[go: up one dir, main page]

JP2733516B2 - Gas sensor - Google Patents

Gas sensor

Info

Publication number
JP2733516B2
JP2733516B2 JP17369488A JP17369488A JP2733516B2 JP 2733516 B2 JP2733516 B2 JP 2733516B2 JP 17369488 A JP17369488 A JP 17369488A JP 17369488 A JP17369488 A JP 17369488A JP 2733516 B2 JP2733516 B2 JP 2733516B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
sensor
gas sensor
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17369488A
Other languages
Japanese (ja)
Other versions
JPH0224549A (en
Inventor
隆之 鈴木
和俊 安形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Sogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Sogyo KK filed Critical Yazaki Sogyo KK
Priority to JP17369488A priority Critical patent/JP2733516B2/en
Publication of JPH0224549A publication Critical patent/JPH0224549A/en
Application granted granted Critical
Publication of JP2733516B2 publication Critical patent/JP2733516B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は自動車の排気ガス等に含まれる酸素等の酸化
性ガスや還元性ガスを検出するに利用されるガスセンサ
に関する。
Description: TECHNICAL FIELD The present invention relates to a gas sensor used for detecting an oxidizing gas or a reducing gas such as oxygen contained in an exhaust gas of an automobile or the like.

〔従来の技術〕[Conventional technology]

自動車等の内燃機関の空燃比の最適制御を行なうため
に、排気ガス中の酸素や未燃焼ガス成分を検出するセン
サが用いられており、たとえば安定化ジルコニアを電解
質とする濃淡電池式酸素センサや、酸化スズや酸化チタ
ン等の焼結体からなる半導体を用いた電気抵抗式センサ
などが用いられている。中でもSrSnO3なる組成を有する
ペロブスカイト型酸化物はn型半導体特性を有してい
て、雰囲気中の酸素分圧に対応して格子欠陥が生成する
ために電気抵抗値が大きく変化し、この変化は燃焼排ガ
スを雰囲気とした場合その空燃比が理論空燃比付近で変
化するとき特に著しいことが知られている。
In order to optimally control the air-fuel ratio of an internal combustion engine of an automobile or the like, a sensor that detects oxygen and unburned gas components in exhaust gas is used.For example, a concentration cell type oxygen sensor using stabilized zirconia as an electrolyte, An electric resistance sensor using a semiconductor made of a sintered body such as tin oxide or titanium oxide has been used. Among them, a perovskite oxide having a composition of SrSnO 3 has an n-type semiconductor characteristic, and a lattice defect is generated corresponding to an oxygen partial pressure in an atmosphere. It is known that when the combustion exhaust gas is used as an atmosphere, the air-fuel ratio is particularly remarkable when the air-fuel ratio changes near the stoichiometric air-fuel ratio.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

前記のようなSrSnO3なる組成を有する半導体を、たと
えば自動車の空燃比制御のためのセンサとして利用しよ
うとしたとき、空燃比の変化に対する電気抵抗変化率は
700〜800℃では大きいものの500〜400℃と低温になるに
つれて小さくなるという欠点があり、また空燃比がリッ
チ(R)からリーン(L)へ変化するときよりもLから
Rへ変化するときの応答速度が遅いという問題もあっ
て、このようなセンサと組み合わせる制御回路や補正回
路が複雑となるため、使いにくいという欠点があった。
When a semiconductor having the composition of SrSnO 3 as described above is used as a sensor for controlling the air-fuel ratio of an automobile, for example, the rate of change in electric resistance with respect to the change in the air-fuel ratio is
At 700-800 ° C., there is a disadvantage that it is large, but it becomes small as the temperature becomes low at 500-400 ° C., and when the air-fuel ratio changes from L to R rather than from rich (R) to lean (L). There is also a problem that the response speed is slow, and a control circuit and a correction circuit to be combined with such a sensor are complicated, so that there is a disadvantage that it is difficult to use.

そこで本発明は、感度および応答速度が改良された、
自動車等における空燃比制御用として使い易いガスセン
サを提供しようとするものである。
Therefore, the present invention has improved sensitivity and response speed,
It is an object of the present invention to provide an easy-to-use gas sensor for controlling an air-fuel ratio in an automobile or the like.

〔課題を解決するための手段〕[Means for solving the problem]

前記のような目的を達成しうる本発明のセンサは、一
般式: Sr(1-X)・Y(X)・SnO(3-d) ただし、0<x≦0.4,0<d<1 を有するペロブスカイト型複合酸化物を用いて構成され
たことを特徴とするものである。
The sensor of the present invention which can achieve the above object has a general formula: Sr (1-X) .Y (X) .SnO (3-d) where 0 <x ≦ 0.4, 0 <d <1. It is characterized by comprising using the perovskite type complex oxide which has.

本発明のガスセンサ用のペロブスカイト型複合酸化物
は、従来公知のこの種の酸化物半導体と同様に、酸素欠
損に基づく格子欠陥を有するn型半導体である。これを
用いてセンサを構成するには、先ず原料としてそれぞれ
高純度のストロンチウム化合物、イットリウム化合物、
および錫化合物を用いて製造することができる。かかる
それぞれの原料化合物としては、好ましくは酸化物、あ
るいは加熱により分解して酸化物を生成しうる化合物を
用いてよい。
The perovskite-type composite oxide for a gas sensor according to the present invention is an n-type semiconductor having a lattice defect based on oxygen deficiency, similarly to a conventionally known oxide semiconductor of this type. To construct a sensor using this, first, a high-purity strontium compound, a yttrium compound,
And a tin compound. As each of the starting compounds, an oxide or a compound which can be decomposed by heating to form an oxide may be used.

このようなそれぞれの原料化合物は、それぞれの金属
元素の含量に基づいてストロンチウムとイットリウムの
合計と錫とが等モルとなるように配合されるが、更にス
トロンチウムとイットリウムの合計量1モルに対してイ
ットリウムが0.4モル以下となるように配合される。
Each of such raw material compounds is blended so that the total amount of strontium and yttrium and the amount of tin are equimolar based on the content of each metal element, and further based on 1 mol of the total amount of strontium and yttrium. It is blended so that yttrium becomes 0.4 mol or less.

かかる原料配合物は、この種の複合酸化物を製造する
通常の方法、すなわち粉砕機を用いて充分に混合粉砕
し、これを1000〜1400℃で焼成するなどの方法によっ
て、ペロブスカイト型複合酸化物とすることができる。
こうして得た複合酸化物は、粉砕機を用いて微粉末とし
たのちプレス機などを用いて所望のセンサチップ形状に
成形するが、この際に必要に応じて電極などを埋め込ん
でおいてもよい。この成形体を、たとえば1200〜1400℃
で焼結し、必要に応じて電極端子を取り付け、ガスセン
サ素子が得られる。
Such a raw material blend is a perovskite-type composite oxide by a usual method for producing this type of composite oxide, that is, by sufficiently mixing and pulverizing using a pulverizer, and firing it at 1000 to 1400 ° C. It can be.
The composite oxide thus obtained is formed into a fine powder using a pulverizer and then formed into a desired sensor chip shape using a press or the like. At this time, electrodes and the like may be embedded as necessary. . This molded body, for example, 1200 ~ 1400 ℃
And a gas sensor element is obtained by attaching electrode terminals as necessary.

〔実施例〕〔Example〕

含ストロンチウム原料として炭酸ストロンチウム、含
イットリウム原料として酸化イットリウム(III)、お
よび含錫原料として金属錫を硝酸に溶解して硝酸錫溶液
とし、これを加熱して得た酸化錫(IV)を、それぞれ充
分に乾燥したのち第1表に示すモル比となるように化学
量論的に秤取し、この混合物を振動ミルを用いて混合粉
砕した。ついで粉砕物を打錠して電気炉中に装入し、空
気雰囲気中で1200℃、20時間焼成してそれぞれ複合酸化
物焼結体を得た。
Strontium carbonate as a raw material containing strontium, yttrium oxide (III) as a raw material containing yttrium, and tin tin as a raw material containing tin dissolved in nitric acid to form a tin nitrate solution, and tin oxide (IV) obtained by heating the solution, After being sufficiently dried, the mixture was stoichiometrically weighed so as to have a molar ratio shown in Table 1, and this mixture was mixed and pulverized using a vibration mill. Next, the pulverized material was tableted, charged into an electric furnace, and fired in an air atmosphere at 1200 ° C. for 20 hours to obtain a composite oxide sintered body.

得られた複合酸化物焼結体は、振動ミルを用いて粉砕
して微粉末とし、径0.3mmの白金線を2本平行として1mm
間隔に装着固定した3mm×3mmの金型に装入して5kgf/cm2
でプレスし、厚さ1mmの成形体を作成した。次いで、こ
の成形体を電気炉中で1350℃、2時間焼成してセンサ素
子を作成した(第1図)。なお、これらの酸化物の酸素
欠損量、即ち一般式中のdの値は、0.05〜0.3程度であ
った。
The obtained composite oxide sintered body was pulverized using a vibration mill into fine powder.
5kgf / cm 2 by inserting into a 3mm x 3mm mold fixed at intervals
To produce a molded body having a thickness of 1 mm. Next, the formed body was fired in an electric furnace at 1350 ° C. for 2 hours to prepare a sensor element (FIG. 1). The oxygen deficiency of these oxides, that is, the value of d in the general formula, was about 0.05 to 0.3.

このようにして作成したNo.3のセンサ素子を700℃の
炉内に置いて白金電極をそれぞれ電気抵抗測定装置の測
定端子と結び、所定の空燃比となるよう設定された可燃
性ガスと空気との混合気を350℃に加熱された触媒槽に
通し、触媒によって燃焼した排ガスを炉内に導入してセ
ンサ素子の電気抵抗値を測定した。そして触媒槽に供給
される混合気の空燃比を変化させたときの電気抵抗値
(r)を測定したところ、第2図のような変化をするこ
とが確かめられた。
The No. 3 sensor element prepared in this manner was placed in a furnace at 700 ° C., and platinum electrodes were connected to the measurement terminals of the electric resistance measurement device, respectively, and a flammable gas and air set to a predetermined air-fuel ratio were set. Was passed through a catalyst tank heated to 350 ° C., and the exhaust gas burned by the catalyst was introduced into the furnace to measure the electric resistance value of the sensor element. Then, when the electric resistance value (r) was measured when the air-fuel ratio of the air-fuel mixture supplied to the catalyst tank was changed, it was confirmed that the change was as shown in FIG.

次いで、作成した各々のセンサ素子について、空燃比
(λ)が理論空燃比(λ=1)の上下にそれぞれ10%変
化したときの600℃の電気抵抗値の変化を、 で表わされる感度として算出し、合わせて第1表に示し
た。
Next, for each of the created sensor elements, the change in the electric resistance value at 600 ° C. when the air-fuel ratio (λ) changes 10% above and below the stoichiometric air-fuel ratio (λ = 1), respectively, The sensitivity was calculated as shown in Table 1, and is shown in Table 1.

さらにNo.1およびNo.3のセンサ素子について、雰囲気
の温度を400℃から800℃まで変化させて感度を測定した
ところ、第2表に示すような結果が得られた。
Further, for the sensor elements No. 1 and No. 3, the sensitivity was measured while changing the temperature of the atmosphere from 400 ° C. to 800 ° C., and the results shown in Table 2 were obtained.

また、No.1およびNo.3のセンサ素子について温度を70
0℃又は800℃に維持したまま、雰囲気排気ガスの空燃比
(λ)を1.1から0.9へ(→R)、また0.9から1.1(→
L)へ、それぞれ急激に転換したときに、出力が10%か
ら90%の間で変化するに要した応答時間(秒)を測定し
たところ、第3表に示すような結果が得られた。
In addition, for the sensor elements No. 1 and No. 3
While maintaining the temperature at 0 ° C or 800 ° C, the air-fuel ratio (λ) of the atmospheric exhaust gas was changed from 1.1 to 0.9 (→ R) and from 0.9 to 1.1 (→ R).
L), the response time (sec) required for the output to change between 10% and 90% at the time of rapid conversion was measured, and the results shown in Table 3 were obtained.

これらの結果から、本発明のセンサ素子は、従来のSr
SnO3組成のセンサ素子にくらべて、自動車エンジン排気
ガスの濃度を広い温度範囲で高感度かつ高応答速度で検
出することができることがわかる。
From these results, the sensor element of the present invention can
It can be understood that the concentration of the exhaust gas of the automobile engine can be detected with high sensitivity and high response speed in a wide temperature range as compared with the sensor element of SnO 3 composition.

〔発明の効果〕〔The invention's effect〕

本発明のガスセンサは、新規な組成を有するペロブス
カイト型複合酸化物を用いて構成されており、感度が高
くまた空燃比の変化の方向に関係なく迅速に応答するの
で、内燃機関の空燃比の制御に用いるときは制御用回路
において複雑な補正回路の必要がなく、簡単な制御回路
を用いて理論空燃比を中心とした制御が容易に実施でき
るものである。
The gas sensor of the present invention is constituted by using a perovskite-type composite oxide having a novel composition and has a high sensitivity and responds promptly regardless of the direction of the change in the air-fuel ratio. When the control circuit is used, there is no need for a complicated correction circuit in the control circuit, and control with a focus on the stoichiometric air-fuel ratio can be easily performed using a simple control circuit.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明のガスセンサの一実施例の外観斜視図で
あり、 第2図はその空燃比に対する電気抵抗の変化の一例を示
すグラフである。
FIG. 1 is an external perspective view of an embodiment of the gas sensor of the present invention, and FIG. 2 is a graph showing an example of a change in electric resistance with respect to the air-fuel ratio.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一般式: Sr(1-X)・Y(X)・SnO(3-d) ただし、0<x≦0.4,0<d<1 を有するペロブスカイト型複合酸化物を用いて構成され
たことを特徴とするガスセンサ。
(1) A general formula: Sr (1-X) .Y (X) .SnO (3-d) wherein a perovskite-type composite oxide having 0 <x ≦ 0.4 and 0 <d <1 is used. A gas sensor characterized in that:
【請求項2】一般式: Sr(1-X)・Y(X)・SnO(3-d) ただし、0<x≦0.4,0<d<1 を有するペロブスカイト型複合酸化物の微粉末の焼結体
に電極を取り付けてなるガスセンサ。
2. A fine powder of a perovskite-type composite oxide having the following formula: Sr (1-X) .Y (X) .SnO (3-d) wherein 0 <x ≦ 0.4,0 <d <1. Gas sensor with electrodes mounted on a sintered body.
JP17369488A 1988-07-14 1988-07-14 Gas sensor Expired - Fee Related JP2733516B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17369488A JP2733516B2 (en) 1988-07-14 1988-07-14 Gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17369488A JP2733516B2 (en) 1988-07-14 1988-07-14 Gas sensor

Publications (2)

Publication Number Publication Date
JPH0224549A JPH0224549A (en) 1990-01-26
JP2733516B2 true JP2733516B2 (en) 1998-03-30

Family

ID=15965380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17369488A Expired - Fee Related JP2733516B2 (en) 1988-07-14 1988-07-14 Gas sensor

Country Status (1)

Country Link
JP (1) JP2733516B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6328822B1 (en) 1998-06-26 2001-12-11 Kiyohito Ishida Functionally graded alloy, use thereof and method for producing same
WO2000027462A1 (en) 1998-11-06 2000-05-18 The Furukawa Electric Co., Ltd. NiTi-TYPE MEDICAL GUIDE WIRE AND METHOD OF PRODUCING THE SAME
JP2002058748A (en) 1998-12-11 2002-02-26 Paiorakkusu:Kk Guide wire for catheter and production method thereof

Also Published As

Publication number Publication date
JPH0224549A (en) 1990-01-26

Similar Documents

Publication Publication Date Title
Slater et al. Synthesis and electrical characterisation of doped perovskite titanates as potential anode materials for solid oxide fuel cells
US4601883A (en) Sensor element
JP3453283B2 (en) Solid oxide fuel cell
JP3417090B2 (en) Electrode material for solid electrolyte
JP3934750B2 (en) Oxide ion conductive ceramics and method for producing the same
US6319429B1 (en) Oxygen sensitive resistance material
EP1864955A1 (en) Ion conductor
JP2733516B2 (en) Gas sensor
JPH08119732A (en) Method for producing solid electrolyte
JPS6349181B2 (en)
CA1123117A (en) Rare earth or yttrium, transition metal oxide thermistors
JPH06231611A (en) Mixed ion conductor
JP2951887B2 (en) Mixed ionic conductor
JPS6161344B2 (en)
JPS637342B2 (en)
EP0853239A2 (en) Gas sensor and heater unit
JP2003288919A (en) Electric conductive ceramic and its manufacturing method, and inter connector for solid oxide fuel cell using the same
JPH0244244A (en) Manufacture of electrochemical cell
Hildrum et al. Thermodynamic properties of doped lanthanum manganites
JPH0891929A (en) Conductive ceramics and manufacturing method thereof
EP1184926B1 (en) Gallate based complex oxide electrolyte material
JPH01291151A (en) Oxygen sensor
JP2001513188A (en) Electrode materials for hydrocarbon sensors
JPH0531105B2 (en)
JPH04149023A (en) Calcium-doped lanthanum manganite and solid electrolyte fuel cell using the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees