[go: up one dir, main page]

JPH02192540A - Low temperature cold water production equipment - Google Patents

Low temperature cold water production equipment

Info

Publication number
JPH02192540A
JPH02192540A JP1007797A JP779789A JPH02192540A JP H02192540 A JPH02192540 A JP H02192540A JP 1007797 A JP1007797 A JP 1007797A JP 779789 A JP779789 A JP 779789A JP H02192540 A JPH02192540 A JP H02192540A
Authority
JP
Japan
Prior art keywords
cold water
heat exchanger
temperature
pline
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1007797A
Other languages
Japanese (ja)
Other versions
JPH0477218B2 (en
Inventor
Seishiro Igarashi
五十嵐 征四郎
Akira Goushiyou
郷正 明
Rikuo Tamura
田村 陸男
Sadaichi Mochizuki
望月 貞一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Ebara Corp
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Shimizu Construction Co Ltd, Shimizu Corp filed Critical Ebara Corp
Priority to JP1007797A priority Critical patent/JPH02192540A/en
Publication of JPH02192540A publication Critical patent/JPH02192540A/en
Publication of JPH0477218B2 publication Critical patent/JPH0477218B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、冷水製造装置に係わり、特に空調用の冷房、
工業用プロセスの冷却等に用いて、効率的な冷水製造装
置に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a chilled water production device, and particularly to a cooling device for air conditioning,
This invention relates to an efficient cold water production device used for cooling industrial processes, etc.

〔従来の技術〕[Conventional technology]

冷凍機又はヒートポンプで冷水を製造する場合、従来は
水の凍結による伝熱チューブの破損事故を懸念して、冷
水温度Fis℃が下限であった。空調の分野では、5〜
7℃の冷水を空調機に送り、冷風と熱交換し、約10〜
12℃に上昇して戻るという循環が一般的である。又、
蓄熱機を介する場合でも蓄熱の有効温度差は10C−5
℃又は12℃−5℃の5℃〜7℃の範囲であった。
When producing cold water using a refrigerator or a heat pump, the lower limit of the cold water temperature has conventionally been Fis° C. due to concerns about damage to heat transfer tubes due to freezing of water. In the field of air conditioning, 5~
7℃ cold water is sent to the air conditioner and heat exchanged with cold air, approximately 10~
A cycle of rising to 12°C and returning is common. or,
Even when using a heat storage device, the effective temperature difference for heat storage is 10C-5
The temperature ranged from 5°C to 7°C or 12°C to 5°C.

一方、工業分野では、プロセスによって、冷却する液体
の温度は異なるが、マイルド・プラインと称される使用
温度範囲が最も多い。マイルド・プラインとは、エチレ
ングリコール水溶液、プロピレングリコール水溶液、塩
化カルシウム水溶液等である。これらの不凍液は約5℃
〜−30℃の範囲で使用されている。
On the other hand, in the industrial field, the temperature of the liquid to be cooled varies depending on the process, but the temperature range called mild prine is most commonly used. Mild prine is an ethylene glycol aqueous solution, a propylene glycol aqueous solution, a calcium chloride aqueous solution, or the like. These antifreezes are approximately 5℃
It is used in the range of -30°C.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

9鯛分野においては、空調に利用される循環水の温度差
を大きくすることにより、循環水量の減少、輸送管径の
縮少により、省エネルギと設備費の減少が望まれる。更
に、都市のビル地下室に設けられる蓄熱槽もその大きさ
に制限がめるので、大きさを同じにして蓄熱容量を増大
することができれば、深夜電力を利用した安価な電力料
金が利用できるから、このような蓄熱機の普及が望まれ
ている。
9 In the field of sea bream, it is desired to save energy and reduce equipment costs by increasing the temperature difference of the circulating water used for air conditioning, reducing the amount of circulating water, and reducing the diameter of the transport pipe. Furthermore, there are restrictions on the size of heat storage tanks installed in the basements of buildings in cities, so if the heat storage capacity can be increased while keeping the size the same, it will be possible to use late-night electricity at cheaper electricity rates. It is hoped that such heat storage devices will become widespread.

また、工業用途においても、伝熱が悪く、液の粘性も高
く、かつ腐食性のある不凍液はできる限り水に代えるこ
とによって、省エネルギとなフ保守管理もしやすくなる
ことは明らかであった。
Furthermore, in industrial applications, it has been clear that antifreeze, which has poor heat transfer, high liquid viscosity, and corrosivity, can be replaced with water as much as possible to save energy and make maintenance management easier.

しかしながら、従来技術においては、冷水の冷却度を上
げると凍結による伝熱チューブの破損の問題が生じ、冷
水の温度は十分に低下することはできなかった。
However, in the prior art, increasing the degree of cooling of the cold water causes the problem of damage to the heat transfer tubes due to freezing, and the temperature of the cold water cannot be lowered sufficiently.

そこで、本発明は、上記の要望に鑑み、従来利用不可能
と考えられていた5℃〜O℃の間のまさに凍結寸前の冷
水の製造装置を提供し、また、凍結した場合は事故(故
障)とならずに、すばやく解凍を行い、運転を続行する
ことのできる冷水製造装置を提供することを目的とする
ものである。
In view of the above-mentioned needs, the present invention provides an apparatus for producing cold water that is on the verge of freezing between 5°C and 0°C, which was previously thought to be impossible to use. ) The purpose of the present invention is to provide a chilled water production device that can quickly defrost water and continue operation without causing a problem.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、冷凍機又はヒートポンプと、プラインと冷水
との熱交換器と、前記両者を連結するプライン配管、プ
ライン循環ポンプ及びプラインタンク等からなるプ2イ
ン循環系の設備と、熱交換器に連結する冷水配管、冷水
供給ボンダ及び冷水蓄熱槽等からなる冷水循環系の設備
とからなる冷水製造及び冷水蓄熱装置において、熱交換
器出口における冷水温度を0℃近くに維持して運転する
ための監視手段として、熱交換器内部での冷水の凍結状
態を、プライン側の熱交換器出入口の温度差の減少と、
冷水側の熱交換器出入口の圧力損失の増大の、bずれか
又は両方で検出する検出手段を備えてなる冷水製造装置
である。
The present invention relates to equipment for a two-in circulation system consisting of a refrigerator or a heat pump, a heat exchanger between a pline and cold water, pline piping connecting the two, a pline circulation pump, a pline tank, etc., and a heat exchanger. In a cold water production and cold water heat storage system consisting of cold water circulation system equipment consisting of connected cold water pipes, cold water supply bonders, cold water heat storage tanks, etc., for operation while maintaining the cold water temperature at the outlet of the heat exchanger near 0°C. As a means of monitoring, the frozen state of cold water inside the heat exchanger is monitored by reducing the temperature difference between the inlet and outlet of the heat exchanger on the pline side.
This cold water production apparatus is provided with a detection means for detecting an increase in pressure loss at the inlet and outlet of a heat exchanger on the cold water side by detecting deviation (b) or both.

また、本発明は、前記熱交換器内部での冷水の凍結状態
を検出する検出手段が異常を検出した時に、熱交換器内
部での凍結現象を短時間で解凍し運転を続行させるため
、冷凍機又はヒートポンプのプライン冷却能力を低下さ
せ、プラインの温度を上昇させて解凍を行う手段として
、冷i¥機又はヒートポンプ内に、圧縮機用の吸込容量
制御機構と、凝縮器と蒸発器を連結するバイパス機構を
設け、該吸込容量制御機構を閉じる手段、及びホットガ
スを凝縮器から蒸発器に強制的に流す手段からなる制御
手段を備えてなる冷水製造装置である。
Further, the present invention provides a method for thawing the freezing phenomenon inside the heat exchanger in a short time to continue operation when the detection means for detecting the frozen state of the cold water inside the heat exchanger detects an abnormality. A suction capacity control mechanism for the compressor, a condenser, and an evaporator are connected in the chiller or heat pump as a means of reducing the pline cooling capacity of the machine or heat pump and increasing the temperature of the pline to defrost it. This cold water production apparatus is provided with a control means including a bypass mechanism for closing the suction capacity control mechanism, and a means for forcing hot gas to flow from the condenser to the evaporator.

次に、本発明の詳細な説明する。Next, the present invention will be explained in detail.

本発明の冷水製造装置においては、冷凍機又はヒートポ
ンプによって、0℃以下のプラインを製造して、このプ
ラインを熱交換器のチューブ内に通し、チューブ外には
冷水を通して、冷水を冷却する装置であり、冷水出口温
度を凍結させずに0℃近くの温度に保つよりに制御する
ものである。
The chilled water production apparatus of the present invention is a device that cools the chilled water by producing plines at 0°C or lower using a refrigerator or a heat pump, passing the plines into the tubes of a heat exchanger, and passing cold water outside the tubes. This is to control the cold water outlet temperature by keeping it close to 0°C without freezing.

そのために、冷凍機又はヒートポンプは、所定の熱交換
量と所定の冷水入口温度、冷水流量に基づいて、冷水出
口温度が凍結せずにQC近くとなるプライン温度に保持
し、この温度を維持するように制御を行うものである。
To this end, the refrigerator or heat pump maintains the prine temperature at which the cold water outlet temperature is close to QC without freezing, based on a predetermined heat exchange amount, a predetermined cold water inlet temperature, and a cold water flow rate, and maintains this temperature. It is controlled as follows.

また、同時に冷水側でも制御して、冷水出口温度を0℃
に近づけるものである。この冷水側の制御は、可変速制
御装置を有する冷水ポンプを設置し、熱交換器からの冷
水出口温度を検出して冷水出口温度が0℃近くになるよ
りに温度制御器の出力を可変速制御装置に与えて、冷水
ポンプの冷水流量を変化させて制御するものである。
At the same time, the cold water side is also controlled to reduce the cold water outlet temperature to 0℃.
It brings us closer to. This chilled water side control is achieved by installing a chilled water pump with a variable speed control device, detecting the chilled water outlet temperature from the heat exchanger, and adjusting the output of the temperature controller to a variable speed when the chilled water outlet temperature approaches 0°C. The flow rate of cold water from the cold water pump is changed and controlled by the control device.

このような制御において、熱交換器出口における冷水温
度が0℃に近いということは、熱交換器内部の一部では
0℃以下のいわゆる過冷却の状態であり、凍結を起こさ
せ易す条件となっている。
In this type of control, the fact that the chilled water temperature at the heat exchanger outlet is close to 0°C means that a part of the inside of the heat exchanger is in a so-called supercooled state below 0°C, a condition that is likely to cause freezing. It has become.

そこで、凍結しても装置の事故や故障を起こさせずに、
ナばやぐ解凍することができ、再び0℃近くの冷水が得
られれば、0℃近くの冷水製造のプロセスは成立するこ
とになる。
Therefore, even if it freezes, the equipment will not cause accidents or breakdowns.
If it can be thawed for a long time and cold water near 0°C can be obtained again, the process of producing cold water near 0°C will be established.

凍結しても事故とならないようにするには、シェルアン
ドチューブ型熱交換器を採用して、チューブ外に冷水を
通水し、チューブ内にプライン(不凍液)を通水するこ
とによって、チ二−ブ(伝熱管)の破裂という事故は防
止できる。
In order to prevent accidents from freezing, a shell-and-tube heat exchanger is used, and cold water is passed outside the tubes, and prine (antifreeze) is passed inside the tubes. - Accidents such as heat transfer tubes bursting can be prevented.

この場合、チューブ外表面に付着した氷はチューブとチ
ューブの間で成長して、チューブを曲げてしまう等の事
故も考えられるが、このような事故は凍結の検出手段が
なく、氷を無防備に成長させた場合に起きるものである
In this case, it is possible that the ice adhering to the outer surface of the tubes could grow between the tubes and bend the tubes, but such accidents can occur because there is no means to detect freezing, and the ice is left unprotected. This is what happens when you let it grow.

本発明では、初期凍結状態を検出して、凍結をすばやく
解凍させよりとするものであり、初期凍結状態の検出を
熱交換器の冷水入口と出口の圧力損失が凍結によシ増大
するから、これを検出する手段と、凍結した場合、氷に
よってプラインから冷水への伝熱が劣化し、熱交換量の
減少による熱交換器のプライン入口と出口の温度差の縮
少を検出する手段の両方又はいずれかによシ、凍結を検
出しようとするものである。
In the present invention, the initial frozen state is detected and the frozen state is quickly thawed. Both a means of detecting this and a means of detecting a reduction in the temperature difference between the pline inlet and outlet of the heat exchanger due to a reduction in the amount of heat exchanged due to ice deteriorating the heat transfer from the plines to the cold water in the event of freezing. Or, either one attempts to detect freezing.

更に、凍結を検出した場合、凍結のすばやい解除手段と
して、プライン側を0℃以上の温度に保ってチューブの
内側から解凍するためK。
Furthermore, when freezing is detected, K is used to quickly release the freeze by keeping the pline side at a temperature of 0°C or higher and thawing it from the inside of the tube.

冷凍機又はヒートポンプの容量制御機構を安定運転が続
行できる範囲で強制的に絞って低出力(低冷却能力)と
し、同時にホットガスバイパス弁を強制的に開いて、低
出力を維持させるものである。
The capacity control mechanism of the refrigerator or heat pump is forcibly throttled to a low output (low cooling capacity) to the extent that stable operation can continue, and at the same time the hot gas bypass valve is forcibly opened to maintain the low output. .

他方、同時に冷水側からの解凍束として、熱交換器に供
給する冷水流量を一時的に強制的に増大させて、熱伝達
率を向上させて氷を解かす手段、及び冷水入口温度を上
昇させる手段等がある。
On the other hand, at the same time, as a thawing bundle from the cold water side, the flow rate of cold water supplied to the heat exchanger is temporarily forcibly increased to improve the heat transfer coefficient and melt the ice, and to increase the cold water inlet temperature. There are means etc.

この冷水側からの具体的解凍手段としては、冷水ボン1
を可変速として、凍結検出時には、強制的に最大回転数
となるように制御手段を設けることである。また、冷水
の入口温度を上昇させるには、冷水蓄熱槽内の高温度の
冷水を強制的に混合させる三方弁等の混合装置を設けて
おけばよい。
As a specific means of defrosting from the cold water side, the cold water bottle 1
The speed is variable, and a control means is provided so that the rotation speed is forcibly set to the maximum when freezing is detected. Furthermore, in order to increase the inlet temperature of the cold water, a mixing device such as a three-way valve for forcibly mixing the high-temperature cold water in the cold water heat storage tank may be provided.

〔実施例〕〔Example〕

以下、本発明を具体的に図面を用いて説明するが、本発
明はこの実施例に限定されるものではない。
The present invention will be specifically described below with reference to the drawings, but the present invention is not limited to these embodiments.

実施例1 第1図は本発明の一実施例を示す冷水製造装置のフロー
概略図である。
Embodiment 1 FIG. 1 is a schematic flow diagram of a cold water production apparatus showing an embodiment of the present invention.

第1図において、1は冷凍機又はヒートポンプ、2はプ
ラインと冷水との熱交換器、7は冷水蓄熱槽、21はク
ーラ(蒸発器)、22は圧縮機、23は容量制御機構、
24はホットガスバイパス弁、25は凝縮器である。
In FIG. 1, 1 is a refrigerator or a heat pump, 2 is a heat exchanger between a line and cold water, 7 is a cold water heat storage tank, 21 is a cooler (evaporator), 22 is a compressor, 23 is a capacity control mechanism,
24 is a hot gas bypass valve, and 25 is a condenser.

この装置の運転において、プラインはクー221で冷却
されて、熱交!!I8器2で冷水との間で熱交換が行な
われ、プラインタンク4で貯蔵されて、プラインポンプ
3によりクーラ21へと循環するサイクルをとる。−万
、冷水は、蓄熱槽7の高温側aから冷水1次ポンプ5に
より熱交換器2に送られ、ここでプラインによシ冷却さ
れて、冷水蓄熱槽7の低温側すに戻される。
In operation of this device, the prine is cooled by the cooler 221 and heat exchanged! ! Heat exchange is performed with the cold water in the I8 vessel 2, stored in the pline tank 4, and circulated to the cooler 21 by the pline pump 3, forming a cycle. - 10,000, cold water is sent from the high temperature side a of the cold water heat storage tank 7 to the heat exchanger 2 by the cold water primary pump 5, where it is cooled by the prine and returned to the low temperature side of the cold water heat storage tank 7.

そして、この冷水蓄熱槽7の低温側すの冷水が、冷水2
次ポング8.10により空調負荷9.11に送られて、
有効に利用され温度の上昇した冷水が冷水蓄熱槽7の高
温側已に循環される。
Then, the cold water in the low temperature side of the cold water heat storage tank 7 is transferred to the cold water 2.
The next pump 8.10 sends it to the air conditioning load 9.11,
The cold water that has been effectively used and whose temperature has increased is circulated to the high temperature side of the cold water heat storage tank 7.

ところで、このような循環系において、通常の操作では
、クーラ出口のプライン温度を温度検出器12′により
検出し、この温度を一定に保つようにプライン温度コン
トローラ12から指令して容量制御機構25を可動させ
て、冷凍機1の圧縮機22を容量制御する。−万、熱交
換器の冷水出口温度を温度検出器13′で検出し、この
温度t−o℃近くに維持するように、冷水出口コントロ
ーラ15から指令して可変速制御装置6を可動させて、
冷水1次ポンプ5の冷水流量を調節するものである。
By the way, in such a circulation system, in normal operation, the temperature detector 12' detects the pline temperature at the outlet of the cooler, and the pline temperature controller 12 commands the capacity control mechanism 25 to keep this temperature constant. It is moved to control the capacity of the compressor 22 of the refrigerator 1. - 10,000, detect the temperature of the cold water outlet of the heat exchanger with the temperature detector 13', and operate the variable speed control device 6 by commanding the cold water outlet controller 15 to maintain this temperature near t-o°C. ,
This is to adjust the flow rate of cold water of the primary cold water pump 5.

そして、このような通常の操作において、熱交換器2の
プライン入口とプライン出口の温度及び/又は熱交換器
2の冷水入口と冷水出口の圧力を常に検知14.15し
ておき、検知したプラインの温度差及び/又は冷水の圧
力差が、通常の操作値よりも異常の場合は、熱交換器内
部において凍結が始まっていることを示しており、以下
のような操作ですみやかに解凍処理を行つ。
In such normal operation, the temperature at the pline inlet and the pline outlet of the heat exchanger 2 and/or the pressure at the cold water inlet and the cold water outlet of the heat exchanger 2 are constantly detected14.15, and the detected pline If the temperature difference and/or cold water pressure difference is abnormal compared to normal operating values, this indicates that freezing has started inside the heat exchanger, and the following steps should be taken to promptly thaw it. Go.

まず、凍結のすばやい解凍手段として、プラインを0℃
以上の温度に保ち、熱交換器のチューブ内側から解凍す
るために、冷凍機1の容量制御機構23を安定運転が続
行できる範囲で強制的に絞って低出力(低冷却能力)と
し、同時に凝縮器25から蒸発器21へのホットガスバ
イパス弁24を開いて、低出力を維持するものである。
First, as a quick way to thaw the frozen material, freeze the prine at 0°C.
In order to maintain the above temperature and thaw from the inside of the tube of the heat exchanger, the capacity control mechanism 23 of the refrigerator 1 is forcibly throttled down to a low output (low cooling capacity) within the range that allows stable operation to continue, and at the same time condenses. The hot gas bypass valve 24 from the vessel 25 to the evaporator 21 is opened to maintain low output.

次いで、冷水側からの解凍手段として、可変速制御値#
6を可動させて冷水1次ポンプを最大回転数とし、冷水
流量を一時的に増大させて熱伝達率を向上させて解凍す
る。更に、冷水の入口温度を上昇させて解凍するために
、冷水蓄熱槽7内のより高温部a側の冷水を三方弁等の
混合装置で強制的に混合させる。
Next, as a means of defrosting from the cold water side, the variable speed control value #
6 is moved to set the primary cold water pump to the maximum rotation speed, temporarily increasing the flow rate of cold water, improving the heat transfer coefficient, and thawing. Furthermore, in order to raise the inlet temperature of the cold water and thaw it, the cold water in the higher temperature section a in the cold water heat storage tank 7 is forcibly mixed with a mixing device such as a three-way valve.

上記のように、プライン側の操作のみでなく、冷水側の
操作をも適宜組合せることにより、熱交換器内が凍結し
ても装置の事故等の生ずる前にすみやかに解凍できるも
のである。
As mentioned above, by appropriately combining not only the operations on the line side but also the operations on the cold water side, even if the inside of the heat exchanger freezes, it can be thawed quickly before an accident occurs to the equipment.

〔発明の効果〕〔Effect of the invention〕

本発明においては、凍結検出手段を設けたので、凍結状
態が初期段階で検知でき、装置の事故とか故障を起こす
ことなく、0℃近い冷水が製造できる。
In the present invention, since a freeze detection means is provided, a frozen state can be detected at an early stage, and cold water close to 0° C. can be produced without causing an accident or failure of the device.

従来、9訓分野においては、5℃の冷水を送り空調機か
ら10℃で戻し、冷凍機で再び5℃迄冷却する冷水循環
系であるが、この場合1O−5=5℃の温度差を利用し
ていたわけであり、本発明のように0℃の水が得られれ
ば1O−0=10℃の温度差が利用出来る。
Conventionally, in the field of 9 lessons, the cold water circulation system is such that 5℃ cold water is sent from the air conditioner, returned at 10℃, and then cooled down to 5℃ again by the refrigerator, but in this case, the temperature difference of 1O-5 = 5℃ is If water at 0°C can be obtained as in the present invention, a temperature difference of 10-0 = 10°C can be used.

前記のように、本発明においては、従来のものよ92倍
の温度差が利用できるから、次式から、循環水量が半分
で済み、ポンプ動力(搬送動力)、配管径の縮少が可能
となる効果がある。
As mentioned above, in the present invention, a temperature difference 92 times larger than that in the conventional method can be utilized, so from the following equation, the amount of circulating water can be halved, and the pump power (conveying power) and pipe diameter can be reduced. There is a certain effect.

Q = G XΔT X i X h      −−
−−−(11−万、蓄熱容量も111式のGを蓄熱槽内
保有水量に置き換えることによって、有効利用できる温
度差ΔTが倍増することによって蓄熱容量も倍増できる
Q = G XΔT X i X h --
---(110,000, heat storage capacity) By replacing G in the 111 type with the amount of water held in the heat storage tank, the temperature difference ΔT that can be effectively used is doubled, and the heat storage capacity can also be doubled.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す冷水製造装置のフロー
概略図である。 1・・・冷凍機又はヒートポンプ、2・・・熱交換器、
3・・・プラインポンプ、4・・・プラインタンク、5
・・・冷水1次ポング、6・・・可変速制御装置、7・
・・冷水蓄熱槽、8.10・・・冷水2次ポンプ、9.
11・・・空調負荷、12・・・プライン入口(クーラ
出口)温度コントローラ、13・・・冷水出口温度コン
トローラ、12′、13′・−・温度検出器、14・・
・プライン温度差検知器、15・・・冷水圧力差検知器
、21・・・クーラ(蒸発器)、22・・・圧縮機、2
3・・・容量制御機構、24・・・ホットガスバイパス
弁、25・・・凝縮器
FIG. 1 is a schematic flow diagram of a cold water production apparatus showing an embodiment of the present invention. 1... Refrigerator or heat pump, 2... Heat exchanger,
3... Pline pump, 4... Pline tank, 5
...Cold water primary pump, 6.Variable speed control device, 7.
...Cold water heat storage tank, 8.10...Cold water secondary pump, 9.
11...Air conditioning load, 12...Pline inlet (cooler outlet) temperature controller, 13...Cold water outlet temperature controller, 12', 13'...Temperature detector, 14...
・Pline temperature difference detector, 15... Cold water pressure difference detector, 21... Cooler (evaporator), 22... Compressor, 2
3... Capacity control mechanism, 24... Hot gas bypass valve, 25... Condenser

Claims (1)

【特許請求の範囲】 1、冷凍機又はヒートポンプと、プラインと冷水との熱
交換器と、前記両者を連結するプライン配管、プライン
循環ポンプ及びプラインタンク等からなるプライン循環
系の設備と、熱交換器に連結する冷水配管、冷水供給ポ
ンプ及び冷水蓄熱槽等からなる冷水循環系の設備とから
なる冷水製造及び冷水蓄熱装置において、熱交換器出口
における冷水温度を0℃近くに維持して運転するための
監視手段として、熱交換器内部での冷水の凍結状態を、
プライン側の熱交換器出入口の温度差の減少と、冷水側
の熱交換器出入口の圧力損失の増大の、いずれか又は両
方で検出する検出手段を備えてなる冷水製造装置。 2、請求項1記載の冷水製造装置において、前記検出手
段が異常を検出時に、プライン温度を上昇させて解凍を
行う手段として、冷凍機又はヒートポンプ内に、圧縮機
用の吸込容量制御機構と、凝縮器と蒸発器を連結するバ
イパス機構を設け、該吸込容量制御機構を閉じる手段、
及びホットガスを凝縮器から蒸発器へ強制的に流す手段
からなる制御手段を備えてなる冷水製造装置。 3、請求項2記載の冷水製造装置において、冷水側から
の解凍を促進させるため、強制的に熱交換器に供給する
冷水流量を増大させるための制御手段を備えてなる冷水
製造装置。 4、請求項2又は3記載の冷水製造装置において、冷水
側からの解凍を促進させるため、冷水蓄熱槽内の温度の
異なる冷水を混合する手段を設け、熱交換器に供給する
冷水の温度を上昇させるための制御手段を備えてなる冷
水製造装置。
[Scope of Claims] 1. Equipment of a pline circulation system consisting of a refrigerator or heat pump, a heat exchanger between pline and cold water, pline piping connecting the two, a pline circulation pump, a pline tank, etc., and a heat exchanger. In the cold water production and cold water heat storage equipment, which consists of cold water piping connected to the heat exchanger, cold water circulation system equipment consisting of a cold water supply pump, cold water heat storage tank, etc., the cold water temperature at the heat exchanger outlet is maintained at close to 0°C. As a means of monitoring the frozen state of cold water inside the heat exchanger,
A cold water production apparatus comprising a detection means for detecting either or both of a decrease in temperature difference between an inlet and an inlet of a heat exchanger on the line side and an increase in pressure loss at an inlet and an outlet of a heat exchanger on the chilled water side. 2. In the chilled water production apparatus according to claim 1, a suction capacity control mechanism for the compressor is provided in the refrigerator or the heat pump as a means for increasing the prine temperature and thawing when the detection means detects an abnormality; means for providing a bypass mechanism connecting the condenser and the evaporator and closing the suction capacity control mechanism;
and a control means comprising means for forcing hot gas to flow from the condenser to the evaporator. 3. The chilled water production apparatus according to claim 2, further comprising a control means for forcibly increasing the flow rate of chilled water supplied to the heat exchanger in order to promote thawing from the chilled water side. 4. In the cold water production apparatus according to claim 2 or 3, in order to promote thawing from the cold water side, a means for mixing cold water of different temperatures in the cold water heat storage tank is provided, and the temperature of the cold water supplied to the heat exchanger is adjusted. A chilled water production device comprising control means for raising the temperature.
JP1007797A 1989-01-18 1989-01-18 Low temperature cold water production equipment Granted JPH02192540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1007797A JPH02192540A (en) 1989-01-18 1989-01-18 Low temperature cold water production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1007797A JPH02192540A (en) 1989-01-18 1989-01-18 Low temperature cold water production equipment

Publications (2)

Publication Number Publication Date
JPH02192540A true JPH02192540A (en) 1990-07-30
JPH0477218B2 JPH0477218B2 (en) 1992-12-07

Family

ID=11675631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1007797A Granted JPH02192540A (en) 1989-01-18 1989-01-18 Low temperature cold water production equipment

Country Status (1)

Country Link
JP (1) JPH02192540A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003050067A (en) * 2001-08-03 2003-02-21 Ckd Corp Cooler and method of judging failure of cooler
JP2006162153A (en) * 2004-12-07 2006-06-22 Kawamoto Pump Mfg Co Ltd Air-conditioning pump system
KR100759036B1 (en) * 2006-04-10 2007-09-17 한국식품연구원 Method and apparatus for manufacturing low temperature cooling water
WO2020161805A1 (en) * 2019-02-05 2020-08-13 三菱電機株式会社 Air conditioner control device, outdoor unit, relay unit, heat source unit, and air conditioner

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63163725A (en) * 1986-12-26 1988-07-07 Mitsubishi Electric Corp Air conditioner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63163725A (en) * 1986-12-26 1988-07-07 Mitsubishi Electric Corp Air conditioner

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003050067A (en) * 2001-08-03 2003-02-21 Ckd Corp Cooler and method of judging failure of cooler
JP2006162153A (en) * 2004-12-07 2006-06-22 Kawamoto Pump Mfg Co Ltd Air-conditioning pump system
KR100759036B1 (en) * 2006-04-10 2007-09-17 한국식품연구원 Method and apparatus for manufacturing low temperature cooling water
WO2020161805A1 (en) * 2019-02-05 2020-08-13 三菱電機株式会社 Air conditioner control device, outdoor unit, relay unit, heat source unit, and air conditioner
CN113383197A (en) * 2019-02-05 2021-09-10 三菱电机株式会社 Control device for air conditioner, outdoor unit, relay unit, heat source unit, and air conditioner
JPWO2020161805A1 (en) * 2019-02-05 2021-11-25 三菱電機株式会社 Air conditioner control device, outdoor unit, repeater, heat source unit and air conditioner
EP3922918A4 (en) * 2019-02-05 2022-02-23 Mitsubishi Electric Corporation Air conditioner control device, outdoor unit, relay unit, heat source unit, and air conditioner
CN113383197B (en) * 2019-02-05 2023-02-28 三菱电机株式会社 Control device for air conditioner, outdoor unit, relay unit, heat source unit, and air conditioner

Also Published As

Publication number Publication date
JPH0477218B2 (en) 1992-12-07

Similar Documents

Publication Publication Date Title
CN107014016B (en) Fluorine pump natural cooling evaporation type condensation water chiller and control method thereof
CN110091753B (en) Thermal management system for comprehensively managing energy consumption of electric vehicle
CN107014014B (en) Heat pipe natural cooling evaporation type condensation water chiller and control method thereof
CN110802996A (en) LNG air conditioner refrigerating system
CN105135772B (en) Water refrigerating plant and its control method for preventing cold water from freezing
CN109405324B (en) Double-evaporator air conditioning unit and control method thereof
WO2021233460A1 (en) Oil temperature control system and control method for refrigeration oil in air conditioner compressor
JP2022046410A (en) Refrigeration container freezing system applicable to prevent freezing of container door
CN208519907U (en) Double-working-condition air-conditioning system and its plate heat exchanger defroster
CN107270569A (en) Refrigerating system and water dispenser comprising same
JP2901918B2 (en) Method of controlling ice melting operation of ice thermal storage system
JPH02192540A (en) Low temperature cold water production equipment
CN206618061U (en) Automobile wind tunnel test room air-conditioning system
CN113148097A (en) LNG (liquefied Natural gas) vehicle and ship refrigeration micro-power air conditioning system
JP3304010B2 (en) Ice storage refrigerator and operation method
CN206222814U (en) A kind of power saving refrigerator recuperation of heat utilizes equipment
JPH03102130A (en) Freeze detection method for low temperature chilled water production equipment
JPH0477216B2 (en)
CN214566099U (en) LNG (liquefied Natural gas) vehicle and ship refrigeration micro-power air conditioning system
CN101236033B (en) Absorption type air conditioner cold water main unit and its tube antifreezing method
CN104215017A (en) Freezer hot fluorine defrosting machine
CN211166331U (en) L NG air conditioner refrigerating system
CN104279789B (en) A kind of trilogy supply air-conditioning system
CN206504493U (en) A kind of environmentally friendly refrigerating plant
JP3303899B2 (en) Ice storage refrigerator unit

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071207

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081207

Year of fee payment: 16

LAPS Cancellation because of no payment of annual fees