JPH01128331A - Cathode structure - Google Patents
Cathode structureInfo
- Publication number
- JPH01128331A JPH01128331A JP62287977A JP28797787A JPH01128331A JP H01128331 A JPH01128331 A JP H01128331A JP 62287977 A JP62287977 A JP 62287977A JP 28797787 A JP28797787 A JP 28797787A JP H01128331 A JPH01128331 A JP H01128331A
- Authority
- JP
- Japan
- Prior art keywords
- heating elements
- heating
- sides
- heating element
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010438 heat treatment Methods 0.000 claims abstract description 87
- 239000000758 substrate Substances 0.000 claims abstract description 14
- 239000010953 base metal Substances 0.000 claims description 34
- 230000020169 heat generation Effects 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 5
- 239000010409 thin film Substances 0.000 claims description 4
- 230000005855 radiation Effects 0.000 abstract description 4
- 239000011295 pitch Substances 0.000 description 6
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 5
- 229910052721 tungsten Inorganic materials 0.000 description 5
- 239000010937 tungsten Substances 0.000 description 5
- 239000010408 film Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 241001474374 Blennius Species 0.000 description 1
- 241000219122 Cucurbita Species 0.000 description 1
- 235000009852 Cucurbita pepo Nutrition 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Landscapes
- Electrodes For Cathode-Ray Tubes (AREA)
- Solid Thermionic Cathode (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、インライン型カラーブラウン管に用いられ
る積層状の陰極構体の改良に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement in a laminated cathode structure used in an in-line color cathode ray tube.
第5図ないし第7図は従来の積層状の陰極構体を示す拡
大図であシ、第5図は電子放射が行われる側を示す拡大
平面図であシ、第6図は加熱側の底面図であり、第7図
は拡大側面図である。Figures 5 to 7 are enlarged views showing the conventional laminated cathode structure, Figure 5 is an enlarged plan view showing the side where electron emission is performed, and Figure 6 is the bottom view on the heating side. FIG. 7 is an enlarged side view.
これらの第5図ないし第7図において、lは耐熱性絶縁
基板でちシ、例えば0.1〜0.4瓢程度の厚さのアル
ミナなどからできておシ、2a〜2cはこの耐熱性絶縁
基板1の片面、すなわち、電子放射が行われる側に直線
状に配置された基板金属である9、この基体金属28〜
2cは還元性不純物元素を含有するニッケルが真空蒸着
あるいはスパッタリングなどの方法で被着形成されてい
る。In these figures 5 to 7, 1 is a heat-resistant insulating substrate made of, for example, alumina with a thickness of about 0.1 to 0.4 gourd, and 2a to 2c are heat-resistant insulating substrates. 9, which is a substrate metal arranged linearly on one side of the insulating substrate 1, that is, on the side where electron emission is performed, and this base metal 28~
2c is formed by depositing nickel containing a reducing impurity element by vacuum evaporation or sputtering.
この基体金属2a〜2c上には、例えば、(Ba 。On the base metals 2a to 2c, for example, (Ba.
Sr 、 Ca )θなどのアルカリ土類金属酸化物か
らなる電子放射物4がスプレィなどの方法で被着形成さ
れている。Electron emitters 4 made of alkaline earth metal oxides such as Sr, Ca) θ are deposited by a method such as spraying.
また、上記基体金属2a〜2cと同様の方法により、こ
の基体金属2a〜2cと一体的に耐熱性絶縁基板1上に
リード線3が被着形成されている。Further, lead wires 3 are formed integrally with the base metals 2a to 2c on the heat-resistant insulating substrate 1 by the same method as the base metals 2a to 2c.
これらのリード線3の先端には、それぞれ端子3a〜3
Cが一体的に形成されている。この端子3a〜3Cは図
示していない外部と導通線によシ接続されている。At the tips of these lead wires 3, there are terminals 3a to 3, respectively.
C is integrally formed. These terminals 3a to 3C are connected to the outside (not shown) by conductive wires.
一方、耐熱性絶縁基板1の加熱側には、第6図。On the other hand, the heating side of the heat-resistant insulating substrate 1 is shown in FIG.
第7図よシ明らかなように、発熱体5A〜5Cかそれぞ
れ上記基体金M2A〜2Cに対応する部位に、スパッタ
リングなどにより、タングステンなどによって蛇行状に
被着形成されている。As is clear from FIG. 7, the heating elements 5A to 5C are formed by sputtering or the like to adhere tungsten or the like in a meandering manner to the portions corresponding to the gold bases M2A to 2C, respectively.
これらの発熱体5八〜5Cは副発熱体5Dによシ直列に
接続されている。この直列体の両端子は端子6に接続さ
れておシ、端子6は図示しない外部尋電線と接続される
ようになっている。These heating elements 58 to 5C are connected in series with a sub-heating element 5D. Both terminals of this series body are connected to a terminal 6, and the terminal 6 is connected to an external wire (not shown).
次に動作について説明する。発熱体5A〜5Cの端子6
に電圧を印加すると、この発熱体5A〜5Cに′直流が
流れ、ジュール熱が次の(1)式に示すようVC電流の
2乗と発熱体5A〜5Cの電気抵抗との積で決まる量で
発生する。Next, the operation will be explained. Terminal 6 of heating elements 5A to 5C
When a voltage is applied to the heating elements 5A to 5C, a direct current flows through the heating elements 5A to 5C, and Joule heat is determined by the product of the square of the VC current and the electrical resistance of the heating elements 5A to 5C, as shown in the following equation (1). Occurs in
Q=I XRXt ・・・・・・・・・
(1)この(1)式において、
Qは熱量、
■は′直流、
Rは電気抵抗、
tは時間、
である。Q=I XRXt ・・・・・・・・・
(1) In this equation (1), Q is the amount of heat, (2) is the direct current, R is the electrical resistance, and t is the time.
この発生熱が熱伝導および熱輻射によシ耐熱性絶縁基板
1全通して3個の基体金属2八〜20t−加熱する。基
体金属2A〜2Cが約800℃の動作温度まで加熱され
ると、電子放射物質4から電子ビームが放射され、カラ
ーブラウン管の三色の螢光面を光らせる。This generated heat passes through the entire heat-resistant insulating substrate 1 and heats the three base metals 28 to 20 tons by thermal conduction and thermal radiation. When the base metals 2A to 2C are heated to an operating temperature of about 800° C., an electron beam is emitted from the electron emitting material 4, causing the three-color fluorescent surface of the color cathode ray tube to glow.
以上のように構成された従来の陰極構体においては、上
記各発熱体5A〜5Cに電圧を印加して各基体金属2A
〜2Ck約800℃の動作温度にする際、中央の基体金
属2Bの温度がその両側の基体金属2A、2Cの温度よ
りも高温となる。In the conventional cathode structure configured as described above, voltage is applied to each of the heating elements 5A to 5C, and each of the base metals 2A
~2Ck When the operating temperature is about 800° C., the temperature of the central base metal 2B becomes higher than the temperature of the base metals 2A and 2C on both sides thereof.
この理由は、両側の発熱体5A、5Cは端子6を通して
の熱伝導ロスがちシ、温度が上がシにくいということと
、また、中央の発熱体5Bはその両側の発熱体5A、5
Cからの熱輻射や熱伝導を受けて温度が上がシ易いため
である。The reason for this is that the heat generating elements 5A and 5C on both sides tend to lose heat conduction through the terminal 6, making it difficult for the temperature to rise.
This is because the temperature easily rises due to heat radiation and conduction from C.
したがって、この中央の発熱体5Bに対応した部位にあ
る中央の基体金属2Bが両側の基体金属2A〜2Cより
も温度が高くなる。Therefore, the temperature of the central base metal 2B located at a portion corresponding to the central heating element 5B is higher than that of the base metals 2A to 2C on both sides.
一般に、基体金属2八〜2Cの温度が所定の動作温度よ
りも高け・れば高いほど、基体金属2A〜2Cに微量含
まれている電子放射物質4を活性化する作用ヲ有する還
元性元素であるマグネシウムやシリコンの拡散蒸発速度
を加速することに彦る。In general, the higher the temperature of the base metals 28 to 2C is than the predetermined operating temperature, the higher the reducing element that has the effect of activating the electron emitting substance 4 contained in trace amounts in the base metals 2A to 2C. It is interesting to accelerate the diffusion evaporation rate of magnesium and silicon.
その結果、長時間の動作を行うと、温度の高い中央金属
2Bからの電子放射特性が両側の基体金属2A、2Cの
それに比べて早期に劣化し始め、3個の基体金属2A〜
2Cからの電子放射特性のバランスが崩れ、いわゆるホ
ワイトバランス崩れと称される螢光面上での色調の変化
が生じる欠点があった。As a result, when the operation is performed for a long time, the electron emission characteristics from the high-temperature central metal 2B begin to deteriorate earlier than those of the base metals 2A and 2C on both sides, and the three base metals 2A to 2C begin to deteriorate.
There was a drawback that the balance of electron emission characteristics from 2C was disrupted, resulting in a change in color tone on the fluorescent surface, so-called white balance disruption.
従来の陰極構体は以上のように構成されているので、中
央の基体金属の温度がその両側の基体金属の温度よりも
高くな夛、その結果、中央の基体金属からの電子放射特
性が動作中早期に劣化し、色調の変化が生ずるという問
題点があった。Since the conventional cathode structure is constructed as described above, the temperature of the central base metal is higher than the temperature of the base metals on both sides, and as a result, the electron emission characteristics from the central base metal are not stable during operation. There were problems in that it deteriorated early and caused a change in color tone.
この発明は、上記のような問題点を解消する几めになさ
れ友もので、複数個の基体金属の動作温度を#1ぼ均一
化して、動作中の色調の変化を極力抑制することができ
る陰極構体を得ることを目的とする。。This invention has been developed to solve the above-mentioned problems, and it is possible to make the operating temperatures of a plurality of base metals approximately the same and to suppress changes in color tone during operation as much as possible. The purpose is to obtain a cathode structure. .
この発明に係る陰極構体は、直線状に配置され′fc複
数個の発熱体のうち、中央の発熱体の発熱量または発熱
効率をその両側の発熱体に比べて低減したものである。The cathode assembly according to the present invention has a plurality of linearly arranged heating elements, in which the heat generation amount or heat generation efficiency of the central heating element is lower than that of the heating elements on both sides thereof.
この発明においては、中央の発熱体の発熱量ま几は発熱
効率を低減することによシ、中央の基体金属の動作温度
を両側の基体金属の動作温度とほぼ同じになり、動作中
の色調の変化を抑制する。In this invention, by reducing the heat generation efficiency of the central heating element, the operating temperature of the central base metal can be made almost the same as the operating temperature of the base metals on both sides, and the color tone during operation can be changed. suppress changes in
以下、この発明の陰極構体の実施例について図面に基づ
き説明する。第1図はその一実施例を示すもので、耐熱
性絶縁基板に発熱体が被着されている側の拡大底面図で
ある。Embodiments of the cathode structure of the present invention will be described below with reference to the drawings. FIG. 1 shows one embodiment of the present invention, and is an enlarged bottom view of the side on which the heating element is attached to the heat-resistant insulating substrate.
この第1図において、第6図と同一部分には同一符号を
付してその詳細な説明は省略する。この第1図の実施例
では、タングステンの薄膜からなる3個の発熱体5A〜
5Cの膜厚は3〜4ミクロン、大きさは2 X 2 w
mと同一であるが、中央の発熱体5Bのりゼン幅ヲ0.
2鴎とし、その両側の発熱体5A、5Cのりゼン幅の0
.15−よりも広く形成されている。In FIG. 1, the same parts as in FIG. 6 are given the same reference numerals, and detailed explanation thereof will be omitted. In the embodiment shown in FIG. 1, three heating elements 5A to 5 made of tungsten thin film are used.
The film thickness of 5C is 3 to 4 microns, and the size is 2 x 2 w.
It is the same as m, but the glue width of the central heating element 5B is 0.
2 seaweeds, heating elements 5A and 5C on both sides with 0 width
.. It is formed wider than 15-.
すなわち、中央の発熱体5Bの電気抵抗値はその両側の
発熱体5A、5Cの電気抵抗値よりも小さくなるのは当
然であシ、したがって、従来例で説明し九(1)式から
も計算できるように、電気抵抗値Rの小さい中央の発熱
体5Bの発熱量は両側の発熱体5A、5Cの発熱量より
も少なくなる。In other words, it is natural that the electrical resistance value of the central heating element 5B is smaller than the electrical resistance value of the heating elements 5A and 5C on both sides. Therefore, the amount of heat generated by the central heating element 5B, which has a small electric resistance value R, is smaller than that of the heating elements 5A and 5C on both sides.
このままでは、中央の発熱体5Bの温度が両側の発熱体
5A、5Cの温度よりも下がることになるが、しかし、
両側からの熱輻射や熱伝導を受けることによって、昇温
し、中央の発熱体5Bとその両側の発熱体5A、5Cの
温度がほぼ等しいものとなる。If this continues, the temperature of the central heating element 5B will be lower than the temperature of the heating elements 5A and 5C on both sides, but,
By receiving heat radiation and heat conduction from both sides, the temperature increases, and the temperatures of the central heating element 5B and the heating elements 5A and 5C on both sides thereof become approximately equal.
第2図はこの発明の第2の実施例を示す底面図であシ、
タングステンからなる3個の薄膜リゼン状の発熱体5A
〜5Cが蛇行状に耐熱性絶縁基板1の底面側において、
基体金属に対応する部位に被着されている。FIG. 2 is a bottom view showing a second embodiment of the invention;
Three thin film ridge-shaped heating elements 5A made of tungsten
~5C is arranged in a meandering manner on the bottom side of the heat-resistant insulating substrate 1,
It is attached to a portion corresponding to the base metal.
これらの発熱体5A〜5Cの膜厚は3ミクロン、リボン
幅は0.2瓢である。これらの発熱体5八〜5Cのうち
、中央の発熱体5Bの有効全長! 15.8露とし、そ
の両側の発熱体5A、5Cの有効全長の25.8+wよ
りも短く形成されている。The film thickness of these heating elements 5A to 5C is 3 microns, and the ribbon width is 0.2 microns. Among these heating elements 58 to 5C, the effective total length of the central heating element 5B! 15.8 mm, which is shorter than 25.8+w, which is the effective total length of the heating elements 5A and 5C on both sides.
すなわち、中央の発熱体5Bの電気抵抗値は、その両側
の発熱体5A、5Cの電気抵抗値よりも小さくなフ、発
熱量も少なくなる。That is, the electrical resistance value of the central heating element 5B is smaller than the electrical resistance values of the heating elements 5A and 5C on both sides thereof, and the amount of heat generated is also reduced.
第3図はこの発明の第3の実施例の底面図である。この
第3図では、タングステンからなる3個の薄膜IJ 、
3iン状の発熱体5A〜5Cの膜厚は3ミクロン、リゼ
ン幅は0.15!I11と同一であるが、蛇行状に被着
形成された中央の発熱体5BのピッチP1を帆4鴎とし
、その両側の発熱体5A、5CノヒツチP2の0.3冒
よフも大きく形成されている。FIG. 3 is a bottom view of a third embodiment of the invention. In this Figure 3, three thin films IJ made of tungsten,
The film thickness of the 3-inch heating elements 5A to 5C is 3 microns, and the rise width is 0.15! It is the same as I11, but the pitch P1 of the central heating element 5B, which is formed in a meandering shape, is set to four pitches, and the 0.3 pitch of the heating elements 5A and 5C on both sides P2 is also formed large. ing.
3個の発熱体5A〜5Cは第1図、第2図の場合と同様
に副発熱体5Dによシ直列に接続されておシ、一定電流
が流れて発熱する場合、ピッチPが小さいほど、発熱効
率が高くなシ、温度が上がり易く、逆にピッチPが大き
ければ、発熱効率が下がり、温度は上がシにくくなる。The three heating elements 5A to 5C are connected in series with the sub-heating element 5D as in the case of FIGS. 1 and 2. When a constant current flows and heat is generated, the smaller the pitch P is, the more If the pitch P is large, the heat generation efficiency is low and the temperature is difficult to rise.
すなわち、ピッチの粗い中央の発熱体5Bの温度は上が
シにくくなる。That is, the temperature of the central heating element 5B with a coarse pitch becomes difficult to rise.
次に、この発明の第4の実施例について説明する。この
第4の実施例の説明に際し、従来例で示した第6図を援
用することにする。Next, a fourth embodiment of the invention will be described. When explaining this fourth embodiment, FIG. 6 shown in the conventional example will be referred to.
この第4の実施例では、3個の発熱体5八〜5Cのリボ
ンの幅は0.2 wmであるが、中央の発熱体5Bの膜
厚e3.5ミクロンとし、その両側の発熱体5A。In this fourth embodiment, the width of the ribbon of the three heating elements 58 to 5C is 0.2 wm, but the thickness of the central heating element 5B is 3.5 microns, and the heating elements 5A on both sides are .
5Cの膜厚全3゛ミクロンとした。The total film thickness of 5C was 3 microns.
すなわち、中央の発熱体5Bの電気抵抗値はその両側の
発熱体5A、5Bの電気抵抗値よりも小さくなり、3個
の発熱体5八〜5Cが直列接続され、一定電流が流れる
場合、中央の発熱体5Bの発熱量は少なくなる。That is, the electrical resistance value of the central heating element 5B is smaller than the electrical resistance value of the heating elements 5A and 5B on both sides, and when the three heating elements 58 to 5C are connected in series and a constant current flows, the central heating element 5B The amount of heat generated by the heating element 5B decreases.
以上のように、3個の発熱体5八〜5Cの温度をほぼ均
一化することによ勺、耐熱性絶縁基板1を挾んだ部分に
対向して配置しである3個の基体金属2A〜2Cの温度
も均一化することが可能となる。As described above, by making the temperatures of the three heating elements 58 to 5C almost uniform, the three base metals 2A, which are disposed facing the portions sandwiching the heat-resistant insulating substrate 1, are heated. It is also possible to equalize the temperature of ~2C.
第4図はこの基体金属2A〜2Cの温度特性を示すが、
この図の実線Xで示すように、中央と両側の基体金属の
温度差はほとんどなくなっていることがわかる。Figure 4 shows the temperature characteristics of these base metals 2A to 2C.
As shown by the solid line X in this figure, it can be seen that the temperature difference between the center and both sides of the base metal has almost disappeared.
因に、従来例の陰極構体の基体金属の温度特性は点線Y
で示すように、中央の基体金属2Bの温度が両側の基体
金属2A、2Cの温度に比べて、約30℃程度高温であ
った。Incidentally, the temperature characteristics of the base metal of the conventional cathode structure are shown by the dotted line Y.
As shown, the temperature of the central base metal 2B was about 30° C. higher than the temperatures of the base metals 2A and 2C on both sides.
なお、上記実施例の中で、第3図に示した第3の実施例
の場合、3個の発熱体5A〜5Ct−直列に接続して、
通電加熱する例で示したが、3個の発熱体5A〜5Ci
並列接続して通電加熱する場合も同様な効果が得られる
。In addition, among the above embodiments, in the case of the third embodiment shown in FIG. 3, three heating elements 5A to 5Ct are connected in series,
Although shown in the example of heating with electricity, three heating elements 5A to 5Ci
A similar effect can be obtained when electrical heating is performed by connecting in parallel.
また、発熱体の材料として、すべての実施例でタングス
テンを例として説明したが、モリブデン。In addition, although tungsten was used as an example of the material for the heating element in all the examples, molybdenum was used as the material.
チタン、レニウムなどの高融点耐熱性金属であってもよ
い。It may also be a high melting point heat resistant metal such as titanium or rhenium.
以上のように、この発明によれば、中央の発熱体の発熱
量あるいは発熱効率をその両側の発熱体よりも低減する
ように構成したので、複数個の発熱体の温度を均一化で
き、その結果、′4.数個の基体金属の温度も均一化さ
れ、電子放射特性が長時間に亘って安定化され、動作中
、色調の変化などを抑制できる効果がある。As described above, according to the present invention, the heat generation amount or heat generation efficiency of the central heating element is configured to be lower than that of the heating elements on both sides, so the temperature of the plurality of heating elements can be made uniform, and Result, '4. The temperature of several base metals is also made uniform, the electron emission characteristics are stabilized over a long period of time, and changes in color tone can be suppressed during operation.
第1図はこの発明の一実施例による陰極構体の発熱体が
被着形成されている側を示す拡大底面図、第2図および
第3図はそれぞれこの発明の陰極構体の他の実施例の拡
大底面図、第4図はこの発明の陰極構体の温度特性を示
すグラフ、第5図は従来の陰極構体の基゛本金属および
発熱体が被着形成されている側の拡大平面図、第6図は
従来の陰極構体の底面図、第7図は従来の陰極構体の断
面図である。
】・・・耐熱性絶縁性基板、2A〜2C・・・基体金属
、4・・・電子放射物質、5・・・発熱体。
なお、図中、同一符号は同一、又は相当部分を示す。FIG. 1 is an enlarged bottom view of the cathode assembly according to one embodiment of the present invention, showing the side on which the heating element is adhered, and FIGS. 2 and 3 are views of other embodiments of the cathode assembly of the present invention. FIG. 4 is an enlarged bottom view, and FIG. 4 is a graph showing the temperature characteristics of the cathode structure of the present invention. FIG. FIG. 6 is a bottom view of a conventional cathode assembly, and FIG. 7 is a sectional view of the conventional cathode assembly. ]... Heat-resistant insulating substrate, 2A to 2C... Base metal, 4... Electron emitting material, 5... Heating element. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.
Claims (7)
3個の基体金属と、この基体金属上に被覆形成された電
子放射物質と、上記耐熱性絶縁基板のもう一方の片面の
3個の基体金属に対向する部位に薄膜リボン状でかつ蛇
行状に被着形成された複数個の発熱体とを備えた陰極構
体において、上記複数個の発熱体のうち、中央の発熱体
の発熱量または発熱効率をその両側の発熱体に比べて低
減したことを特徴とする陰極構体。(1) Three base metals arranged linearly on one side of the heat-resistant insulating substrate, an electron emitting material coated on the base metal, and three base metals on the other side of the heat-resistant insulating substrate. In a cathode assembly comprising a plurality of heat generating elements formed in a meandering shape in the form of a thin film ribbon on a portion facing a base metal, the central heat generating element among the plurality of heat generating elements generates heat. A cathode assembly characterized in that the amount or efficiency of heat generation is reduced compared to the heating elements on both sides of the cathode assembly.
ボン幅よりも広くしたことを特徴とする特許請求の範囲
第1項記載の陰極構体。(2) The cathode assembly according to claim 1, wherein the ribbon width of the central heating element is wider than the ribbon width of the heating elements on both sides thereof.
効全長よりも短くしたことを特徴とする特許請求の範囲
第1項記載の陰極構体。(3) The cathode assembly according to claim 1, wherein the effective total length of the central heating element is shorter than the effective total length of the heating elements on both sides thereof.
チよりも広くしたことを特徴とする特許請求の範囲第1
項記載の陰極構体。(4) Claim 1 characterized in that the pitch of the central heating element is wider than the pitch of the heating elements on both sides thereof.
The cathode structure described in Section 1.
りも厚くしたことを特徴とする特許請求の範囲第1項記
載の陰極構体。(5) The cathode assembly according to claim 1, wherein the thickness of the central heating element is greater than the thickness of the heating elements on both sides thereof.
徴とする特許請求の範囲第1項、第2項、第3項、第4
項または第5項のいずれかに記載の陰極構体。(6) Claims 1, 2, 3, and 4, characterized in that the plurality of heating elements are connected in series.
The cathode structure according to any one of Items 1 and 5.
徴とする特許請求の範囲第1項、第2項、第3項、第4
項または第5項のいずれかに記載の陰極構体。(7) Claims 1, 2, 3, and 4, characterized in that the plurality of heating elements are connected in parallel.
The cathode structure according to any one of Items 1 and 5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62287977A JPH01128331A (en) | 1987-11-12 | 1987-11-12 | Cathode structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62287977A JPH01128331A (en) | 1987-11-12 | 1987-11-12 | Cathode structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01128331A true JPH01128331A (en) | 1989-05-22 |
Family
ID=17724200
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62287977A Pending JPH01128331A (en) | 1987-11-12 | 1987-11-12 | Cathode structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01128331A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006313249A (en) * | 2005-05-09 | 2006-11-16 | Konica Minolta Photo Imaging Inc | Imaging apparatus |
-
1987
- 1987-11-12 JP JP62287977A patent/JPH01128331A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006313249A (en) * | 2005-05-09 | 2006-11-16 | Konica Minolta Photo Imaging Inc | Imaging apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0025221B1 (en) | Flat display device | |
US5576051A (en) | Multiple electron emission device | |
JPH0133893B2 (en) | ||
US5573173A (en) | Vacuum tube comprising a ceramic element and a method of interconnecting a ceramic element and a conductive element | |
JPH01128331A (en) | Cathode structure | |
US6200181B1 (en) | Thermally conductive spacer materials and spacer attachment methods for thin cathode ray tube | |
US3463978A (en) | Monolithic electrode for electron tubes | |
JPH01264132A (en) | Cathode body structure | |
JPH01264131A (en) | Cathode body structure | |
JPH01143117A (en) | Cathode structure | |
JPH01264130A (en) | Cathode body structure | |
JPH0364822A (en) | Cathode body structure | |
JPH0364821A (en) | Cathode body structure | |
JP2955317B2 (en) | Evaporation source, its manufacturing method and image tube | |
JP2853811B2 (en) | Display device | |
US4410830A (en) | Vacuum fluorescent display device with substrate including a metal plate | |
JPS5828163A (en) | Fluorescent display tube | |
JPH0125406Y2 (en) | ||
JPH0494030A (en) | Linear electron source | |
JPH0362493A (en) | thin heater | |
JP2804288B2 (en) | High temperature operating element | |
JPH0487241A (en) | Matrix electron source for flat type cathode-ray tube display | |
UA73404C2 (en) | Emitter system of a color kinescope with a flat screen ?? ?? ?? ?? | |
JP2000348598A (en) | Cathode structure | |
JPS60225342A (en) | Fluorescent display device and its driving method |