0667233B2 (en) Ultrasonic motor device
JPH01114379A (en) Ultrasonic motor device
JP3240071B2 (en) Ultrasonic motor drive
JPH04140077A (en) Drive control of ultrasonic motor
JPH06276768A (en) Control device for supersonic motor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080419

Year of fee payment: 13