JPH01291151A - Oxygen sensor - Google Patents
Oxygen sensorInfo
- Publication number
- JPH01291151A JPH01291151A JP63119147A JP11914788A JPH01291151A JP H01291151 A JPH01291151 A JP H01291151A JP 63119147 A JP63119147 A JP 63119147A JP 11914788 A JP11914788 A JP 11914788A JP H01291151 A JPH01291151 A JP H01291151A
- Authority
- JP
- Japan
- Prior art keywords
- paste
- oxygen sensor
- oxygen
- electrode
- denotes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052760 oxygen Inorganic materials 0.000 title abstract description 39
- 239000001301 oxygen Substances 0.000 title abstract description 39
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 title abstract description 36
- 229910052693 Europium Inorganic materials 0.000 claims abstract description 4
- 230000007547 defect Effects 0.000 claims abstract description 4
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 4
- 229910052692 Dysprosium Inorganic materials 0.000 claims abstract description 3
- 229910052688 Gadolinium Inorganic materials 0.000 claims abstract description 3
- 229910052779 Neodymium Inorganic materials 0.000 claims abstract description 3
- 229910052746 lanthanum Inorganic materials 0.000 claims abstract description 3
- 229910052691 Erbium Inorganic materials 0.000 claims abstract 2
- 229910052689 Holmium Inorganic materials 0.000 claims abstract 2
- 229910052775 Thulium Inorganic materials 0.000 claims abstract 2
- 229910052769 Ytterbium Inorganic materials 0.000 claims abstract 2
- 229910052717 sulfur Inorganic materials 0.000 claims 1
- 238000005259 measurement Methods 0.000 abstract description 8
- 239000000203 mixture Substances 0.000 abstract description 5
- 229910052772 Samarium Inorganic materials 0.000 abstract description 3
- 239000011230 binding agent Substances 0.000 abstract description 3
- 239000002003 electrode paste Substances 0.000 abstract description 3
- 239000000758 substrate Substances 0.000 abstract description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 abstract description 2
- 239000000843 powder Substances 0.000 abstract 2
- 239000002904 solvent Substances 0.000 abstract 1
- 239000004065 semiconductor Substances 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 239000007784 solid electrolyte Substances 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 239000007772 electrode material Substances 0.000 description 3
- 150000002926 oxygen Chemical class 0.000 description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- AYJRCSIUFZENHW-UHFFFAOYSA-L barium carbonate Chemical compound [Ba+2].[O-]C([O-])=O AYJRCSIUFZENHW-UHFFFAOYSA-L 0.000 description 2
- 239000010953 base metal Substances 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910002076 stabilized zirconia Inorganic materials 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
本発明は、雰囲気中の酸素濃度の変化に対して電導率が
変化する三重欠陥構造ペロブスカイトの特性を利用し、
気体中の酸素検知あるいは酸素濃度測定を行なう為の酸
素センナに関するものである。The present invention utilizes the characteristics of triple-defect structure perovskite, whose conductivity changes with changes in oxygen concentration in the atmosphere,
This invention relates to an oxygen sensor for detecting oxygen in gas or measuring oxygen concentration.
酸素センサには、イオン導伝性を利用した安定化ジルコ
ニア等のような固体電解質からなるものと、酸化物の半
導性を利用した酸化チタン等のような酸化物半導体から
なるものとがある。
これらのうち前者の固体電解質酸素センサは、固体電解
質をはさむ両側で酸素分圧に差を生ずると、酸素濃淡電
池を形成し、起電力を生ずることから、この起電力を測
定することによって固体電解質の両側の酸素分圧を知る
ことができるようにしたものである。
又、酸化物半導体型酸素センサは、ガス雰囲気中の酸素
分圧の変化に伴い、その抵抗値の変化す。
ることを利用するようにしたものである。
尚、この酸化物半導体型の酸素センサとして、ペロブス
カイト型酸化物半導体を用いた酸素センサが提案(特開
昭62−30945号公報、特公昭62−“39383
号公報)されている。
ところで、固体電解質を用いた酸素センサでは、検知極
と参照極とが必要であり、それらを完全に分離しなけれ
ばならず、fil造が複雑になり、形状も大きくなる欠
点がある。
又、参照極側のM案分圧が既知でなければならない問題
点もある。
これに対して、酸化チタンを主な組成とする酸化物半導
体は上記のような問題がないものの、焼成温度が110
0℃以上と高温である為!極材料として高価な白金を使
用しなければならず、安価な銀、銅、ニッケル等を使用
した場合には、素子の焼成後に電極の焼付を必要とする
。
又、酸素を酸化チタンに反応させる為の触媒として白金
を担持させる必要があるといった問題点もある。
又、ペロジスカイ1−型酸化物半導体を用いた酸素セン
サにおいては、600℃以上の高温にならないと電気抵
抗値が高く、それ以下の低温では測定精度が低下し、甚
だしい時には測定不能にさiなってしまう。Oxygen sensors include those made of solid electrolytes such as stabilized zirconia that utilize ionic conductivity, and those made of oxide semiconductors such as titanium oxide that utilize the semiconductivity of oxides. . Among these, the former solid electrolyte oxygen sensor forms an oxygen concentration battery and generates an electromotive force when there is a difference in oxygen partial pressure on both sides of the solid electrolyte. This makes it possible to know the oxygen partial pressure on both sides. Furthermore, the resistance value of the oxide semiconductor oxygen sensor changes with changes in the partial pressure of oxygen in the gas atmosphere. It was designed to take advantage of the fact that As this oxide semiconductor type oxygen sensor, an oxygen sensor using a perovskite type oxide semiconductor has been proposed (Japanese Patent Laid-Open No. 62-30945, Japanese Patent Publication No. 62-39383).
(No. Publication). By the way, an oxygen sensor using a solid electrolyte requires a detection electrode and a reference electrode, which must be completely separated, which has the drawback of complicating the film construction and increasing the size. There is also the problem that the M plan partial pressure on the reference pole side must be known. On the other hand, oxide semiconductors whose main composition is titanium oxide do not have the above problems, but the firing temperature is 110°C.
Because the temperature is over 0℃! Expensive platinum must be used as the electrode material, and if inexpensive silver, copper, nickel, etc. are used, the electrodes must be baked after firing the element. Another problem is that it is necessary to support platinum as a catalyst for reacting oxygen with titanium oxide. In addition, oxygen sensors using Perodisky 1-type oxide semiconductors have a high electrical resistance value unless the temperature is higher than 600°C, and measurement accuracy decreases at lower temperatures, and in extreme cases, measurement may become impossible. It ends up.
本発明は、検知極と参照極との両方が必要といったタイ
プではない酸素センサを提供することを目的とする。
又、本発明は、測定精度が高く、かつ400℃程度の比
較的低温領域においても測定可能な酸素センサを提供す
ることを目的とする。
又、本発明は、電極付与を素子の焼結と同時にでき、し
かも電極材料に卑金属が使用できるようになる酸素セン
サを提供することを目的とする。
又、本発明は、素子に触媒を担持させなくとも良い酸素
センサを提供することを目的とする。
本発明は、上記のような目的を達成する為になされたも
ので、三重欠陥へロブスカイト型構造^zl)CusO
t−δ(但し、Aは口a、Sr、Caからなる群の。
少なくとも一員の元素を表わし、BはY、 La、 N
cl、Sm、Eu、 Gd、 Dy、llo、 Er、
Tii、 Ybからなる群の少なくとも一員の元素を
表わし、δは非化学型論的パラメータを表わす)を有す
る酸素センサを提”供する。
尚、非化学藍論的パラメータδはO〜1、より好ましく
は約0.3〜lの値であることが望ましいものである。
又、本発明における三重欠陥へロブスカイト型構造^z
BcuiOt−δとは、例えば1la2Ycu*Oy−
δのタイプのみではな(、[1aSrYCu30v−δ
、あるいはflag−ysryYcu30y−δ(但し
yは0〜2の数)といったタイプのものも意味している
。
上記三重欠陥へロブスカイト型構造の酸素センサ素子は
次のようにして調整される。
例えば酸化物、炭酸塩等を化学量論組成に基づいて秤I
、混合粉砕を行ない、800〜930℃、例えば約90
0℃で約12時間仮焼する。
次に、これを充分粉砕した後、有機溶剤とバインダを加
えてペースト状にし、基板上にて厚膜を。
作成する。
さらに、この厚膜上に電極ペーストを焼付け、電極を形
成する。
その後、800〜930℃、例えば約900℃で1〜1
′0時間、例えば約5時間焼成すれば、本発明の三重欠
陥ペロプスカイト型構造^JCu30t−δ(但し、A
はDa、Sr、Caからなる群の少なくとも一員の元素
を表わし、BはY、 La、Nd、 Sm、Eu、 G
d、 Dy、llo、E「、T−1ybからなる群の少
なくとも一員の元素を表わし、δは非化学址論的パラメ
ータを表わす)の酸素センサ素子が得られる。
尚、この酸素センサ素子を構成する焼結体は、第1図に
示すようなxa回折パターンを示すものであり、第2図
に示すような結晶構造の三重欠陥へロブスカイト型(^
tBculOy−δ)を有するものであり、結晶中の酸
素の量は雰囲気の酸素分圧によって変化する。
そして、この材料を酸素センサとして用いた時の400
℃と500℃におけるこの酸素センサ素子の比抵抗率と
酸素分圧の関係を調べると、第3図に示。
ずような関係である。
そして、400℃程度の比較的低温領域においても測定
可能であり、酸素センサ素子として有効な作用を発揮し
ていることが判る。The present invention aims to provide an oxygen sensor that does not require both a sensing electrode and a reference electrode. Another object of the present invention is to provide an oxygen sensor that has high measurement accuracy and is capable of measuring even in a relatively low temperature range of about 400°C. Another object of the present invention is to provide an oxygen sensor in which electrodes can be provided at the same time as the element is sintered, and base metals can be used as electrode materials. Another object of the present invention is to provide an oxygen sensor that does not require a catalyst to be supported on the element. The present invention was made to achieve the above-mentioned object, and it is a triple-defected lobskite structure ^zl)CusO.
t-δ (where A represents at least one member of the group consisting of a, Sr, and Ca, and B represents Y, La, N
cl, Sm, Eu, Gd, Dy, lo, Er,
δ represents at least one member of the group consisting of Tii, Yb, and δ represents a non-chemotypic parameter. The non-chemotypic parameter δ is preferably 0 to 1, more preferably It is desirable that the value is about 0.3 to l.Also, the triple defect in the present invention has a lobskite structure^z
BcuiOt-δ is, for example, 1la2Ycu*Oy-
Not only the type of δ (, [1aSrYCu30v−δ
, or flag-ysryYcu30y-δ (where y is a number from 0 to 2). The oxygen sensor element having the triple-defect lobskite structure is adjusted as follows. For example, weigh oxides, carbonates, etc. based on their stoichiometric composition.
, mixed and pulverized at 800-930°C, for example about 90°C.
Calcinate at 0°C for about 12 hours. Next, after thoroughly pulverizing this, an organic solvent and a binder are added to make it into a paste, and a thick film is formed on the substrate. create. Furthermore, an electrode paste is baked on this thick film to form an electrode. Thereafter, 1 to 1
If fired for 0 hours, for example about 5 hours, the triple-defect perovskite structure of the present invention ^JCu30t-δ (however, A
represents at least one member of the group consisting of Da, Sr, and Ca, and B represents Y, La, Nd, Sm, Eu, and G.
d, Dy, llo, E", represents at least one member of the group consisting of T-1yb, and δ represents a non-chemical theoretical parameter). This oxygen sensor element is composed of The sintered body exhibits an xa diffraction pattern as shown in Figure 1, and has a triple-defected lobskite type (^) crystal structure as shown in Figure 2.
tBculOy−δ), and the amount of oxygen in the crystal changes depending on the oxygen partial pressure of the atmosphere. And when this material is used as an oxygen sensor, 400
The relationship between the specific resistivity and oxygen partial pressure of this oxygen sensor element at 500°C and 500°C is shown in Figure 3. It's a very similar relationship. Furthermore, it can be seen that measurement is possible even in a relatively low temperature region of about 400° C., and that it exhibits an effective effect as an oxygen sensor element.
【実施例1】
BaCO3、Y、01、CuOを原料とし、これを化学
1論組成に秤址、混合、粉砕を行ない、900℃で12
時間仮焼した。
これを粉砕した後、有機溶剤とバインダ、を加えベース
1〜状にし、基板上に厚膜として形成する。
この厚膜上に電極とする為銀電極ペーストを塗布し、そ
れを900℃で5時間焼成した。
これを酸素センサ素子として、種々の酸素分圧を有する
雰囲気中で抵抗率を測定したところ、第3図に示すよう
な結果が得られ、酸素センサとして応用できるものであ
った。
(実施例2〜6]
原料として炭酸塩、酸化物を用い、実施例1と同様な手
法でl1aSrYCu307−δ、BaCaYCusO
y−δ、B a z L 11 Cu s Ot−δ、
Ba2GdCu、Oy−δ、 [1alYbCusL−
δ。
の酸素センサ素子を得た。
この酸素センサ素子について、温度が400℃で、雰囲
気の酸素分圧が10’Paの時の抵抗値と10’Paの
抵抗値を測定し、その比を求めたので、その結果を表1
に示した。
表−1
・Po*”IO’(Pa)での抵抗/PotJO’(P
a)での抵抗・測定温度(400℃)
その結果は、それぞれ400℃で酸素センサとして使用
り1能な性能を有していることがわかった。[Example 1] BaCO3, Y, 01, and CuO were used as raw materials, which were weighed, mixed, and pulverized to a chemical composition, and heated to 900°C for 12
Calcined for an hour. After pulverizing this, an organic solvent and a binder are added to form a base 1~, which is then formed as a thick film on a substrate. A silver electrode paste was applied onto this thick film to form an electrode, and the paste was fired at 900° C. for 5 hours. When this was used as an oxygen sensor element and its resistivity was measured in atmospheres having various oxygen partial pressures, the results shown in FIG. 3 were obtained, indicating that it could be applied as an oxygen sensor. (Examples 2 to 6) Using carbonate and oxide as raw materials, l1aSrYCu307-δ, BaCaYCusO
y-δ, B az L 11 Cu s Ot-δ,
Ba2GdCu, Oy-δ, [1alYbCusL-
δ. An oxygen sensor element was obtained. Regarding this oxygen sensor element, we measured the resistance value when the temperature was 400°C and the oxygen partial pressure in the atmosphere was 10'Pa and the resistance value at 10'Pa, and calculated the ratio.The results are shown in Table 1.
It was shown to. Table-1 ・Resistance at Po*”IO’(Pa)/PotJO’(P
Resistance and measurement temperature at a) (400°C) The results showed that each of the samples had sufficient performance to be used as an oxygen sensor at 400°C.
以上に詳細に説明したように、本発明の酸素センサは、
検知極と参照極を必要とせず、測定精度が高(,400
℃程度の比較的低温領域においてら測定可能で、電極付
与を素子の焼結と同時にでき、電極材料に卑金属で使用
でき、素子中に触媒を担持させなくとも良いという利点
を有している−As explained in detail above, the oxygen sensor of the present invention includes:
High measurement accuracy (,400
It has the advantages of being able to perform measurements at relatively low temperatures of about ℃, applying electrodes at the same time as sintering the device, allowing the use of base metals as electrode materials, and eliminating the need for catalysts to be supported in the device.
第1図は900℃で焼成したBazYCu30t−δの
x&1回折パターン、第2図は三重欠陥へロブスカイト
構造の説明図、第3図はDa2YCu−Oy−δの比抵
抗率と酸素分圧の関係を示すグラフである。
特許出願人 秩父セメント株式会社−
1面の浄書
2θ(&)
第1図
Log (PO2/ PO)
第3図
○
0 (kLJ (占1421.oo)第2図
手 続 補 正 書
昭和63年9月2日Figure 1 shows the x & 1 diffraction pattern of BazYCu30t-δ fired at 900°C, Figure 2 is an illustration of the triple-defect lobskite structure, and Figure 3 shows the relationship between resistivity and oxygen partial pressure of Da2YCu-Oy-δ. This is a graph showing. Patent applicant Chichibu Cement Co., Ltd. - 1 page engraving 2θ (&) Fig. 1 Log (PO2/PO) Fig. 3 ○ 0 (kLJ (Uranus 1421.oo) Fig. 2 Procedures Amendment Book 1986 9 2nd day of the month
Claims (1)
7_−δ(但し、AはBa、Sr、Caからなる群の少
なくとも一員の元素を表わし、BはY、La、Nd、S
m、Eu、Gd、Dy、Ho、Er、Tm、Ybからな
る群の少なくとも一員の元素を表わし、δは非化学量論
的パラメータを表わす)を有してなる酸素センサ。Triple defect perovskite structure A_2BCu_3O_
7_-δ (However, A represents at least one member of the group consisting of Ba, Sr, Ca, and B represents Y, La, Nd, S
m, Eu, Gd, Dy, Ho, Er, Tm, Yb, and δ represents a non-stoichiometric parameter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63119147A JPH01291151A (en) | 1988-05-18 | 1988-05-18 | Oxygen sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63119147A JPH01291151A (en) | 1988-05-18 | 1988-05-18 | Oxygen sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01291151A true JPH01291151A (en) | 1989-11-22 |
Family
ID=14754079
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63119147A Pending JPH01291151A (en) | 1988-05-18 | 1988-05-18 | Oxygen sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01291151A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0553452A2 (en) * | 1992-01-27 | 1993-08-04 | ROTH-Technik GmbH & Co. Forschung für Automobil- und Umwelttechnik | Oxygen sensors based on cuprate mixed oxides |
JP2003057390A (en) * | 2001-08-13 | 2003-02-26 | Mitsui Eng & Shipbuild Co Ltd | Control method for concentration of oxygen dissolved in liquid metal |
JP2019132843A (en) * | 2018-01-31 | 2019-08-08 | Koa株式会社 | Oxygen sensor element |
JP2019132741A (en) * | 2018-01-31 | 2019-08-08 | Koa株式会社 | Oxygen sensor element |
JP2019174440A (en) * | 2018-01-31 | 2019-10-10 | Koa株式会社 | Oxygen sensor element |
-
1988
- 1988-05-18 JP JP63119147A patent/JPH01291151A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0553452A2 (en) * | 1992-01-27 | 1993-08-04 | ROTH-Technik GmbH & Co. Forschung für Automobil- und Umwelttechnik | Oxygen sensors based on cuprate mixed oxides |
JP2003057390A (en) * | 2001-08-13 | 2003-02-26 | Mitsui Eng & Shipbuild Co Ltd | Control method for concentration of oxygen dissolved in liquid metal |
JP4488658B2 (en) * | 2001-08-13 | 2010-06-23 | 三井造船株式会社 | Method for controlling dissolved oxygen concentration in liquid metal |
JP2019132843A (en) * | 2018-01-31 | 2019-08-08 | Koa株式会社 | Oxygen sensor element |
JP2019132741A (en) * | 2018-01-31 | 2019-08-08 | Koa株式会社 | Oxygen sensor element |
JP2019174440A (en) * | 2018-01-31 | 2019-10-10 | Koa株式会社 | Oxygen sensor element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4454494A (en) | Oxygen sensors | |
US4357426A (en) | Humidity sensitive ceramics | |
JP3453283B2 (en) | Solid oxide fuel cell | |
US6319429B1 (en) | Oxygen sensitive resistance material | |
US4789454A (en) | Low temperature solid electrolyte oxygen sensor | |
JP3254595B2 (en) | Porcelain composition for thermistor | |
CN111620689A (en) | Perovskite-like high-temperature thermistor material with different A-site elements and preparation method thereof | |
US6365036B1 (en) | Electrode ink formulation for oxygen sensor | |
JPH01291151A (en) | Oxygen sensor | |
EP3696827A1 (en) | Thermistor sintered body and temperature sensor element | |
KR930005249B1 (en) | Metal Oxide Thermistor Material | |
Kulawik et al. | Fabrication and characterization of bulk and thick film perovskite NTC thermistors | |
JPS6161344B2 (en) | ||
EP0853239A2 (en) | Gas sensor and heater unit | |
CN116190024A (en) | A composite high temperature perovskite negative temperature coefficient thermistor and its preparation method | |
JPH11214127A (en) | Heater device and manufacture of the same | |
CN1007838B (en) | Sensor for measuring oxygen partial pressure of hot gas | |
JP3152789B2 (en) | Conductive ceramics | |
JP2733516B2 (en) | Gas sensor | |
Cvejin et al. | Synthesis of perovskite Sr doped lanthanide cobaltites and ferrites and application for oxygen sensors: a comparative study | |
EP0023216A1 (en) | An oxygen-sensitive element and a method of detecting oxygen concentration. | |
JP3393261B2 (en) | Porcelain composition for thermistor | |
JPH04149023A (en) | Calcium-doped lanthanum manganite and solid electrolyte fuel cell using the same | |
Gomes et al. | Mixed conduction induced by grain boundary engineering | |
JP2580283B2 (en) | Electronic conductive ceramics |