JPH01143117A - Cathode structure - Google Patents
Cathode structureInfo
- Publication number
- JPH01143117A JPH01143117A JP62300664A JP30066487A JPH01143117A JP H01143117 A JPH01143117 A JP H01143117A JP 62300664 A JP62300664 A JP 62300664A JP 30066487 A JP30066487 A JP 30066487A JP H01143117 A JPH01143117 A JP H01143117A
- Authority
- JP
- Japan
- Prior art keywords
- heating element
- heating elements
- sides
- temperature
- central
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010438 heat treatment Methods 0.000 claims abstract description 76
- 239000010953 base metal Substances 0.000 claims abstract description 32
- 239000000758 substrate Substances 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 3
- 239000010409 thin film Substances 0.000 claims description 2
- 230000005855 radiation Effects 0.000 abstract description 6
- 230000005540 biological transmission Effects 0.000 abstract 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 239000010937 tungsten Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Landscapes
- Solid Thermionic Cathode (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、インライン屋カラーブラウン管に用いられ
る積層状の陰極構体に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a laminated cathode structure used in an in-line color cathode ray tube.
第4図〜第6図は従来の積層状の陰極構体を示すもので
、第4図は電子放射が行われる面を示す平面図、Wc5
図は加熱側の平面図、第6図は側断面図を示す。各図に
おいて、1は耐熱性絶縁基板で、例えば0.1〜0.4
1EIE程度の厚さのアルミナなどからできている。2
a、2b、2cは直線状に配置された基体金属で、上記
絶縁基板1の片面に例えば還元性不純物元素を微量含有
するニッケルが真空蒸着あるいはスフ4ツタリングなど
の方法で被着形成されている。4は例えば(Ba−8r
−Ca)0などのアルカリ土類金属酸化物からなる電子
放射物質で、3つの基体金属2a、2b、2cと同様の
方法により一体的【耐熱性絶縁基板1の上に被着形成さ
れている。3aはリード線の先端の端子であり、図示し
ていないが外部と導通線により接続される。5a、5b
、5cは発熱体で、上記絶縁基板1の他の片面において
上記3つの基体金属2a、2b、2cに対応する部分に
ス/4ツタリングなどによりタングステンなどが蛇行状
に被着形成されている。5dは各発熱体5a〜5cを並
列接続している副発熱体である。6は端子であって外部
の導電線と接続される。Figures 4 to 6 show a conventional laminated cathode structure, and Figure 4 is a plan view showing the surface where electron emission occurs, Wc5.
The figure shows a plan view on the heating side, and FIG. 6 shows a side sectional view. In each figure, 1 is a heat-resistant insulating substrate, for example 0.1 to 0.4
It is made of alumina or the like with a thickness of about 1EIE. 2
Reference numerals a, 2b, and 2c are base metals arranged in a straight line, and nickel containing a trace amount of a reducing impurity element is deposited on one side of the insulating substrate 1 by a method such as vacuum evaporation or splattering. . 4 is for example (Ba-8r
- An electron-emitting substance made of an alkaline earth metal oxide such as . Reference numeral 3a denotes a terminal at the tip of the lead wire, which is connected to the outside via a conductive wire (not shown). 5a, 5b
, 5c is a heating element, and on the other side of the insulating substrate 1, tungsten or the like is formed in a meandering manner on a portion corresponding to the three base metals 2a, 2b, and 2c by means of a sliver ring or the like. 5d is a sub-heating element in which the heating elements 5a to 5c are connected in parallel. 6 is a terminal and is connected to an external conductive wire.
次に動作について説明する。発熱体5a〜5cの共通の
端子6に電圧を印加すると、発熱体5a〜5cに電流が
流れ、ノユール熱が下式に示すように電流の2乗と発熱
体5a〜5Cの電気抵抗との積とで決まる量で発生する
。Next, the operation will be explained. When a voltage is applied to the common terminal 6 of the heating elements 5a to 5c, a current flows through the heating elements 5a to 5c, and the Noyule heat is calculated by the square of the current and the electrical resistance of the heating elements 5a to 5C, as shown in the equation below. Occurs in an amount determined by the product.
Q=I”XRXt
ただし、Qは熱量、工は電流、Rは電気抵抗、tは時間
、
したがって、この発生熱が熱伝導および熱輻射により耐
熱性絶縁基板1t−通して3つの基体金属2a〜2cを
加熱する。かくして、基体金属2a〜2Cが約800℃
の動作温度まで加熱されると電子放射物質4から電子ビ
ームが放射されカラーブラウン管の3色の蛍光面を光ら
せる。Q=I" 2c.Thus, the base metals 2a to 2C are heated to about 800°C.
When heated to the operating temperature, the electron emitting material 4 emits an electron beam, causing the three-color phosphor screen of the color cathode ray tube to glow.
以上のように構成された陰極構体においては、各発熱体
5a〜5cに電圧を印加して各基体金属2a〜2Cを約
800℃の動作温度にする際、中央の基体金属2bの温
度がその両側の基体金[2a。In the cathode structure configured as described above, when a voltage is applied to each heating element 5a to 5c to bring each base metal 2a to 2C to an operating temperature of approximately 800°C, the temperature of the central base metal 2b is adjusted to that level. Base gold on both sides [2a.
2cの温度よりも高温となる。その理由は両側の発熱体
5a、5cは端子6全通しての熱伝導ロスがあって温度
が上がりにくいということ、また、中央の発熱体5bは
その両側の発熱体5a、5cからの熱輻射や熱伝導を受
けて温度が上がりやすいというためである。したがって
、中央の発熱体5bに対応した部分の基体金属2bが両
側の基体金属2a、2cよりも温度が高くなる。一般に
基体金属2a〜2cの温度が所定の動作温度よりも高い
ほど基体金属に微量含まれていて、電子放射物質4を活
性化する作用を有する還元性元系であるマグネシウムや
シリコンの拡散蒸発速度を加速することになる。この結
果、長時間の動作を行なうと温度の高い中央の基体金属
2bからの電子放射特性が両側の基体金属2a、2cの
それに比べて早期に劣化し始め、これKよって3つの基
体金属2a〜2cからの電子放射特性のバランスが崩れ
、いわゆるホワイトバランス崩れと呼ばれる蛍光面上で
の色調の変化が生じる。The temperature is higher than that of 2c. The reason for this is that the heating elements 5a and 5c on both sides have heat conduction loss through the terminal 6, making it difficult for the temperature to rise, and the central heating element 5b receives heat radiation from the heating elements 5a and 5c on both sides. This is because the temperature tends to rise due to thermal conduction. Therefore, the temperature of the portion of the base metal 2b corresponding to the central heating element 5b is higher than that of the base metals 2a and 2c on both sides. In general, the higher the temperature of the base metals 2a to 2c is than the predetermined operating temperature, the faster the rate of diffusion and evaporation of magnesium and silicon, which are reducing elements contained in trace amounts in the base metal and have the effect of activating the electron emitting substance 4. This will accelerate the As a result, when the operation is performed for a long time, the electron emission characteristics from the central base metal 2b, which has a high temperature, begin to deteriorate earlier than those of the base metals 2a and 2c on both sides. The balance of the electron emission characteristics from 2c is disrupted, resulting in a change in color tone on the phosphor screen, which is so-called white balance disruption.
従来の陰極構体は以上のように構成されているので、中
央の基体金属の温度がその両側の基体金属の温度よりも
高くなり、これによって中央の基体金属からの電子放射
特性が動作中に早期に劣化し色調の変化が生ずるという
問題があった。Since the conventional cathode structure is constructed as described above, the temperature of the central base metal is higher than the temperature of the base metals on both sides, and this causes the electron emission characteristics from the central base metal to deteriorate early during operation. There was a problem in that the color deteriorated and the color tone changed.
この発明は、上記のような問題点を解消するためになさ
れたもので、3つの基体金属の動作温度をほぼ均一化し
て動作中の色調の変化を解消することのできる陰極構体
を得ることを目的とする。This invention was made to solve the above-mentioned problems, and aims to provide a cathode structure that can substantially equalize the operating temperatures of the three base metals and eliminate changes in color tone during operation. purpose.
この発明に係る陰極構体は、耐熱性絶縁基板の片面に直
線状に配置された3つの発熱体のうち、中央の発熱体の
発熱量を両側の発熱体のそれに比べて低くしたものであ
る。In the cathode assembly according to the present invention, among the three heating elements arranged linearly on one side of a heat-resistant insulating substrate, the heat generation amount of the central heating element is lower than that of the heating elements on both sides.
この発明においては、中央の発熱体の発熱量を低くシ几
ことにより、両側の発熱体からの熱輻射や熱伝導を受け
てその分温度上昇し、この結果、3つの基体金属の動作
温度を同一にすることができるO
〔実施例〕
以下、この発明の一実施例を図について説明する。第1
図および第2図はこの発明による陰極構体を発熱体が被
着されている側の平面図全示し、符号は第5図で説明し
た従来例と同一であるので同一符号を付して説明は省略
する。In this invention, by keeping the heat generation amount of the central heating element low, the temperature increases by that amount due to heat radiation and conduction from the heating elements on both sides, and as a result, the operating temperature of the three base metals can be lowered. [Embodiment] An embodiment of the present invention will be described below with reference to the drawings. 1st
2 and 2 show the entire plan view of the cathode structure according to the present invention on the side on which the heating element is attached, and the reference numerals are the same as those of the conventional example explained in FIG. Omitted.
〈実施例■〉
第1図において、3つのタングステンのNHからなる発
熱体5a、5b、5cの膜厚は3〜4ミクロン、大きさ
は2×2・nであるが、中央の発熱体5bのリボン幅を
0.1511Nとし、その両側の発熱体5a、5cのリ
ボン幅0.2jll+より狭くした。すなわち、中央の
発熱体5bの電気抵抗値はその両側の発熱体5a、5c
の電気抵抗値よりも大きくなり、したがって、発熱体5
bK流れる電流は少なくなる。また、従来例で説明した
式からも計算できるように発熱量は電流の2乗に比例す
るため電流の少ない中央の発熱体5bの発熱量は両側の
発熱体5a、5cのそれよりも少なくなる。しかしこの
ままでは中央の発熱体5bの温度は両側の発熱体5a、
5cの温度よりも下がることになるが、両側の発熱体か
らの熱輻射や熱伝導を受けることによって昇温し、3つ
の発熱体5a〜5cの温度が等しくなる。<Example ■> In FIG. 1, the thickness of the three heating elements 5a, 5b, and 5c made of tungsten NH is 3 to 4 microns, and the size is 2×2·n. The ribbon width was set to 0.1511N, which was narrower than the ribbon width of the heating elements 5a and 5c on both sides, which was 0.2jll+. That is, the electrical resistance value of the central heating element 5b is the same as that of the heating elements 5a and 5c on both sides.
is larger than the electrical resistance value of the heating element 5.
The current flowing bK decreases. In addition, as can be calculated from the formula explained in the conventional example, the amount of heat generated is proportional to the square of the current, so the amount of heat generated by the central heating element 5b, where the current is small, is smaller than that of the heating elements 5a and 5c on both sides. . However, if this continues, the temperature of the central heating element 5b will be lower than that of the heating elements 5a on both sides.
Although the temperature will be lower than that of the heating elements 5c, the temperature rises due to heat radiation and conduction from the heating elements on both sides, and the temperatures of the three heating elements 5a to 5c become equal.
〈実施例「〉
第2図に示すように3つのタングステンからなる薄膜リ
ボン状の発熱体5a〜5cが蛇行状に被着され、これら
の膜厚は3ミクロン、リボン幅ハ0.211である。そ
して各発熱体のうち、中央の発熱体5bの有効全長を2
0.Onとし、両側の発熱体5a、5cの有効全長の1
5.811よりも長くしたものである。すなわち、中央
の発熱体5bに流れる電流値は、両側の発熱体5a、5
cの電流値よりも小さくなり発熱量も少なくなる。〈Example〉 As shown in Fig. 2, three thin film ribbon-shaped heating elements 5a to 5c made of tungsten are deposited in a meandering manner, the thickness of these films is 3 microns, and the ribbon width is 0.211. .Of each heating element, the effective total length of the central heating element 5b is 2.
0. On, the effective total length of the heating elements 5a and 5c on both sides is 1
5.811. That is, the current value flowing through the central heating element 5b is the same as that of the heating elements 5a and 5 on both sides.
The current value is smaller than the current value of c, and the amount of heat generated is also smaller.
〈実施例■〉
3つの発熱体5a〜5cの9gン幅は0.20であるが
、中央の発熱体5bの膜厚t−3,0ミクロンとし、両
側の発熱体5a、5cの膜厚を3.5ミクロンとしたも
のである。これによって、中央の発熱体5bの電気抵抗
値は両側の発熱体5a、5cの電気抵抗値よシも大きく
なシミ流値が下がる。<Example ■> The 9g width of the three heating elements 5a to 5c is 0.20, the thickness of the central heating element 5b is t-3.0 microns, and the thickness of the heating elements 5a and 5c on both sides is is 3.5 microns. As a result, the electric resistance value of the central heating element 5b decreases in stain flow value, which is greater than the electric resistance values of the heating elements 5a and 5c on both sides.
したがって中央の発熱体の発熱量は少なくなる。Therefore, the amount of heat generated by the central heating element decreases.
上記したように、いずれにおいても中央の発熱体5bは
両側の発熱体5a、5cからの熱輻射や熱伝導を受けて
温度上昇し、これによって各発熱体5a〜5cの温度を
ほぼ均一化し、耐熱性絶縁基板lを挾んでそれぞれ対向
している基体金属2a〜2cの温度も均一化できる。As described above, in both cases, the temperature of the central heating element 5b increases as a result of heat radiation and conduction from the heating elements 5a and 5c on both sides, thereby making the temperatures of the heating elements 5a to 5c almost uniform. The temperatures of the base metals 2a to 2c facing each other with the heat-resistant insulating substrate 1 in between can also be made uniform.
第3図は基体金Jf42 a〜2cの温度特性を示し、
縦軸は基体金属温度、横軸は基体金属の部分を示す。こ
の図から実線Xで示すように中央と両側の基体金属の温
度差は殆んどなくなった。因みに従来例の基体金属の温
度特性は点線Yで示すように中央の基体金属2bの温度
が両側の基体金属2a。Figure 3 shows the temperature characteristics of the base gold Jf42a-2c,
The vertical axis indicates the base metal temperature, and the horizontal axis indicates the base metal portion. As shown by the solid line X in this figure, the temperature difference between the center and both sides of the base metal has almost disappeared. Incidentally, regarding the temperature characteristics of the base metal of the conventional example, as shown by the dotted line Y, the temperature of the center base metal 2b is higher than that of the base metals 2a on both sides.
2cの温度に比べて約30℃程度高温であった。The temperature was about 30°C higher than that at 2c.
なお、発熱体の材料としてタングステンを例として説明
したがモリブデン、チタン、レニウムなどの高融点耐熱
性金属であってもよい。Although tungsten has been described as an example of the material of the heating element, it may be made of a heat-resistant metal with a high melting point such as molybdenum, titanium, or rhenium.
以上説明したようにこの発明によれば、中央の発熱体の
発熱量を両側の発熱体の発熱量よりも低くしたので、3
つの発熱体の温度を均一化でき、この結果、各発熱体に
対応する基体金属の温度も均一化される。これによって
電子放射特性が長期間に亘って安定化され、動作中の色
調の変化などを抑制することができる。As explained above, according to the present invention, the calorific value of the central heating element is made lower than the calorific value of the heating elements on both sides.
The temperature of each heating element can be made uniform, and as a result, the temperature of the base metal corresponding to each heating element is also made uniform. As a result, the electron emission characteristics are stabilized over a long period of time, and changes in color tone during operation can be suppressed.
第1図および第2図はこの発明の実施例による陰極構体
を発熱体側から見た各々の平面図、第3図は基体金属の
温度特性図、第4図は従来の陰極構体の基体金属側から
見た平面図、第5図は同じく発熱体側の平面図、第6図
は同じく側断面図である。
■・・・耐熱性絶縁基板、2a〜2c・・・基体金属、
4・・・電子放射物質、5a〜5c・・・発熱体。
なお、図中同一符号は同−又は相当部分を示す。1 and 2 are plan views of cathode structures according to embodiments of the present invention viewed from the heating element side, FIG. 3 is a temperature characteristic diagram of the base metal, and FIG. 4 is a diagram of the base metal side of a conventional cathode structure. FIG. 5 is a plan view of the heating element side, and FIG. 6 is a side sectional view. ■...Heat-resistant insulating substrate, 2a to 2c...Base metal,
4... Electron emitting substance, 5a to 5c... Heating element. Note that the same reference numerals in the figures indicate the same or equivalent parts.
Claims (5)
3つの基体金属と、この基体金属上に被覆形成された電
子放射物質と、上記耐熱性絶縁基板の他の片面において
上記基体金属に対する部分に薄膜リボン状の発熱体を蛇
行状に被着してなる陰極構体において、中央の発熱体の
発熱量をその両側の発熱体の発熱量に比べて低くしたこ
とを特徴とする陰極構体。(1) Three base metals arranged linearly on one side of the heat-resistant insulating substrate, an electron emitting material coated on the base metal, and the base metal on the other side of the heat-resistant insulating substrate. A cathode assembly comprising a thin film ribbon-shaped heating element attached in a meandering manner to a portion of the central heating element, the heating element in the center having a lower calorific value than that of the heating elements on both sides thereof. .
ボン幅より狭くしたことを特徴とする特許請求の範囲第
1項記載の陰極構体。(2) The cathode assembly according to claim 1, wherein the ribbon width of the central heating element is narrower than the ribbon width of the heating elements on both sides thereof.
効全長より長くしたことを特徴とする特許請求の範囲第
1項記載の陰極構体。(3) The cathode assembly according to claim 1, wherein the effective total length of the central heating element is longer than the effective total length of the heating elements on both sides thereof.
り薄くしたことを特徴とする特許請求の範囲第1項記載
の陰極構体。(4) The cathode assembly according to claim 1, wherein the thickness of the central heating element is thinner than that of the heating elements on both sides thereof.
を特徴とする特許請求の範囲第1項〜第4項のいずれか
1項記載の陰極構体。(5) The cathode assembly according to any one of claims 1 to 4, wherein three heating elements are electrically connected in parallel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62300664A JPH01143117A (en) | 1987-11-27 | 1987-11-27 | Cathode structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62300664A JPH01143117A (en) | 1987-11-27 | 1987-11-27 | Cathode structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01143117A true JPH01143117A (en) | 1989-06-05 |
Family
ID=17887584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62300664A Pending JPH01143117A (en) | 1987-11-27 | 1987-11-27 | Cathode structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01143117A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002140999A (en) * | 2000-09-14 | 2002-05-17 | Koninkl Philips Electronics Nv | Cathode-ray tube having doved oxide cathode |
-
1987
- 1987-11-27 JP JP62300664A patent/JPH01143117A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002140999A (en) * | 2000-09-14 | 2002-05-17 | Koninkl Philips Electronics Nv | Cathode-ray tube having doved oxide cathode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0025221B1 (en) | Flat display device | |
JPH01143117A (en) | Cathode structure | |
JP2002260520A (en) | Metal cathode and heat-dissipating cathode structure having the same | |
US3268305A (en) | Composite wire | |
US5552661A (en) | Electron gun for cathode tube | |
US3721848A (en) | Camera tube having photoconductive lead monoxide layer on silicon carbide signal plate | |
JPH01264132A (en) | Cathode body structure | |
US3553521A (en) | Indirectly heated cathode for an electron discharge tube with an insulated heating element | |
JPH01264131A (en) | Cathode body structure | |
JPH01264130A (en) | Cathode body structure | |
JPH01128331A (en) | Cathode structure | |
JPH0364821A (en) | Cathode body structure | |
JPH0364822A (en) | Cathode body structure | |
WO2004081962A1 (en) | Indirectly heated cathode and cathode ray tube having same | |
JPH0364823A (en) | Cathode body structure | |
JPH0883578A (en) | Image forming device and its manufacture | |
JPH0125406Y2 (en) | ||
JPH09190761A (en) | Cathode for electron tube | |
JPH0364824A (en) | Cathode body structure | |
JP2001523388A (en) | Electron tube with cesium source | |
JP3322465B2 (en) | Cathode assembly and method of manufacturing the same | |
JP2955317B2 (en) | Evaporation source, its manufacturing method and image tube | |
JPH04292829A (en) | Indirectly-heated cathode | |
JPH04192302A (en) | Thin film thermistor element | |
JPS63232234A (en) | Heater for electron tube |