JPH01264131A - Cathode body structure - Google Patents
Cathode body structureInfo
- Publication number
- JPH01264131A JPH01264131A JP63093936A JP9393688A JPH01264131A JP H01264131 A JPH01264131 A JP H01264131A JP 63093936 A JP63093936 A JP 63093936A JP 9393688 A JP9393688 A JP 9393688A JP H01264131 A JPH01264131 A JP H01264131A
- Authority
- JP
- Japan
- Prior art keywords
- heating element
- sides
- temperature
- heat
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010438 heat treatment Methods 0.000 claims abstract description 45
- 239000000758 substrate Substances 0.000 claims abstract description 18
- 239000010409 thin film Substances 0.000 claims abstract description 5
- 239000010953 base metal Substances 0.000 claims description 32
- 230000020169 heat generation Effects 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 5
- 239000002184 metal Substances 0.000 abstract description 5
- 229910052751 metal Inorganic materials 0.000 abstract description 5
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052721 tungsten Inorganic materials 0.000 abstract description 3
- 239000010937 tungsten Substances 0.000 abstract description 3
- 150000002739 metals Chemical class 0.000 abstract 3
- 230000005855 radiation Effects 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Landscapes
- Electrodes For Cathode-Ray Tubes (AREA)
- Solid Thermionic Cathode (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、インライン型カラーブラウン管に用いられ
る積層状の陰極構体に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a laminated cathode structure used in an in-line color cathode ray tube.
第5図〜第7図は従来のこの種陰極構体の拡大平面図で
あり、第5図は電子放射の行なわれる側の平面図、第6
図は加熱側の平面図、第7図は側断面図である。各図に
おいて、lは耐熱性絶縁基板で、例えば0.1〜0.4
閾程度の厚さのアルミナ等からできている。2a〜2c
は直線状に配置された基体金属で、上記耐熱性絶縁基I
Iの片面に例えば還元性不純物元素を微量含有するニッ
ケルが真空蒸着あるいはスパッタリングなどの方法で被
着形成されている。4は例えば(Ba−3r−Ca)0
などのアルカリ土類金属酸化物からなる電子放射物質で
、3個の基体金属2a、2b、2c上にスプレーなどの
方法で被着形成されている。3はリード線であり、基体
金属2a、2b、2cと同様の方法により一体的に上記
絶縁基板1の上に被着形成されている。3aはリード線
の先端にあるカソード端子で、図示しないが外部と導線
により接続される。5a、5b、5cは発熱体で、絶縁
基板の一方の片面の3個の基体金属2a〜2cに対応す
る部位にスパン多リングなどによりタングステンなどが
蛇行状に被着形成されている。5dは発熱体5a〜5c
を直列接続している導線である。5 to 7 are enlarged plan views of a conventional cathode structure of this type. FIG. 5 is a plan view of the side where electron emission occurs, and FIG.
The figure is a plan view of the heating side, and FIG. 7 is a side sectional view. In each figure, l is a heat-resistant insulating substrate, for example 0.1 to 0.4
It is made of alumina or the like with a thickness around the threshold. 2a-2c
is a base metal arranged in a straight line, and the heat-resistant insulating group I
For example, nickel containing a trace amount of a reducing impurity element is deposited on one side of I by vacuum evaporation or sputtering. 4 is, for example, (Ba-3r-Ca)0
It is an electron emitting material made of an alkaline earth metal oxide such as, and is deposited on the three base metals 2a, 2b, and 2c by a method such as spraying. 3 is a lead wire, which is integrally formed on the insulating substrate 1 by the same method as the base metals 2a, 2b, and 2c. Reference numeral 3a denotes a cathode terminal at the tip of the lead wire, which is connected to the outside via a conductor wire (not shown). Reference numerals 5a, 5b, and 5c are heating elements, and tungsten or the like is formed in a meandering manner by spun multi-rings or the like at portions corresponding to the three base metals 2a to 2c on one side of the insulating substrate. 5d is a heating element 5a to 5c
This is a conducting wire that connects the two in series.
6はヒータ端子で図示してないが外部の導it 1%と
接続され、電圧が印加される。Reference numeral 6 denotes a heater terminal, which is not shown, but is connected to an external conductor 1% and a voltage is applied thereto.
次に動作について説明する。発熱体5a〜5cのヒータ
端子6に電圧を印加すると、発熱体5a〜5cに電流が
流れ、ジュール熱が下式に示すように電流の2乗と発熱
体5a〜5cの電気抵抗との積とで決まる量で発生する
。Next, the operation will be explained. When a voltage is applied to the heater terminals 6 of the heating elements 5a to 5c, a current flows through the heating elements 5a to 5c, and Joule heat is generated by the product of the square of the current and the electrical resistance of the heating elements 5a to 5c, as shown in the formula below. occurs in an amount determined by
Q=I”XRxt ・・・(1)ただし、Q
は熱量、■は電流、Rは電気抵抗、Lは時間を示す。Q=I”XRxt...(1) However, Q
indicates the amount of heat, ■ indicates the current, R indicates the electrical resistance, and L indicates the time.
上記した発生熱が熱伝導および熱輻射により絶縁基板l
を通して3個の基体金属2a〜2cを加熱する。そして
基体金属2a〜2cが約a o o ’cの動作温度ま
で加熱されると電子放射物質4から電子ビームが放射さ
れ、カラーブラウン管の3色の蛍光面を光らせる。The above generated heat is transferred to the insulating substrate through thermal conduction and thermal radiation.
The three base metals 2a to 2c are heated through. When the base metals 2a to 2c are heated to an operating temperature of about a o o'c, an electron beam is emitted from the electron emitting material 4, causing the three-color fluorescent screen of the color cathode ray tube to glow.
以上のように構成した陰極構体においては、各発熱体5
a〜5Cに電圧を印加して各基体金属28〜2cを約8
00°Cの動作温度にする際、中央の基体金属2bの温
度がその両側の基体金属2a。In the cathode structure configured as described above, each heating element 5
By applying a voltage to a to 5C, each base metal 28 to 2c is
When setting the operating temperature to 00°C, the temperature of the central base metal 2b is the same as the base metal 2a on both sides.
2cの温度よりも高温となる。その理由は、両側の発熱
体5a、5cはヒータ端子6を通しての熱伝導損失があ
り温度が上がりにくいということ、また、中央の発熱体
5bはその両側の発熱体5a。The temperature is higher than that of 2c. The reason for this is that the heat generating elements 5a and 5c on both sides have heat conduction loss through the heater terminal 6, making it difficult for the temperature to rise, and the central heating element 5b is the same as the heating elements 5a on both sides.
5cからの熱輻射や熱伝導を受けて温度が上がりやすい
というためである。従って、この中央の発熱体5bに対
応した部分にある中央の基体金属2bが両側の基体金属
2a、2cよりも温度が高くなる。一般に基体金属2a
〜2Cの温度が所定の動作温度よりも高ければ高いほど
基体金属2a〜2Cに微量台まれていて、電子放射物質
4を活性化する作用を有する還元性元素であるマグネシ
ウムやシリコンの拡散蒸発速度を加速することになる。This is because the temperature tends to rise due to heat radiation and conduction from 5c. Therefore, the temperature of the central base metal 2b located in the portion corresponding to the central heating element 5b is higher than that of the base metals 2a and 2c on both sides. Generally base metal 2a
The higher the temperature of ~2C is than the predetermined operating temperature, the faster the rate of diffusion and evaporation of magnesium and silicon, which are reducing elements contained in the base metals 2a to 2C and have the effect of activating the electron emitting material 4. This will accelerate the
この結果、長時間の動作を行なうと温度の高い中央の基
体金属2bからの電子放射特性が両側の基体金属2a、
2cのそれに比べて早期に劣化し始め、3個の基体金属
2a〜2Cからの電子放射特性のバランスが崩れ、いわ
ゆるホワイトバランス崩れといわれる蛍光面上での色調
の変化が生じる欠点があった。As a result, when operating for a long time, the electron emission characteristics from the high-temperature central base metal 2b change from the base metals 2a on both sides.
Compared to that of 2c, it starts to deteriorate earlier, the balance of electron emission characteristics from the three base metals 2a to 2C is lost, and there is a drawback that a change in color tone on the phosphor screen, so-called white balance loss, occurs.
従来の陰極構体は以上のように構成されているため、中
央の基体金属2bの温度がその両側の基体金属2a、2
cの温度よりも高くなり、この結果、中央の基体金属2
bからの電子放射特性が動作中早期に劣化し色調の変化
が生じるという問題があった。Since the conventional cathode structure is constructed as described above, the temperature of the central base metal 2b is higher than that of the base metals 2a and 2 on both sides.
As a result, the temperature of the central base metal 2
There was a problem in that the electron emission characteristics from b deteriorated early during operation, causing a change in color tone.
この発明は上記のような課題を解消するためになされた
もので、3個の基体金属の動作温度をほぼ均一化して動
作中の色調の変化を抑制することのできる陰極構体を得
ることを目的とする。This invention was made to solve the above-mentioned problems, and the purpose is to obtain a cathode structure that can substantially equalize the operating temperatures of the three base metals and suppress changes in color tone during operation. shall be.
[i11!!!を解決するための手段〕この発明に係る
陰極構体は、耐熱性絶縁基板に蛇行状に被着する薄膜リ
ボン状の発熱体を発熱量または発熱効率を中央部から両
側に向って徐々に増加させたものである。[i11! ! ! [Means for Solving the Problems] The cathode structure according to the present invention has a heating element in the form of a thin film ribbon attached to a heat-resistant insulating substrate in a meandering manner, so that the heat generation amount or heat generation efficiency is gradually increased from the center toward both sides. It is something that
この発明においては、発熱体をその中央部から両側に向
って発熱量または発熱効率を徐々に増加させたので、両
側部での発熱量が上がり、中央の基体金属と両側の基体
金属の温度をほぼ同じにすることができる。In this invention, the heat generation amount or heat generation efficiency of the heating element is gradually increased from the center to both sides, so the heat generation amount at both sides increases, and the temperature of the base metal in the center and the base metals on both sides increases. can be made almost the same.
以下、この発明の一実施例を図について説明する。第1
図はこの発明による陰極構体で、耐熱性絶縁基板に発熱
体が被着されている平面図を示し、図において、耐熱性
絶縁基板l上にはタングステンからなる薄膜リボン状の
蛇行する発熱体5が被着形成されている。6は発熱体5
の両側のヒータ端子である。上記発熱体5の膜厚は3ミ
クロン、幅は0.2 M、ピッチは0.3閣である。ま
た、発熱体5は耐熱性絶縁基板lの幅方向の長さが中央
部から両側に向って徐々に長くなるように形成しである
。なお、発熱体5の中央部の長さは2.0 ws 。An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure shows a plan view of a cathode structure according to the present invention in which a heating element is adhered to a heat-resistant insulating substrate. is formed by adhesion. 6 is a heating element 5
These are the heater terminals on both sides. The heating element 5 has a thickness of 3 microns, a width of 0.2 M, and a pitch of 0.3 mm. Further, the heating element 5 is formed so that the length in the width direction of the heat-resistant insulating substrate l gradually increases from the center toward both sides. Note that the length of the central portion of the heating element 5 is 2.0 ws.
両側の最端部は2.8−である、すなわち、発熱体5の
中央部の電気抵抗値はその両端部の電気抵抗値よりも小
さくなる。したがって、上記(1)式からも計算できる
ように電気抵抗値の小さい発熱体5の中央部の発熱量は
両端部の発熱量よりも少なくなる。しかしこのままでは
中央部の温度が両端部の温度よりも下がることになるが
、両端部からの熱輻射や熱伝導を受けることによって昇
温し発熱体5の中央部と両端部の温度はほぼ等しくなる
。The extreme ends on both sides are 2.8-, that is, the electrical resistance value at the center of the heating element 5 is smaller than the electrical resistance value at both ends thereof. Therefore, as can be calculated from the above equation (1), the amount of heat generated at the center of the heating element 5 having a small electrical resistance value is smaller than the amount of heat generated at both ends. However, if this continues, the temperature at the center will be lower than the temperature at both ends, but it will rise due to heat radiation and conduction from both ends, and the temperature at the center and both ends of the heating element 5 will be almost equal. Become.
第2図は、発熱体5の他の実施例を示すもので、中央部
の発熱体5のリボン幅を0.3鑓とし、両側に向うにつ
れて徐々にリボン幅を細くし、最端部のリボン幅を0.
15 ausとした。これによって発熱体5の中央部の
電気抵抗値は両端部の電気抵抗値よりも小さくなり、上
記実施例と同様に発熱体5の中央部の発熱量は両端部よ
りも少なくなるが、両端部からの熱輻射や熱伝導を受け
て発熱体5の中央部と両端部の温度はほぼ等しくなる。Fig. 2 shows another embodiment of the heating element 5, in which the ribbon width of the heating element 5 at the center is 0.3 mm, the ribbon width is gradually narrowed toward both sides, and the ribbon width at the extreme end is 0.3 mm. Set the ribbon width to 0.
It was set at 15 aus. As a result, the electrical resistance value at the central part of the heating element 5 becomes smaller than the electrical resistance value at both ends, and as in the above embodiment, the amount of heat generated at the central part of the heating element 5 is smaller than at both ends, but at both ends. The temperatures at the center and both ends of the heating element 5 become approximately equal due to heat radiation and conduction from the heating element 5.
第3図は発熱体5のさらに他の実施例を示すもので、発
熱体5は膜厚を3ミクロンとし、0.2■幅の薄膜を蛇
行状に被着しである。また、発熱体5のピッチPは絶縁
基Fi1の中央部で0.6−とし、中央部から両側へ向
うにつれてピッチを徐々に狭くし、最端部のピッチPa
を0.4■とした。これによって、ピッチが小さいほど
発熱効率が高くなり温度は上昇しやすく、逆にピッチが
大きければ発熱効率が下がりにくくなる。つまり、ピッ
チの粗い中央部の発熱体部分の温度は上がりにくくなる
が、発熱体5の両端部からの熱輻射や熱伝導を受けて発
熱体中央部と両端部の温度はほぼ等しくなる。FIG. 3 shows still another embodiment of the heating element 5, in which the heating element 5 has a film thickness of 3 microns and is made of a thin film of 0.2 square meters in width applied in a meandering manner. Further, the pitch P of the heating element 5 is set to 0.6- at the center of the insulating base Fi1, and the pitch is gradually narrowed from the center to both sides, and the pitch P at the extreme end is 0.6-.
was set to 0.4■. As a result, the smaller the pitch, the higher the heat generation efficiency and the easier the temperature will rise, and conversely, the larger the pitch, the less the heat generation efficiency will fall. In other words, the temperature of the heating element in the central part where the pitch is rough is difficult to rise, but the temperature of the central part of the heating element and both ends become almost equal due to heat radiation and heat conduction from both ends of the heating element 5.
上記したように、発熱体5の温度を全域に亘ってほぼ均
一化することにより耐熱性絶縁基板lを挟んだ部分に対
向しである3個の基体金属2a〜2cの温度も均一化す
ることが可能である。第4図は基体金属2a〜2cの温
度特性を示すが、図のO印で示すように中央と両側の基
体金属の温度差は殆んどなくなった。因みに従来例の陰
極構体の基体金属の温度特性はX印で示すように中央の
基体金属2bの温度が両側の基体金属2a、2cの温度
に比べて約30°C程度高温であった。As described above, by making the temperature of the heating element 5 substantially uniform over the entire area, the temperatures of the three base metals 2a to 2c facing the portion sandwiching the heat-resistant insulating substrate 1 can also be made uniform. is possible. FIG. 4 shows the temperature characteristics of the base metals 2a to 2c, and as shown by the O mark in the figure, the temperature difference between the center and both sides of the base metals has almost disappeared. Incidentally, regarding the temperature characteristics of the base metal of the conventional cathode structure, as shown by the X mark, the temperature of the center base metal 2b was about 30°C higher than the temperature of the base metals 2a and 2c on both sides.
なお、実施例では発熱体の材料はタングステン以外、モ
リブデン小チタンあるいはレニウムなどの高融点耐熱性
金属であってもよい。In the embodiment, the material of the heating element may be a high melting point heat resistant metal such as molybdenum small titanium or rhenium other than tungsten.
以上説明したようにこの発明によれば、発熱体をその中
央部から両側に向って徐々に発熱量あるいは発熱効率を
高めるようにしたので、発熱体の温度分布を全域に亘っ
て均一化でき、この結果、3個の基体金属の温度も均一
化され電子放射特性が長期間に亘って安定化され、動作
中の色調の変化などを抑制できる。As explained above, according to the present invention, the heat generation amount or heat generation efficiency of the heating element is gradually increased from the center to both sides, so that the temperature distribution of the heating element can be made uniform over the entire area. As a result, the temperature of the three base metals is also made uniform, the electron emission characteristics are stabilized over a long period of time, and changes in color tone during operation can be suppressed.
第1図〜第3図はこの発明の実施例による陰極構体の発
熱体側から見たそれぞれの平面図、第4図は陰極構体の
温度特性を示すグラフ、第5図および第6図は従来の陰
極構体の表裏のそれぞれの平面図、第7図は同じ〈従来
の陰極構体の断面図である。
1・・・耐熱性絶縁基板、2a〜2C・・・基体金属、
53〜5C・・・発熱体、6・・・ヒータ端子。
なお、図中同一符号は同−又は相当部分を示す。1 to 3 are respective plan views of the cathode assembly according to the embodiment of the present invention as seen from the heating element side, FIG. 4 is a graph showing the temperature characteristics of the cathode assembly, and FIGS. The front and back plan views of the cathode assembly and FIG. 7 are the same (cross-sectional views of the conventional cathode assembly). 1... Heat-resistant insulated substrate, 2a to 2C... Base metal,
53-5C...Heating element, 6...Heater terminal. Note that the same reference numerals in the figures indicate the same or equivalent parts.
Claims (1)
金属と、この基体金属上に被覆形成された電子放射物質
と、上記絶縁基板の他方の片面に薄膜リボン状で、かつ
蛇行状に被着してなる発熱体を形成した陰極構体におい
て、発熱体は発熱量または発熱効率を中央部から両側に
徐々に増加したことを特徴とする陰極構体。Three base metals arranged in a straight line on one side of the heat-resistant insulating substrate, an electron emitting material coated on the base metal, and a thin ribbon-shaped thin film arranged in a serpentine shape on the other side of the insulating substrate. What is claimed is: 1. A cathode assembly comprising a heating element adhered to a substrate, wherein the heating element has a heat generation amount or heat generation efficiency that gradually increases from a central portion to both sides.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63093936A JPH01264131A (en) | 1988-04-14 | 1988-04-14 | Cathode body structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63093936A JPH01264131A (en) | 1988-04-14 | 1988-04-14 | Cathode body structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01264131A true JPH01264131A (en) | 1989-10-20 |
Family
ID=14096320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63093936A Pending JPH01264131A (en) | 1988-04-14 | 1988-04-14 | Cathode body structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01264131A (en) |
-
1988
- 1988-04-14 JP JP63093936A patent/JPH01264131A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0025221B1 (en) | Flat display device | |
KR100281722B1 (en) | valve | |
JPH01264131A (en) | Cathode body structure | |
JPH01264132A (en) | Cathode body structure | |
JPH01143117A (en) | Cathode structure | |
JPH0364821A (en) | Cathode body structure | |
JPH01264130A (en) | Cathode body structure | |
JPH0364822A (en) | Cathode body structure | |
JPH01128331A (en) | Cathode structure | |
JPS6084744A (en) | Hot cathode | |
JPH0364823A (en) | Cathode body structure | |
GB2296371A (en) | Cathode arrangements utilizing diamond as an insulator | |
KR100489597B1 (en) | Fluorescent luminous tube | |
JPH04292829A (en) | Indirectly-heated cathode | |
US7944138B2 (en) | Fluorescent display tube | |
US2847604A (en) | Thermionic cathode and direct current heater assembly | |
JPH0125406Y2 (en) | ||
JPH03201346A (en) | Lamination type cathode device | |
JPH04137340A (en) | Electron gun for cathode ray tube | |
JPH03201345A (en) | Lamination type cathode device | |
JPS62188130A (en) | Indirectly heated cathode for fluorescent character display tube | |
JPH0364824A (en) | Cathode body structure | |
JPH0425661B2 (en) | ||
UA73404C2 (en) | Emitter system of a color kinescope with a flat screen ?? ?? ?? ?? | |
JPH04155738A (en) | Electron gun |