JPH0364824A - Cathode body structure - Google Patents
Cathode body structureInfo
- Publication number
- JPH0364824A JPH0364824A JP1200671A JP20067189A JPH0364824A JP H0364824 A JPH0364824 A JP H0364824A JP 1200671 A JP1200671 A JP 1200671A JP 20067189 A JP20067189 A JP 20067189A JP H0364824 A JPH0364824 A JP H0364824A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- temperature
- resistant
- black film
- insulating substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Electrodes For Cathode-Ray Tubes (AREA)
- Solid Thermionic Cathode (AREA)
Abstract
Description
【発明の詳細な説明】
【産業上の利用分野]
本発明は陰極構体に関する。さらに詳しくは、インライ
ン型カラーブラウン管に用いられる積層状の陰極構体に
関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a cathode structure. More specifically, the present invention relates to a laminated cathode structure used in an in-line color cathode ray tube.
[従来の技術]
従来よりインライン型カラーブラウン管には、第9〜1
1図に示すような積層状陰極構体が用いられている。第
9図は電子放射側の拡大平面図、第1O図は加熱側の拡
大平面図、第11図は陰極構体の拡大断面図である。第
9〜11図において、(1)は耐熱性絶縁基板で、たと
えば0.1〜03u+程度の厚さのサファイアあるいは
アルミナなどからできている。(2a〉、(2b)、(
2C)は直線状に配設された基体金属で、前記耐熱性絶
縁基板(1)の表面にたとえば還元性不純物を微量含有
するニッケルなどがたとえば、スパッタリングなどの方
法で被着形成されている。(4)はたとえば(Ba、
5rSCa) 0などのアルカリ土類金属酸化物からな
る電子放射物質で、前記基体金属(2a)、(2b〉、
(2c)上にスプレーなどの方法で被着形成されている
。(3)はリード線であり基体金属(2)と同様の方法
で一体的に前記耐熱性絶縁基板(1)上に被着形成され
ている。(3a)はリード線(3)の先端にある陰極端
子で、図示はしていないが外部と導線により接続される
。(5a〉、〈5b〉、(5c)は発熱体で、耐熱性絶
縁基板(1)の裏面の前記基体金属(2a〉、(2b〉
、(2c)に対応する部位にスパッタリングなどにより
タングステンなどが蛇行状に被着形成されている。(5
d〉は3個の発熱体(5a〉、(5b)、(5c〉を直
列接続する導線であり発熱体〈5a)、(5b)、(5
c)と一体向に被着形成されている。(6)はヒータ端
子で外部導線(図示せず)と接続され、発熱体(5)を
加熱するための電圧が印加される。[Prior art] Traditionally, in-line color cathode ray tubes have 9th to 1st
A laminated cathode structure as shown in FIG. 1 is used. FIG. 9 is an enlarged plan view of the electron emission side, FIG. 1O is an enlarged plan view of the heating side, and FIG. 11 is an enlarged sectional view of the cathode structure. In FIGS. 9 to 11, (1) is a heat-resistant insulating substrate made of, for example, sapphire or alumina with a thickness of about 0.1 to 0.3 μ+. (2a>, (2b), (
2C) is a base metal arranged linearly, and nickel or the like containing a trace amount of reducing impurities is deposited on the surface of the heat-resistant insulating substrate (1) by, for example, sputtering. For example, (4) is (Ba,
5rSCa) is an electron-emitting substance made of an alkaline earth metal oxide such as 0, and the base metal (2a), (2b>,
(2c) It is deposited on top by a method such as spraying. (3) is a lead wire, which is integrally formed on the heat-resistant insulating substrate (1) in the same manner as the base metal (2). (3a) is a cathode terminal at the tip of the lead wire (3), which is connected to the outside via a conductor wire (not shown). (5a>, <5b>, (5c) are heating elements, and the base metals (2a>, (2b>) on the back side of the heat-resistant insulating substrate (1)
, (2c), tungsten or the like is deposited in a meandering manner by sputtering or the like. (5
d> is a conductor that connects three heating elements (5a), (5b), (5c) in series;
c) and is formed integrally with it. (6) is a heater terminal connected to an external conductor (not shown), and a voltage for heating the heating element (5) is applied.
(5e)はヒータ端子(6)と両側の発熱体(5a)、
(5c)とを接続する導線である。(5e) is a heater terminal (6) and heating elements (5a) on both sides,
(5c).
このように構成された陰極構体において、ヒータ端子(
6)に電圧を印加すると発熱体(5a)、(5b)、(
5c)に電流が流れ式(■):
Q=i2XRXt (1)(式中、Qは発
生熱量、iは電流、Rは抵抗、tは時間を表わす)で表
わされるジュール熱が発生する。In the cathode structure configured in this way, the heater terminal (
When voltage is applied to 6), the heating elements (5a), (5b), (
5c) A current flows through the equation (■): Q=i2XRXt (1) (where Q is the amount of heat generated, i is current, R is resistance, and t is time), Joule heat is generated.
発生したジュール熱は熱伝導および熱輻射によって耐熱
性絶縁基板(1)を通して3個の基体金属(2a〉、(
2b)、(2c)を加熱する。そして、基体金属(2a
〉、(2b〉、(2c)が約800℃の動作温度まで加
熱されると電子放射物質(4)から電子ビームが発射さ
れ、カラーブラウン管の3色の蛍光面を光らせる。The generated Joule heat is transferred to the three base metals (2a), (2a) through the heat-resistant insulating substrate (1) by thermal conduction and thermal radiation.
2b) and (2c) are heated. Then, the base metal (2a
When 〉, (2b〉〉, and (2c)) are heated to an operating temperature of about 800° C., an electron beam is emitted from the electron emitting material (4), causing the three-color phosphor screen of the color cathode ray tube to glow.
[発明が解決しようとする課8]
しかしながら、このように構成した陰極構体において、
発熱体(5a〉、(5b)、(5c)1.:電圧を印加
(通電)して基体金属(2a)、(2b)、(2c〉を
約go。[Problem 8 to be solved by the invention] However, in the cathode structure configured in this way,
Heating elements (5a>, (5b), (5c) 1.: Apply voltage (energize) to heat the base metals (2a), (2b), (2c) to about 1.
℃の動作温度にして電子放射を行なわせるが、陰極構体
の構成上、耐熱性絶縁基板(1)に比較的熱容量(質量
×比熱)の大きいものが必要であるため、電圧を印加し
てから電子放射が開始するまでの時間、すなわち画像が
出現するまでの時間に約10秒程度要し、電子放射が開
始するまでやや時間がかかりすぎるという問題があった
。Electron emission is performed at an operating temperature of It takes about 10 seconds for the electron emission to start, that is, for the image to appear, and there is a problem in that it takes a little too much time for the electron emission to start.
また、前述のように各発熱体(5a〉、(5b)、(5
c)に電圧を印加して基体金属(2a)、(2b〉、(
2c)を約800℃の動作温度にする際、中央の基体金
属(2b)の温度がその両側に配置されている基体金属
(2a〉、(2c)の温度よりも高温になる。この理由
は、両側の発熱体(5a〉、(5c)はヒータ端子(6
)を通しての熱伝導損失が大きいため温度が上がりにく
いことによる。そのため、この中央の発熱体(5b)に
対応して配設されている中央の基体金属(2b)の温度
がその両側に配置されている基体金属(2a)、(2c
〉の温度よりも高くなる。一般に基体金属(2)の温度
が所定の動作温度よりも高くなればなるほど、基体金属
(2)に微量含まれていて、電子放射物質(4)を活性
化する作用を有する還元性元素である91やMgの拡散
蒸発速度を加速することになる。その結果、長時間動作
を行なうと温度の高い中央の基体金属(2b、)からの
電子放射特性が両側の基体金属(2a)、(2c)のそ
れに比べ早期に劣化し始め、3個の基体金属(2)から
の電子放射特性のバランスが崩れ、いわゆるホワイトバ
ランス崩れと称される蛍光面上での色調の変化が生じる
欠点もあった。さらに、同じ基体金属(2)の中でも第
4図に示すV方向での温度差があり、たとえば基体金属
(2)の最中央部と置局縁部とでは約15℃の温度差が
生じている。これは、耐熱性絶縁基板(1)の長辺側に
陰極端子(3)があり、これに接続された外部リード線
を通しで熱伝導損失が発生するためである。このような
温度差があると同一基体金属(2)内で電子放射特性の
ムラを生ずることにもなる。In addition, as mentioned above, each heating element (5a>, (5b), (5
c) by applying a voltage to the base metals (2a), (2b>, (
2c) at an operating temperature of approximately 800°C, the temperature of the central base metal (2b) becomes higher than the temperature of the base metals (2a>, (2c)) placed on both sides.The reason for this is , the heating elements (5a>, (5c) on both sides are connected to the heater terminals (6
), which makes it difficult for the temperature to rise due to large heat conduction losses. Therefore, the temperature of the central base metal (2b) disposed corresponding to the central heating element (5b) is the same as that of the base metals (2a) and (2c) disposed on both sides.
〉 temperature becomes higher than that of 〉. In general, the higher the temperature of the base metal (2) is than the predetermined operating temperature, the lower the amount of reducing element that is contained in the base metal (2) and has the effect of activating the electron emitting substance (4). This will accelerate the diffusion and evaporation rate of 91 and Mg. As a result, when operating for a long time, the electron emission characteristics from the high-temperature central base metal (2b,) begin to deteriorate earlier than those of the base metals (2a) and (2c) on both sides. There was also a drawback that the balance of the electron emission characteristics from the metal (2) was disrupted, resulting in a change in color tone on the phosphor screen, which was referred to as a so-called white balance disruption. Furthermore, even within the same base metal (2), there is a temperature difference in the V direction shown in Figure 4. For example, there is a temperature difference of about 15°C between the centermost part and the edge of the base metal (2). There is. This is because the cathode terminal (3) is located on the long side of the heat-resistant insulating substrate (1), and heat conduction loss occurs through the external lead wire connected to the cathode terminal (3). Such a temperature difference also causes unevenness in electron emission characteristics within the same base metal (2).
本発明は前記問題点に鑑みなされたものであって、通電
開始から電子放射開始まで時間を短縮し画像の早期出現
が達成され、3個の基体金属(2)の動作中の温度を均
一化して長時間の動作でも色調の変化を抑制することが
可能であるとともに、同−基体金属内での温度の均一化
がされ電子放射特性が安定化された陰極構体を提供する
ことを目的とする。The present invention has been made in view of the above problems, and it shortens the time from the start of energization to the start of electron emission, achieves early appearance of an image, and equalizes the temperature of the three base metals (2) during operation. The purpose of the present invention is to provide a cathode structure that is capable of suppressing changes in color tone even during long-time operation, and that also has uniform temperature within the base metal and stabilizes electron emission characteristics. .
132を解決するための手段]
本発明の陰極構体は、耐熱性絶縁基板と、前記耐熱性絶
縁基板の一方の面に配設された3個の基体金属と、前記
耐熱性絶縁基板の他方の面において前記3個の基体金属
と対応する部位に配設された3個の発熱体と、前記3個
の発熱体を直列接続する導線とからなる陰極構体であっ
て、前記耐熱性絶縁基板上に耐熱性黒色皮膜が形成され
ていることを特徴としている。Means for Solving Problem 132] The cathode structure of the present invention includes a heat-resistant insulating substrate, three base metals disposed on one surface of the heat-resistant insulating substrate, and the other side of the heat-resistant insulating substrate. A cathode structure comprising three heating elements disposed at positions corresponding to the three base metals in the plane and a conductive wire connecting the three heating elements in series, the cathode structure comprising: It is characterized by a heat-resistant black film formed on the surface.
[作 用]
本発明においては、耐熱性絶縁基板上に耐熱性黒色皮膜
を形成して該耐熱性絶縁基板上の熱輻射を適宜調節でき
るように構成しであるので、陰極構体の熱特性を改善す
ることができる。[Function] In the present invention, a heat-resistant black film is formed on a heat-resistant insulating substrate so that thermal radiation on the heat-resistant insulating substrate can be adjusted appropriately, so that the thermal characteristics of the cathode structure can be adjusted. It can be improved.
[実施例]
以下、本発明を実施例に基づき説明するが、本発明はか
かる実施例のみに限定されるものではない。[Examples] Hereinafter, the present invention will be explained based on Examples, but the present invention is not limited only to these Examples.
実施例1
第1図は実施例1に係る陰極構体の発熱体の概略図、第
2図は第1図に示す陰極構体の電子放射面の概略図であ
る。以下の説明においては従来例と同一または類似の構
成要素については同一符号を付してその説明は省略する
。Example 1 FIG. 1 is a schematic diagram of a heating element of a cathode assembly according to Example 1, and FIG. 2 is a schematic diagram of an electron emitting surface of the cathode assembly shown in FIG. 1. In the following description, components that are the same or similar to those of the conventional example are given the same reference numerals, and the description thereof will be omitted.
耐熱性絶縁基板(1)の一方の面には3個のタングステ
ンの薄膜からなる蛇行状の発熱体(5a)、(5b)、
(5c〉があり、各発熱体(5a)、(5b)、(5c
)は導線(5d)、(5e)により直列接続されている
。これら発熱体(5a〉、(5b)、(5c)、導線(
5d〉、〈5o〉、ヒータ端子(6)は全てタングステ
ンをスパッタリング法で一体的に形成したものである。On one side of the heat-resistant insulating substrate (1) are three meandering heating elements (5a), (5b) made of tungsten thin films.
(5c), each heating element (5a), (5b), (5c
) are connected in series by conducting wires (5d) and (5e). These heating elements (5a>, (5b), (5c), conductor wires (
5d>, <5o>, and the heater terminal (6) are all integrally formed of tungsten by sputtering.
これらの膜厚は3ミクロンで発熱体〈5a)、(5b)
、(5c)および導線(5dL (5o)の幅は0.2
Mである。膜厚および幅はこれらに限定されるものでは
なく、膜厚は1〜5ミクロンの範囲で適宜選定でき、ま
た幅は0.1〜0.3關の範囲で適宜選定できる。ヒー
タ端子(6)には0.1+u直径のニッケル線(図示せ
ず)が溶接により固定接続されており外部より発熱体(
5a)、(5b〉、(5C)を加熱するための電圧が印
加される。The thickness of these films is 3 microns, and the heating elements (5a), (5b)
, (5c) and conductor (5dL (5o) width is 0.2
It is M. The film thickness and width are not limited to these, and the film thickness can be appropriately selected in the range of 1 to 5 microns, and the width can be appropriately selected in the range of 0.1 to 0.3 microns. A nickel wire (not shown) with a diameter of 0.1+U is fixedly connected to the heater terminal (6) by welding, and a heating element (
A voltage is applied to heat 5a), (5b>, and (5C)).
(7)は耐熱性黒色皮膜であり、0 、2 am厚さの
サファイアから構成される耐熱性絶縁基板(1)上の発
熱体(5)が形成されている面を除く部分に被着形成さ
れている。この耐熱性黒色度1I(7)はたとえばカー
ボン(C)などをスパッタリング、真空蒸着などの方法
により2ミクロンの厚さで被着形成されている。(7) is a heat-resistant black film, which is formed on the heat-resistant insulating substrate (1) made of sapphire with a thickness of 0.2 am, except for the surface on which the heating element (5) is formed. has been done. This heat-resistant blackness 1I (7) is formed by depositing carbon (C) or the like to a thickness of 2 microns by sputtering, vacuum deposition, or other methods.
第2図は、電子放射側を示すものであり基体金属(2)
が被着形成されている部分を除いた部分の一部に耐熱性
黒色皮膜(7)を2ミクロンの厚さで被着形成されてい
る。Figure 2 shows the electron emission side and shows the base metal (2).
A heat-resistant black film (7) with a thickness of 2 microns is formed on a part of the part except for the part where it is deposited.
このように構成された陰極構体にヒータ端子(6)から
電圧が印加されると各発熱体(5a)、(5b)、(5
C)は従来例でも触れたようにジュール熱により発熱す
る。基体金属(2が約800℃の高温になると電子放射
が安定して行われるようになる。この時、同時に耐熱性
絶縁基板(1)の温度もほぼ基体金属(2)の温度と同
じ約800℃の高温になっており、当然のことながら耐
熱性絶縁基板(1)上に被着形成されている耐熱性黒色
皮膜(7)の温度も約800℃の高温になる。この際、
耐熱性黒色皮膜(7)は高い熱輻射率を持っており、し
たがって高温になればなるほど耐熱性絶縁基板(1)か
らの熱輻射損失は増加する。When voltage is applied from the heater terminal (6) to the cathode structure configured in this way, each heating element (5a), (5b), (5
C) generates heat due to Joule heat, as mentioned in the conventional example. When the base metal (2) reaches a high temperature of approximately 800°C, electron emission becomes stable. At this time, the temperature of the heat-resistant insulating substrate (1) also increases to approximately 800°C, which is approximately the same as the temperature of the base metal (2). ℃, and naturally the temperature of the heat-resistant black film (7) formed on the heat-resistant insulating substrate (1) also reaches a high temperature of about 800℃.At this time,
The heat-resistant black film (7) has a high thermal emissivity, and therefore, the higher the temperature becomes, the more the heat radiation loss from the heat-resistant insulating substrate (1) increases.
その結果、約800℃の動作温度に維持するためには従
来よりも大きい入力パワーを要する。この発熱体(5)
を加熱するための入力パワーが増える結果、スイッチオ
ン後の耐熱性絶縁基板(1)の昇温速度が早くなりその
結果、電子放射が早くなり画像が早期に出現可能となる
。As a result, maintaining an operating temperature of approximately 800° C. requires greater input power than conventional devices. This heating element (5)
As a result of the increase in input power for heating the heat-resistant insulating substrate (1), the rate of temperature rise of the heat-resistant insulating substrate (1) after switching on becomes faster, and as a result, electron emission becomes faster and an image can appear earlier.
第3図はスイッチオンからの電子放出特性を示すもので
、従来電子放射の開始が10秒であったものを本発明に
よれば5秒へと大幅に短縮できた。FIG. 3 shows the electron emission characteristics from switch-on. Conventionally, the start time of electron emission was 10 seconds, but according to the present invention, it was significantly shortened to 5 seconds.
さらに定常状態への安定時間が短縮でき画面の明るさな
どが早く安定するよう改善されている。これらの原因は
輻射損失による入力パワーの増加によるもので、ちなみ
に入力パワーは従来2.3wであったが本発明では3.
8Wとなっている。Furthermore, the stabilization time to steady state has been shortened, and the brightness of the screen has been improved to stabilize more quickly. These causes are due to an increase in input power due to radiation loss.Incidentally, the input power was conventionally 2.3W, but in the present invention it is 3.
It is 8W.
なお、耐熱性黒色皮膜の材料としてカーボンを例に説明
したが、これに限定されることなくたとえばタングステ
ンやモリブテンなどの耐熱性微細粉末を用いても同様の
効果かえられる。Although carbon is used as an example of the material for the heat-resistant black film, the present invention is not limited to this, and the same effect can be achieved by using heat-resistant fine powder such as tungsten or molybdenum.
実施例2
第4図および第5図はそれぞれ実施例2に係る陰極構体
の耐熱性絶縁基板(1)の発熱体面および電子放射面の
概略図である。実施例2の構成は中央部の発熱体(5b
)および基体金属(2b)の近傍にのみ耐熱性黒色皮膜
を形成したほかは、実施例1と同様である。Example 2 FIGS. 4 and 5 are schematic diagrams of a heating element surface and an electron emitting surface of a heat-resistant insulating substrate (1) of a cathode assembly according to Example 2, respectively. The configuration of Example 2 has a central heating element (5b
) and the base metal (2b), except that the heat-resistant black film was formed only in the vicinity of the base metal (2b).
このように構成された陰極構体にヒータ端子(6)から
電圧が印加されると各発熱体(5a)、(5b)、(5
C〉は従来例でも触れたようにジュール熱により発熱す
る。基体金属(2)が約800℃の高温になると電子放
射が安定して行われるようになる。この時、同時に耐熱
性絶縁基板(1)の温度もほぼ基体金属(2)の温度と
同じ約800℃の高温になっており、当然のことながら
耐熱性絶縁基板(1)上の中央部に被管形成されている
耐熱性黒色皮膜(′7)の温度も約800℃の高温にな
る。この鴎、耐熱性黒色皮膜(7)は高い熱輻射率を持
っており、したがって高温になればなるほど、この近傍
、すなわち耐熱性絶縁基板(1)の中央部からの熱輻射
損失は増加する。その結果、耐熱性絶縁基板(1)の中
央部の温度が低下し耐熱性絶縁基板(1)全域にわたっ
て均一な温度分布特性をうろことが可能となる。When voltage is applied from the heater terminal (6) to the cathode structure configured in this way, each heating element (5a), (5b), (5
C> generates heat due to Joule heat, as mentioned in the conventional example. When the base metal (2) reaches a high temperature of about 800° C., electron emission becomes stable. At this time, the temperature of the heat-resistant insulating substrate (1) has reached a high temperature of approximately 800°C, which is almost the same as the temperature of the base metal (2), and as a matter of course, the temperature in the center of the heat-resistant insulating substrate (1) The temperature of the heat-resistant black coating ('7) formed on the tube also reaches a high temperature of about 800°C. This heat-resistant black film (7) has a high thermal emissivity, and therefore, the higher the temperature becomes, the more the heat radiation loss from this vicinity, that is, from the center of the heat-resistant insulating substrate (1) increases. As a result, the temperature at the center of the heat-resistant insulating substrate (1) decreases, making it possible to maintain uniform temperature distribution over the entire area of the heat-resistant insulating substrate (1).
第6図は基体金属(2a〉、(2b)、(2c)の温度
特性を示すが、図のO印で示すように中央と両側の基体
金属(2)の温度差はほとんどなくなった。ちなみに、
従来例の陰極構体の基体金属(2)の温度特性は×印で
示すように中央の基体金属(2b〉の温度が両側の基体
金属(2a〉、(2C)の温度に比べて約30℃程度高
温であった。Figure 6 shows the temperature characteristics of the base metals (2a>, (2b), and (2c)), and as shown by the O mark in the figure, the temperature difference between the base metals (2) in the center and on both sides has almost disappeared. ,
The temperature characteristics of the base metal (2) of the conventional cathode assembly are as shown by the x mark, where the temperature of the central base metal (2b) is approximately 30°C compared to the temperature of the base metals (2a) and (2C) on both sides. The temperature was moderately high.
実施例3
第7図は実施例3に係る陰極構体の長手方向断面図であ
る。実施例3の構成は、耐熱性黒色皮膜を耐熱性絶縁基
板(1)と基体金ri4(2a)、(2b)、(2c)
との間に形成したほかは実施例1と同様である。Example 3 FIG. 7 is a longitudinal sectional view of a cathode assembly according to Example 3. The structure of Example 3 is that a heat-resistant black film is formed on a heat-resistant insulating substrate (1) and a gold substrate (ri4) (2a), (2b), (2c).
It is the same as in Example 1 except that it is formed between.
このように構成された陰極構体にヒータ端子(6)から
電圧が印加されると、直列接続されている各発熱体(5
a)〜(5C)はジュール熱により発熱する。When a voltage is applied from the heater terminal (6) to the cathode structure configured in this way, each heating element (5
a) to (5C) generate heat due to Joule heat.
発生した熱の一部は耐熱性絶縁基板(1)を通して熱伝
導および熱輻射により耐熱性黒色薄膜(刀に吸収され、
この耐熱性黒色薄膜I(7)、基体金属(2a)〜(2
c)および電子放射物質層(4)が加熱、昇温する。A part of the generated heat is absorbed by the heat-resistant black thin film (sword) by heat conduction and heat radiation through the heat-resistant insulating substrate (1).
This heat-resistant black thin film I (7), base metals (2a) to (2
c) and the electron emitting material layer (4) are heated and their temperature increases.
従来の陰極構体では耐熱性絶縁基板(1)を通過した輻
射熱の一部は基体金属(2a)〜(2c)−耐熱性絶縁
基板(1)界面で反射され、基体金属(2a)〜(2c
〉および電子放射物質層(4)の昇温か緩慢であった。In the conventional cathode structure, a part of the radiant heat passing through the heat-resistant insulating substrate (1) is reflected at the base metal (2a) to (2c)-heat-resistant insulating substrate (1) interface, and the radiant heat passes through the heat-resistant insulating substrate (1).
> and the rise in temperature of the electron emitting material layer (4) was slow.
本発明においては耐熱性黒色薄膜(7)を形成したこと
で輻射熱の吸収率が向上し、基体金属(2a)〜(2c
)および電子放射物質層(4)の加熱、昇温をすばやく
することができる。このように電子放射物質の昇温速度
を高めることにより、電子ビーム放射開始までの時間を
短縮することが可能となる。第8図は電子放射物質層(
4)の温度変化を示したグラフである。本図は電子放射
物質層(4)の温度が800℃で安定となるときの昇温
特性を示しているがQ印で示しているように昇温特性は
向上した。ちなみに従来例の昇温特性を×印で示したが
、600℃になるまでの時間は従来例では19秒である
のに対し実施例3では12秒であり昇温特性は向上して
いる。In the present invention, by forming the heat-resistant black thin film (7), the absorption rate of radiant heat is improved, and the base metals (2a) to (2c) are formed.
) and the electron emitting material layer (4) can be heated and heated quickly. By increasing the temperature rise rate of the electron emitting material in this way, it is possible to shorten the time until electron beam emission starts. Figure 8 shows the electron emitting material layer (
4) is a graph showing the temperature change. This figure shows the temperature increase characteristics when the temperature of the electron emitting material layer (4) becomes stable at 800° C., and as indicated by the mark Q, the temperature increase characteristics have improved. Incidentally, the temperature increase characteristics of the conventional example are indicated by an x mark, and the time it takes to reach 600° C. is 19 seconds in the conventional example, but it is 12 seconds in Example 3, indicating that the temperature increase characteristics are improved.
【発明の効果]
以上説明したように、本発明によれば陰極構体の温度分
布を均一にできるとともに通電開始から電子放射までの
時間を短縮することができる。[Effects of the Invention] As described above, according to the present invention, it is possible to make the temperature distribution of the cathode assembly uniform, and it is also possible to shorten the time from the start of energization to the emission of electrons.
第1図および第2図はそれぞれ実施例1の発熱面および
電子放射面の概略構成図、第3図は実施例1の電子放射
の立ち上がり特性を示すグラフ、第4図および第5図は
それぞれ実施例2の発熱面および電子放射面の概略構成
図、第6図は実施例2の電子放射の立ち上がり特性を示
すグラフ、第7図は実施例3の陰極構体の長手方向断面
図、第8図は実施例3の電子放射物質層の温度特性を示
すグラフ、第9図および第1O図はそれぞれ従来例の電
子放射面および発熱面の概略構成図、第11図は第9〜
10図に示す陰極構体の長手方向断面図である。
(図面の主要符号)
(1):耐熱性絶縁基板
(2)、(2a)、
(2b)、(2c) :基体金属
(4):電子放射物質層
(■、(5a)、
(5b)、(5c) :発熱体
(71:
耐熱性黒色皮膜
代
理
人
大
岩
増
雄
第
3口
時
間
(sec)
図面の浄書
図面の浄書
嘲とΦg虜堅P
オ
8茜
時
間
(sec )
0)
書(方式)
20発明の名称
陰極構体
3、補正をする者
事件との関係 特許出願人
住 所 東京都千代田区丸の内二丁目2番3号名
称 (601)三菱電機株式会社代表者志岐守哉
4、代理人
住所
東京都千代田区丸の内二丁目2番3号
5、 補正命令の日付
平成1年11月28日(発送臼)
6、 補正の対象
(1)明細書の「図面の簡単な説明」の欄(2)図面
7、 補正の内容
(1)明細書の14頁15行の「ある。」のあとに改行
してつぎの文章を挿入する。
「なお、第1図、第2図、第4図および第5図における
ハツチングは、耐熱性黒色皮膜を示す。」(′2J図面
の第1図、第2図、第4図および第5図を補正された図
面(第1図、第2図、第4図および第5図)のとおり補
正する。
8、 添付書類の目録Figures 1 and 2 are schematic diagrams of the heat generating surface and electron emission surface of Example 1, respectively. Figure 3 is a graph showing the rise characteristics of electron emission in Example 1. Figures 4 and 5 are respectively FIG. 6 is a graph showing the rise characteristics of electron emission in Example 2. FIG. 7 is a longitudinal cross-sectional view of the cathode structure of Example 3. The figure is a graph showing the temperature characteristics of the electron emitting material layer of Example 3, FIG. 9 and FIG.
FIG. 11 is a longitudinal cross-sectional view of the cathode structure shown in FIG. 10; (Main symbols in the drawings) (1): Heat-resistant insulating substrate (2), (2a), (2b), (2c): Base metal (4): Electron emitting material layer (■, (5a), (5b) , (5c): Heating element (71: Heat-resistant black film agent Masuo Oiwa 3rd mouth time (sec) Engraving of the drawing Engraving of the drawing and Φg captive P O8 Akane time (sec) 0) Writing (method) 20 Name of the invention Cathode structure 3, Relationship with the case of the person making the amendment Patent applicant address 2-2-3 Marunouchi, Chiyoda-ku, Tokyo Name (601) Mitsubishi Electric Corporation Representative Moriya Shiki 4, Agent Address: 2-2-3-5 Marunouchi, Chiyoda-ku, Tokyo; Date of amendment order: November 28, 1999 (dispatch mill); 6. Subject of amendment (1) In the “Brief explanation of drawings” column of the specification ( 2) Contents of the amendment to drawing 7 (1) Insert the following sentence on a new line after "There is" on page 14, line 15 of the specification. The hatching in Figures 1 and 5 indicates a heat-resistant black film. Amend as shown in Figures 4 and 5. 8. List of attached documents
Claims (4)
面に配設された3個の基体金属と、前記耐熱性絶縁基板
の他方の面において前記3個の基体金属と対応する部位
に配設された3個の発熱体と、前記3個の発熱体を直列
接続する導線とからなる陰極構体であって、前記耐熱性
絶縁基板上に耐熱性黒色皮膜が形成されていることを特
徴とする陰極構体。(1) A heat-resistant insulated substrate, three base metals disposed on one surface of the heat-resistant insulated substrate, and portions corresponding to the three base metals on the other surface of the heat-resistant insulated substrate. A cathode assembly consisting of three heating elements disposed on the substrate and a conductive wire connecting the three heating elements in series, wherein a heat-resistant black film is formed on the heat-resistant insulating substrate. Characteristic cathode structure.
面の該基体金属およびリード線が配設されていない部分
、ならびに前記発熱体が配設された面の該発熱体および
導線が配設されていない部分に形成されてなる請求項1
記載の陰極構体。(2) The heat-resistant black film is applied to a portion of the surface on which the base metal is disposed where the base metal and the lead wire are not disposed, and a portion of the surface where the heat generating element is disposed where the heat generating element and the conductor wire are disposed. Claim 1: The invention is formed in a part where the invention is not provided.
The cathode structure described.
近傍および中央部にある発熱体の近傍に形成されてなる
請求項1記載の陰極構体。(3) The cathode structure according to claim 1, wherein the heat-resistant black film is formed near the base metal at the center and near the heating element at the center.
絶縁基板との間に形成されてなる請求項1記載の陰極構
体。(4) The cathode assembly according to claim 1, wherein the heat-resistant black film is formed between the base metal and the heat-resistant insulating substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1200671A JPH0364824A (en) | 1989-08-02 | 1989-08-02 | Cathode body structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1200671A JPH0364824A (en) | 1989-08-02 | 1989-08-02 | Cathode body structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0364824A true JPH0364824A (en) | 1991-03-20 |
Family
ID=16428301
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1200671A Pending JPH0364824A (en) | 1989-08-02 | 1989-08-02 | Cathode body structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0364824A (en) |
-
1989
- 1989-08-02 JP JP1200671A patent/JPH0364824A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2630988B2 (en) | Electron beam generator | |
US4297612A (en) | Electron gun structure | |
US3745403A (en) | Direct heating cathode structure for electron tubes | |
US3983443A (en) | Vacuum electron device having directly-heated matrix-cathode-heater assembly | |
JPH0364824A (en) | Cathode body structure | |
US5552661A (en) | Electron gun for cathode tube | |
US3633062A (en) | Direct-heated cathode electrodes with cathode shield for electron guns | |
US5220238A (en) | Cathode structure for an electron tube and method of constructing it | |
US3553521A (en) | Indirectly heated cathode for an electron discharge tube with an insulated heating element | |
JPS6084744A (en) | Hot cathode | |
JPH0364821A (en) | Cathode body structure | |
US6020693A (en) | Method for reducing residual spot in cathode ray tube | |
JPH0364823A (en) | Cathode body structure | |
KR790001794B1 (en) | A method of manufacture for electron tube cathode | |
JPH01264132A (en) | Cathode body structure | |
JPH01264130A (en) | Cathode body structure | |
JPH0364822A (en) | Cathode body structure | |
JPS6013164Y2 (en) | Directly heated cathode structure | |
JPH01143117A (en) | Cathode structure | |
CA1212714A (en) | Method of forming hot cathodes | |
JP2607481B2 (en) | Cathode ray tube | |
KR970003288Y1 (en) | Structure of cathode sleeve for cathode ray tube | |
JPS61142625A (en) | Heater for indirectly heated cathode-ray tube | |
JPH04137340A (en) | Electron gun for cathode ray tube | |
KR200158742Y1 (en) | Electron gun for crt |