JPH0710187B2 - Ultrasonic motor driving method - Google Patents
Ultrasonic motor driving methodInfo
- Publication number
- JPH0710187B2 JPH0710187B2 JP61199634A JP19963486A JPH0710187B2 JP H0710187 B2 JPH0710187 B2 JP H0710187B2 JP 61199634 A JP61199634 A JP 61199634A JP 19963486 A JP19963486 A JP 19963486A JP H0710187 B2 JPH0710187 B2 JP H0710187B2
- Authority
- JP
- Japan
- Prior art keywords
- frequency
- driving
- voltage
- resonance frequency
- drive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/10—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
- H02N2/14—Drive circuits; Control arrangements or methods
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/10—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
- H02N2/16—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
- H02N2/163—Motors with ring stator
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は圧電体を用いて駆動力を発生する超音波モータ
の駆動方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of driving an ultrasonic motor that uses piezoelectric material to generate a driving force.
従来の技術 近年圧電セラミック等の圧電体を用いた駆動体に弾性振
動を励振し、これを駆動力とした超音波モータが注目さ
れている。2. Description of the Related Art In recent years, attention has been paid to ultrasonic motors that use elastic vibration as a driving force by exciting elastic vibration in a driving body that uses a piezoelectric body such as a piezoelectric ceramic.
以下、図面を参照しながら超音波モータの従来技術につ
いて説明を行う。Hereinafter, a conventional technique of an ultrasonic motor will be described with reference to the drawings.
第4図は従来の超音波モータの斜視図であり、円環形の
弾性体1の円環面の一方に圧電体として円環形圧電セラ
ミック2を貼合せて圧電駆動体3を構成している。4は
耐磨耗性材料のスライダ、5は弾性体であり、互いに貼
合せられて移動体6を構成している。移動体6はスライ
ダ4を介して駆動体3と接触している。圧電体2に電界
を印加すると駆動体3の周方向に曲げ振動の進行波が励
起され、移動体6を駆動する。尚、同図中の矢印は移動
体6の回転方向を示す。FIG. 4 is a perspective view of a conventional ultrasonic motor, in which a ring-shaped piezoelectric ceramic 2 is bonded as a piezoelectric body to one of the ring-shaped surfaces of a ring-shaped elastic body 1 to form a piezoelectric driver 3. Reference numeral 4 is a slider made of a wear resistant material, and 5 is an elastic body, which are bonded to each other to form a moving body 6. The moving body 6 is in contact with the driving body 3 via the slider 4. When an electric field is applied to the piezoelectric body 2, a traveling wave of bending vibration is excited in the circumferential direction of the driving body 3 to drive the moving body 6. The arrow in the figure indicates the rotation direction of the moving body 6.
第5図は第4図の超音波モータに使用した圧電セラミッ
ク2の電極構造の一例を示している。同図では円周方向
に9波長の弾性波がのるようにしてある。同図におい
て、A、Bはそれぞれ2分の1波長相当の小領域から成
る電極で、Cは4分の3波長、Dは4分の1波長の流さ
の電極である。従って、Aの電極とBの電極とは位置的
に4分の1波長(=90度)の位相ずれがある。電極A、
B内の隣り合う小電極部は互いに反対に厚み方向に分極
されている。圧電セラミック2の弾性体1との接着面は
第5図に示めされた面と反対の面であり、電極はベタ電
極である。使用時には電極群A、Bは第5図に斜線で示
されたように、それぞれ短絡して用いられる。FIG. 5 shows an example of the electrode structure of the piezoelectric ceramic 2 used in the ultrasonic motor of FIG. In the figure, elastic waves of 9 wavelengths are arranged in the circumferential direction. In the figure, A and B are electrodes each consisting of a small region corresponding to a half wavelength, C is a three quarter wavelength, and D is a quarter wavelength electrode. Therefore, the A electrode and the B electrode have a positional phase shift of ¼ wavelength (= 90 degrees). Electrode A,
Adjacent small electrode portions in B are polarized in the thickness direction opposite to each other. The surface of the piezoelectric ceramic 2 bonded to the elastic body 1 is the surface opposite to the surface shown in FIG. 5, and the electrode is a solid electrode. When used, the electrode groups A and B are short-circuited and used as indicated by the hatched lines in FIG.
以上のように構成された超音波モータについて、その動
作を以下に説明する。前記圧電体2の電極Aに V=V1×sin(ωt) …(1) で表される電圧を印加すると(ただしV1は電圧の瞬時
値、ωは角周波数、tは時間)、駆動体3は円周方向に
曲げ振動をする。The operation of the ultrasonic motor configured as described above will be described below. When a voltage represented by V = V 1 × sin (ωt) (1) is applied to the electrode A of the piezoelectric body 2 (where V 1 is an instantaneous value of voltage, ω is an angular frequency, and t is time), driving The body 3 vibrates flexurally in the circumferential direction.
第6図は第4図の超音波モータの駆動体を直線近似した
時の斜視図であり、同図(a)は圧電体2に電圧を印加
していない時、同図(b)は圧電体2に電圧を印加した
時の様子を示す。FIG. 6 is a perspective view when the driving body of the ultrasonic motor of FIG. 4 is linearly approximated. FIG. 6A shows the piezoelectric body 2 when no voltage is applied, and FIG. 6B shows the piezoelectric body. A state when a voltage is applied to the body 2 is shown.
第7図は移動体6と駆動体3の接触状況を拡大して描い
たものである。前記圧電体2の電極AにV1×sin(ω
t)、他の電極BにV1×cos(ωt)の互いに位相がπ/
2だけずれた電圧を印加すれば、駆動体3の円周方向に
曲げ振動の進行波を作ることができる。一般に進行波は
振幅をξとすれば ξ=ξ1×cos(ωt−kx) …(2) ただし ξ1:波の大きさの瞬時値 k:波数(2π/λ) λ:波長 x:位置 で表せる。(2)式は ξ=ξ1×(cos(ωt)×cos(kx) +sin(ωt)×sin(kx)) …(3) と書き直せ、(3)式は進行波が時間的にπ/2だけ位相
のずれた波cos(ωt)とsin(ωt)、および位置的に
π/2だけ位相のずれたcos(kx)とsin(kx)との、それ
ぞれの積の和で得られることを示している。前述の説明
により、圧電体2は互いに位置的にπ/2(=λ/4)だけ
位相のずれた電極群A、Bを持っているので、駆動体3
の共振周波数に等しい周波数出力を持つ発振器の出力か
ら、それぞれに時間的に位相のπ/2だけずれた交流電圧
を作り、前記電極群に印加すれば駆動体3に曲げ振動の
進行波を作れる。FIG. 7 is an enlarged view of the contact state between the moving body 6 and the driving body 3. V 1 × sin (ω
t), the phase of V 1 × cos (ωt) relative to the other electrode B is π /
If a voltage deviated by 2 is applied, a traveling wave of bending vibration can be generated in the circumferential direction of the driving body 3. Generally, when the amplitude of a traveling wave is ξ, ξ = ξ 1 × cos (ωt−kx) (2) where ξ 1 is the instantaneous value of the wave size k: wave number (2π / λ) λ: wavelength x: position Can be expressed as Equation (2) can be rewritten as ξ = ξ 1 × (cos (ωt) × cos (kx) + sin (ωt) × sin (kx)) (3), and in Equation (3), the traveling wave is temporally π / Obtained by the sum of the products of the waves cos (ωt) and sin (ωt) that are phase-shifted by 2 and cos (kx) and sin (kx) that are phase-shifted by π / 2. Is shown. According to the above description, the piezoelectric body 2 has the electrode groups A and B that are phase-shifted from each other by π / 2 (= λ / 4).
An alternating voltage with a phase shift of π / 2 is generated from the output of the oscillator having a frequency output equal to the resonance frequency of the above, and applied to the electrode group to generate a traveling wave of bending vibration in the driving body 3. .
第7図は駆動体のA点が進行波の励起によって、長軸2
w、短軸2uの楕円運動をしている様子を示し、駆動体3
上に置かれた移動体6が楕円の頂点で接触することによ
り、波の進行方向とは逆方向にv=ω×uの速度で運動
する様子を示している。即ち移動体6は任意の静圧で駆
動体3に押し付けられて、駆動体3の表面に接触し、移
動体6と駆動体3との摩擦力で波の進行方向と逆方向に
速度vで駆動される。Fig. 7 shows that the point A of the driver is excited by the traveling wave and the long axis 2
w, showing the elliptical motion of the short axis 2u, the driver 3
It is shown that the moving body 6 placed on top of the ellipse moves at a velocity of v = ω × u in the direction opposite to the traveling direction of the wave when the moving body 6 contacts at the apex of the ellipse. That is, the moving body 6 is pressed against the driving body 3 with an arbitrary static pressure, comes into contact with the surface of the driving body 3, and the frictional force between the moving body 6 and the driving body 3 causes the moving body 6 to move at a velocity v in the direction opposite to the traveling direction of the wave. Driven.
上記の楕円の短軸(進行方向)は、波の振幅に比例して
いるので、速度を大きくするためには波の振幅を大きく
しなければならない。また、波の振幅を低電圧で大きく
するためには駆動体の共振周波数近傍で駆動しなければ
ならない。ところが駆動体の共振周波数は温度や負荷の
変動によって変化するので、従来のように一定周波数で
駆動したのでは、駆動周波数と共振周波数の相対的関係
が変化して超音波モータの特性が変化してしまう。Since the minor axis (traveling direction) of the ellipse is proportional to the amplitude of the wave, the amplitude of the wave must be increased in order to increase the velocity. Also, in order to increase the amplitude of the wave at a low voltage, the drive must be driven near the resonance frequency of the drive. However, since the resonance frequency of the driver changes due to temperature and load fluctuations, driving with a constant frequency as in the past changes the relative relationship between the drive frequency and the resonance frequency and changes the characteristics of the ultrasonic motor. Will end up.
発明が解決しようとする問題点 以上、説明した様に従来の超音波モータは、時間的に位
相がπ/2だけ異なる一定周波数の2つの交流電圧を駆動
信号として用いていた。そのため温度や負荷が変動して
駆動体の共振周波数が変化すると、共振周波数と駆動周
波数の関係が変化して、モータの特性が急激に変わって
しまうという問題点があった。Problems to be Solved by the Invention As described above, the conventional ultrasonic motor uses two AC voltages having a constant frequency whose phases are temporally different by π / 2 as drive signals. Therefore, when the resonance frequency of the driving body changes due to changes in temperature and load, the relationship between the resonance frequency and the driving frequency changes, and the characteristics of the motor change abruptly.
本発明はかかる点に鑑みてなされたもので、温度や負荷
が変化しても、常に安定な動作をする超音波モータを提
供することを目的としている。The present invention has been made in view of the above points, and an object of the present invention is to provide an ultrasonic motor that always operates stably even if the temperature or load changes.
問題点を解決するための手段 駆動体の共振周波数がその範囲内に含まれるように設定
された周波数可変範囲内を、交流駆動電圧の周波数を低
いほうから高いほうへ掃引して、該駆動体の共振周波数
を検知し、駆動体を構成する圧電体に印加する交流駆動
電圧の駆動周波数が、駆動体の反共振周波数より低く共
振周波数より高くなるように設定する。Means for Solving the Problems A resonant frequency of the driver is swept within a frequency variable range set so as to fall within the range, and the frequency of the AC drive voltage is swept from the lower side to the higher side, and the driver is driven. The resonance frequency is detected, and the driving frequency of the AC driving voltage applied to the piezoelectric body forming the driving body is set to be lower than the anti-resonance frequency of the driving body and higher than the resonance frequency.
作 用 交流駆動電圧の周波数を低いほうから高いほうへ掃引し
て、駆動体の共振周波数を検知することにより、駆動体
の非線形体による共振周波数のヒステリシスの最大値を
求め、駆動体を構成する圧電体に印加する交流駆動電圧
の駆動周波数が、駆動体の反共振周波数より低く共振周
波数より高くなるように設定することにより、温度や負
荷が変動して駆動体の共振周波数が変化しても、その変
化に対応して駆動周波数を適切な周波数に変えられるの
で、常に安定な動作をする超音波モータを提供すること
ができる。Operation Sweep the frequency of the AC drive voltage from low to high and detect the resonance frequency of the driving body to obtain the maximum value of the resonance frequency hysteresis due to the nonlinear body of the driving body, and configure the driving body. By setting the drive frequency of the AC drive voltage applied to the piezoelectric body so that it is lower than the antiresonance frequency of the drive body and higher than the resonance frequency, even if the resonance frequency of the drive body changes due to temperature or load fluctuations. Since the drive frequency can be changed to an appropriate frequency according to the change, it is possible to provide an ultrasonic motor that always operates stably.
実施例 以下、図面に従って本発明の一実施例について詳細な説
明を行う。Embodiment Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.
第1図は本発明の超音波モータの駆動方法を実現する具
体回路のブロック図である。この回路が動作を開始する
と、掃引制御器12が制御電圧発生器13に電圧を掃引させ
る。この掃引電圧は、電圧制御発振器7の制御端子Tに
入力される。すると、電圧制御発振器7の出力周波数は
掃引電圧に従って掃引される。ここで掃引電圧は駆動体
の共振周波数が必ず掃引範囲内に入るように設定する。
電圧制御発振器7の出力は2つに分けられ、一方は90度
位相器8を通して電力増幅器9に、他方はそのまま電力
増幅器10にそれぞれ入力されて、駆動体3を駆動するの
に必要な値にまで増幅される。電力増幅器9、10の出力
は、超音波モータの駆動体3を構成する圧電体2にそれ
ぞれ印加されて、駆動体3を駆動する。FIG. 1 is a block diagram of a specific circuit for realizing the ultrasonic motor driving method of the present invention. When the circuit starts operating, the sweep controller 12 causes the control voltage generator 13 to sweep the voltage. This sweep voltage is input to the control terminal T of the voltage controlled oscillator 7. Then, the output frequency of the voltage controlled oscillator 7 is swept according to the sweep voltage. Here, the sweep voltage is set so that the resonance frequency of the driver always falls within the sweep range.
The output of the voltage controlled oscillator 7 is divided into two, one of which is input to the power amplifier 9 through the 90-degree phase shifter 8 and the other of which is directly input to the power amplifier 10 to have a value necessary to drive the driver 3. Is amplified up to. The outputs of the power amplifiers 9 and 10 are respectively applied to the piezoelectric bodies 2 forming the driving body 3 of the ultrasonic motor to drive the driving body 3.
駆動体3の入力端子には抵抗11が接続されており、駆動
体3に流れる電流を抵抗11の両端電圧により、電流検出
器14で検出する。また、電圧検出器15は駆動体3に印加
される駆動電圧を検出する。位相差検出器16は電流検出
器14と電圧検出器15の出力から、電流電圧の位相差に比
例した電圧を発生する。位相差検出器16の出力は、位相
範囲比較器17の1入力と記憶器18にそれぞれ入力され
る。記憶器18には最小値判別器19が接続され、電流電圧
の位相差の最小値を判別して、その時の駆動周波数を駆
動周波数制御器20に記憶させる。共振周波数の検知が終
わると駆動周波数制御器20は既に記憶した共振周波数よ
り、駆動周波数を共振周波数と反共振周波数の間の値に
なるように駆動周波数を設定し、その周波数に対応する
電圧を制御電圧発生器13に発生させる。The resistor 11 is connected to the input terminal of the driving body 3, and the current flowing through the driving body 3 is detected by the current detector 14 by the voltage across the resistor 11. Further, the voltage detector 15 detects the drive voltage applied to the driving body 3. The phase difference detector 16 generates a voltage proportional to the phase difference between current and voltage from the outputs of the current detector 14 and the voltage detector 15. The output of the phase difference detector 16 is input to the 1 input of the phase range comparator 17 and the memory 18, respectively. A minimum value discriminator 19 is connected to the storage device 18, discriminates the minimum value of the phase difference between the current and voltage, and the drive frequency controller 20 stores the drive frequency at that time. When the detection of the resonance frequency is finished, the drive frequency controller 20 sets the drive frequency from the already stored resonance frequency so that the drive frequency becomes a value between the resonance frequency and the anti-resonance frequency, and the voltage corresponding to the frequency is set. It is generated by the control voltage generator 13.
位相範囲比較器17の残りの1入力端子には、位相差の許
容範囲に相当する設定電圧Pが入力される。温度や負荷
の変動により駆動体の共振周波数が変化して、上記によ
り設定した駆動周波数での位相差に対応する電圧が設定
電圧Pの分よりもはずれれば、つまり電流電圧の位相差
が設定された位相差からずれて位相差の許容範囲外にな
れば、論理的Hを出力する。この出力は掃引制御器12の
制御端子Cに入力され、再び駆動周波数の掃引を開始し
て、上記に述べた駆動周波数の設定をする。The set voltage P corresponding to the allowable range of the phase difference is input to the remaining one input terminal of the phase range comparator 17. If the resonance frequency of the driving body changes due to changes in temperature and load, and the voltage corresponding to the phase difference at the driving frequency set above deviates from the set voltage P, that is, the phase difference of the current voltage is set. If the phase difference deviates from the determined phase difference and is out of the allowable range of the phase difference, logical H is output. This output is input to the control terminal C of the sweep controller 12, the drive frequency sweep is started again, and the drive frequency is set as described above.
第2図は駆動体を一定電圧で駆動したときの電流値、電
圧電流の位相差および移動体の回転数の周波数特性図で
ある。また、第3図は駆動周波数を下から掃引したと
き、および上から掃引したときに示す駆動体の非線形性
に起因するアドミッタンスのヒステリシス曲線である。FIG. 2 is a frequency characteristic diagram of a current value, a voltage-current phase difference, and a rotational speed of a moving body when the driving body is driven at a constant voltage. Further, FIG. 3 is a hysteresis curve of admittance caused by the non-linearity of the driving body when the driving frequency is swept from the bottom and when the driving frequency is swept from the top.
第2図より、移動体の回転数は駆動体の共振周波数f1近
傍で大きくなるので、超音波モータはこの共振周波数近
傍で駆動するのがよい。しかし、第3図における駆動周
波数を下から掃引したときの共振周波数f1と、上から掃
引したときの共振周波数f2の間の周波数領域、およびそ
れらの周波数の極近傍では、駆動体のアドミッタンスが
急激に変化するジャンプ現象により動作が非常に不安定
になるので、駆動周波数はこの領域外でなれけばならな
い。この領域より低い周波数では回転数が急に低下する
ので、駆動体の駆動周波数はこの領域より高い周波数
で、反共振周波数f5より低い周波数領域を使用する。As shown in FIG. 2, since the rotational speed of the moving body increases near the resonance frequency f 1 of the driving body, it is preferable to drive the ultrasonic motor near this resonance frequency. However, in the frequency region between the resonance frequency f 1 when the drive frequency is swept from the bottom in FIG. 3 and the resonance frequency f 2 when the drive frequency is swept from the top, and in the very vicinity of those frequencies, the admittance of the driver is The driving frequency must be out of this range because the operation becomes very unstable due to the jump phenomenon that changes rapidly. Since the rotation speed sharply decreases at a frequency lower than this range, the driving frequency of the driving body is a frequency higher than this range and a frequency range lower than the anti-resonance frequency f 5 is used.
第2図の周波数f3からf4の範囲で、駆動周波数を上から
掃引し、電圧電流の位相差の設定値を同図のP1にし、許
容位相差範囲の設定値をP2にすれば、移動体の回転数が
同図中のN1の回転数になったときの周波数に駆動周波数
が設定される。ここで電圧電流の位相差の設定値P1およ
び許容位相差範囲の設定値P2は設定後の駆動周波数が駆
動体の共振周波数f1より高いように決めている。また、
温度あるいは負荷が変動して、駆動体の共振周波数が変
化し、その結果、位相差が設定値P1からずれて許容範囲
P2から飛び出たら、再び駆動周波数の掃引を開始する。
従って、移動体の回転数は図中のN1を中心にN2の範囲に
制御される。Sweep the drive frequency from above in the frequency range from f 3 to f 4 in Fig. 2 and set the voltage / current phase difference setting value to P 1 and the allowable phase difference range setting value to P 2 . For example, the drive frequency is set to the frequency when the rotation speed of the moving body reaches the rotation speed of N 1 in the figure. Wherein setting the phase difference between the voltage and current values P 1 and the set value P 2 of the allowable phase difference range driving frequency after setting is determined to be higher than the resonance frequency f 1 of the driver. Also,
The temperature or load fluctuates, the resonant frequency of the driver changes, and as a result, the phase difference deviates from the set value P 1
When it jumps out of P 2 , the drive frequency sweep is started again.
Therefore, the rotation speed of the moving body is controlled within the range of N 2 centered on N 1 in the figure.
尚、本実施例では電圧電流の位相差の検知で制御を行っ
ているが、回転数N1およびN2に対応した電流値、または
回転数自身を採用しても同様である。しかし、回転数の
採用時には、回転数を検出するセンサが必要になる。Although the control is performed by detecting the phase difference between the voltage and the current in the present embodiment, the same applies when the current value corresponding to the rotation speeds N 1 and N 2 or the rotation speed itself is adopted. However, when the rotation speed is adopted, a sensor for detecting the rotation speed is required.
本実施例の駆動回路によれば、温度や負荷が変動しても
常に超音波モータをあらかじめ設定した範囲の回転数で
安定に駆動できる。According to the drive circuit of the present embodiment, the ultrasonic motor can always be stably driven at the rotation speed within the preset range even if the temperature or the load fluctuates.
発明の効果 以上述べたように、本発明では温度や負荷が変動して
も、安定な動作をする超音波モータを提供できる。Effects of the Invention As described above, according to the present invention, it is possible to provide an ultrasonic motor that operates stably even if the temperature or load changes.
第1図は本発明の超音波モータの駆動方法を実現する具
体回路のブロック図、第2図は駆動体を一定電圧で駆動
した時の、駆動電流、電圧電流の位相差および移動体の
回転数の周波数特性図、第3図は駆動体のアドミッタン
スの非線形特性図、第4図は従来の超音波モータの斜視
図、第5図は第4図に用いられている圧電体の形状と電
極構造を示す平面図、第6図は超音波モータの駆動体部
の振動状態を示すモデル図、第7図は超音波モータの原
理の説明図である。 7……電圧制御発振器、8……90度位相器、9、10……
電力増幅器、11……抵抗、12……掃引制御器、13……制
御電圧発生器、14……電流検出器、15……電圧検出器、
16……位相差検出器、17……位相範囲比較器、18……記
憶器、19……最小値判別器、20……駆動周波数制御器。FIG. 1 is a block diagram of a specific circuit for realizing the driving method of the ultrasonic motor of the present invention, and FIG. 2 is a driving current, a phase difference between voltage and current, and rotation of a moving body when the driving body is driven with a constant voltage. Number characteristic diagram, FIG. 3 is a non-linear characteristic diagram of the admittance of the driving body, FIG. 4 is a perspective view of a conventional ultrasonic motor, and FIG. 5 is the shape and electrodes of the piezoelectric body used in FIG. FIG. 6 is a plan view showing the structure, FIG. 6 is a model diagram showing a vibration state of a driving body portion of the ultrasonic motor, and FIG. 7 is an explanatory view of the principle of the ultrasonic motor. 7 ... Voltage controlled oscillator, 8 ... 90 degree phase shifter, 9,10 ...
Power amplifier, 11 ... resistance, 12 ... sweep controller, 13 ... control voltage generator, 14 ... current detector, 15 ... voltage detector,
16 …… Phase difference detector, 17 …… Phase range comparator, 18 …… Memory device, 19 …… Minimum value discriminator, 20 …… Drive frequency controller.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭62−85684(JP,A) 特開 昭59−185178(JP,A) 特開 昭63−202278(JP,A) 特開 昭59−87078(JP,A) 特開 昭56−10792(JP,A) 特開 昭63−154076(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP 62-85684 (JP, A) JP 59-185178 (JP, A) JP 63-202278 (JP, A) JP 59- 87078 (JP, A) JP 56-10792 (JP, A) JP 63-154076 (JP, A)
Claims (1)
弾性体とから構成される駆動体に弾性進行波を励振する
ことにより、該駆動体上に接触して設置された移動体を
移動させる超音波モータにおいて、少なくとも前記駆動
体の共振周波数がその範囲内に含まれるように設定され
た周波数可変範囲内を、前記交流駆動電圧の周波数を低
いほうから高いほうへ掃引して、該駆動体の共振周波数
を検知し、前記圧電体に印加する交流駆動電圧の駆動周
波数が、該駆動体の反共振周波数より低く該共振周波数
より高くなるように設定することを特徴とする超音波モ
ータ駆動方法。1. A movement installed in contact with a piezoelectric body by driving the piezoelectric body with an alternating voltage to excite an elastic traveling wave in a drive body composed of the piezoelectric body and an elastic body. In an ultrasonic motor for moving a body, at least the resonance frequency of the driving body is swept within a frequency variable range set so as to be included in the range by sweeping the frequency of the AC drive voltage from the lower side to the higher side. A resonance frequency of the driving body is detected, and the driving frequency of the AC driving voltage applied to the piezoelectric body is set to be lower than the anti-resonance frequency of the driving body and higher than the resonance frequency. Sound wave motor driving method.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61199634A JPH0710187B2 (en) | 1986-08-26 | 1986-08-26 | Ultrasonic motor driving method |
KR1019870009216A KR900007413B1 (en) | 1986-08-26 | 1987-08-24 | Ultrasonic Motor Driving Method |
US07/089,334 US4853579A (en) | 1986-08-26 | 1987-08-25 | Drive method for ultrasonic motor providing enhanced stability of rotation |
DE3751767T DE3751767T2 (en) | 1986-08-26 | 1987-08-26 | Drive method of an ultrasonic motor that leads to improved rotational stability |
EP87307559A EP0261810B1 (en) | 1986-08-26 | 1987-08-26 | Drive method for ultrasonic motor providing enhanced stability of rotation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61199634A JPH0710187B2 (en) | 1986-08-26 | 1986-08-26 | Ultrasonic motor driving method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6356179A JPS6356179A (en) | 1988-03-10 |
JPH0710187B2 true JPH0710187B2 (en) | 1995-02-01 |
Family
ID=16411109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61199634A Expired - Lifetime JPH0710187B2 (en) | 1986-08-26 | 1986-08-26 | Ultrasonic motor driving method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0710187B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2597390B2 (en) * | 1988-05-17 | 1997-04-02 | オリンパス光学工業株式会社 | Vibration wave motor drive circuit |
US6288473B1 (en) * | 2000-03-31 | 2001-09-11 | Sandia Corporation | Frequency modulation drive for a piezoelectric motor |
-
1986
- 1986-08-26 JP JP61199634A patent/JPH0710187B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6356179A (en) | 1988-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR900007413B1 (en) | Ultrasonic Motor Driving Method | |
JPH0528072B2 (en) | ||
JPH0815398B2 (en) | Ultrasonic motor drive | |
JPH0710187B2 (en) | Ultrasonic motor driving method | |
JP2548248B2 (en) | Ultrasonic motor controller | |
JP2558709B2 (en) | Ultrasonic motor drive | |
JP2583904B2 (en) | Ultrasonic motor driving method | |
JP2506895B2 (en) | Ultrasonic motor controller | |
JP2563351B2 (en) | Ultrasonic motor driving method | |
JP2543106B2 (en) | Ultrasonic motor drive | |
JPH072022B2 (en) | Ultrasonic motor driving method | |
JP2574293B2 (en) | Ultrasonic motor driving method | |
JP2636280B2 (en) | Driving method of ultrasonic motor | |
JP3141525B2 (en) | Ultrasonic motor drive control method | |
JP2604731B2 (en) | Ultrasonic motor drive | |
JPH07108103B2 (en) | Ultrasonic motor device | |
JP2551412B2 (en) | Ultrasonic motor driving method | |
JP2577485B2 (en) | Driving method of ultrasonic motor | |
JP2538088B2 (en) | Driving method for ultrasonic motor | |
JP2636366B2 (en) | Ultrasonic actuator control device | |
JPH02101974A (en) | Ultrasonic motor drive | |
JPS6292782A (en) | Ultrasonic motor device | |
JP2506896B2 (en) | Ultrasonic motor drive | |
JPH0746910B2 (en) | Ultrasonic motor driving method | |
JPH04322179A (en) | Method of driving ultrasonic motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |