JPH0122039B2 - - Google Patents
Info
- Publication number
- JPH0122039B2 JPH0122039B2 JP9013881A JP9013881A JPH0122039B2 JP H0122039 B2 JPH0122039 B2 JP H0122039B2 JP 9013881 A JP9013881 A JP 9013881A JP 9013881 A JP9013881 A JP 9013881A JP H0122039 B2 JPH0122039 B2 JP H0122039B2
- Authority
- JP
- Japan
- Prior art keywords
- water
- denitrification
- treated
- reaction tank
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000006243 chemical reaction Methods 0.000 claims description 56
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 43
- 238000011282 treatment Methods 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 16
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 claims description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 11
- 239000001301 oxygen Substances 0.000 claims description 11
- 229910052760 oxygen Inorganic materials 0.000 claims description 11
- 239000010802 sludge Substances 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 6
- MMDJDBSEMBIJBB-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] MMDJDBSEMBIJBB-UHFFFAOYSA-N 0.000 claims description 4
- 238000007865 diluting Methods 0.000 claims description 3
- 238000003756 stirring Methods 0.000 claims description 3
- JVMRPSJZNHXORP-UHFFFAOYSA-N ON=O.ON=O.ON=O.N Chemical compound ON=O.ON=O.ON=O.N JVMRPSJZNHXORP-UHFFFAOYSA-N 0.000 claims description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 18
- 241000894006 Bacteria Species 0.000 description 15
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 15
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 12
- 238000002474 experimental method Methods 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 8
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 238000010790 dilution Methods 0.000 description 6
- 239000012895 dilution Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000010800 human waste Substances 0.000 description 4
- 239000000852 hydrogen donor Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000001546 nitrifying effect Effects 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000007696 Kjeldahl method Methods 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 241000605159 Nitrobacter Species 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 230000036284 oxygen consumption Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/006—Regulation methods for biological treatment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/28—Anaerobic digestion processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/02—Aerobic processes
- C02F3/12—Activated sludge processes
- C02F3/22—Activated sludge processes using circulation pipes
- C02F3/226—"Deep shaft" processes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/30—Aerobic and anaerobic processes
- C02F3/301—Aerobic and anaerobic treatment in the same reactor
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F3/00—Biological treatment of water, waste water, or sewage
- C02F3/30—Aerobic and anaerobic processes
- C02F3/302—Nitrification and denitrification treatment
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Microbiology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Description
本発明は、アンモニア性窒素を含み亜硝酸性窒
素および硝酸性窒素を含まない被処理水を活性汚
泥法によつて硝化脱窒処理する脱窒用水処理方法
に関する。
アンモニア性窒素を含む被処理水の生成学的窒
素除去方法は、活性汚泥中に生息する硝化菌と脱
窒素菌の生理作用を合理的に組み合わせることに
よつて、被処理水中に溶存しているアンモニア性
窒素を亜硝酸あるいは硝酸にまで酸化させた後、
不活性な窒素ガスに還元処理する方法である。そ
の反応を図面の第2図に基づいてより詳しく説明
する。被処理水中のNH4−Nは、亜硝酸菌であ
るニトロゾモナスの作用でNO2-Nになり(反応
・亜硝酸型硝化)、このNO2-Nの一部が硝酸菌
であるニトロバクターの作用でNO3-Nになり
(反応・硝酸型硝化)、NO2-Nの残部が脱窒素
菌の作用でN2になるとともに(反応)、前記
NO3-Nが脱窒素菌の作用でNO2-Nを経てN2に
なる(反応)ものである。
脱窒素処理プロセスを計画する場合、硝化反応
を亜硝酸化の段階で止めるような人為的制御が可
能であれば、硝化処理に必要な酸素量や脱窒素処
理のために供給すべき水素供与体量を減少でき、
脱窒素菌による還元速度も速いことが既に知られ
ている。従来から、亜硝酸菌と硝酸菌との適性還
境の違いに着目してPHや水温を制御し、亜硝酸菌
の活性を高めた脱窒用水処理方法の研究が進めら
れているが実用化には至つていない。
本発明は、同一反応槽内の同じ箇所で硝化と脱
窒処理を同時進行させることによつて硝化反応を
亜硝酸型に制御し、経済的に運転できるとともに
窒素の除去率も高い脱窒用水処理方法の提供を目
的とする。
上記の目的を達成するために、本発明の脱窒用
水処理方法は、反応槽に投入する被処理水を反応
槽内の処理済混合液で100倍以上に希釈すること
によつて充分に攪拌混合した完全混合型に制御す
るとともに、前記反応槽内のPH値を7乃至8.5に、
水温を15乃至40℃に、アンモニア性窒素の濃度を
20ppm以上に、BOD値を30ppm以上に、DO値を
0.2乃至1.1ppmに維持して、同一反応槽内で硝化
と脱窒処理を同時に行うものである。
本発明の発明者は、アンモニア性窒素の硝化に
際して、硝化反応を亜硝酸型に制御するために、
つまり全酸化窒素NOx-N中の硝酸型窒素NO3-N
の割合を50%未満に、好ましくは30%未満にする
ために、反応槽において次の条件が満たされるよ
うにした。
反応槽に投入する被処理水を反応槽内の処理
剤混合液で100倍以上に希釈することによつて
充分に攪拌混合した完全混合型に制御する。
被処理水のPH値を7乃至8.5に、望ましくは
7乃至8に維持する。
被処理水の温度を15乃至40℃に、望ましくは
25乃至35℃に維持する。
アンモニア性窒素の濃度を20ppm以上に、望
ましくは30ppm以上に維持する。
BOD値を30ppm以上に、望ましくは40ppm
以上に維持する。
DO値を、反応槽の大部分において0.2乃至
1.1pmに維持する。
望ましくは、反応槽において被処理水中の
MLSS値を10000ppm以上に維持する。
望ましくは、反応槽において被処理水への酸
素供給速度を0.2g−o2/g−ss・日に維持す
るようにした。
これら各種条件の脱窒処理に対する影響につい
て説明する。深さ10mで上昇流室と下降流室の容
量比が391:9の反応槽によつて、水深とDO値
の相関を求めたところ第8図の結果を得、先の酸
化及び還元反応〜と反応槽の運転条件との相
関を調べたところ第3図乃至第8図の結果を得
た。第3図は、反応槽の8割以上におけるDO値
が0.2乃至1.1ppmの範囲において反応が反応
に比べて著しく速いことを示している。第4図
は、反応槽内のPH値が7乃至0.5の範囲において
反応が反応に比べて著しく速いことを示して
いる。第5図はアンモニア性窒素含有量を20ppm
以上にすることによつて、第6図はBOD値を
30ppm以上にすることによつて、第7図は反応槽
に投入する被処理水を反応槽内の処理剤混合液で
100倍以上に希釈することによつて、夫々全酸化
窒素NOx-N中の硝酸型窒素NO3-Nの割合を50%
未満にできることを示している。このことから、
先の条件・・・・が硝化反応を亜硝酸
型に制御する上で重要な要素であることが判る。
また、活性汚泥の活性を十分に維持するためには
先の条件を、高負荷処理を行う場合には先の条
件を、望ましくは条件を併せて満たす必要が
ある。すなわち、少なくとも前記の条件〜を
満たすことによつて全酸化窒素NOx-N中の硝酸
型窒素NO3-Nの割合を50%未満に制御できる。
その結果、酸素消費量が少なく、被処理水中の有
機物量が少ない場合であつても水素供与体として
の苛性ソーダやメタノール等の薬品投入が不用で
あり、硝化と脱窒が良好で処理速度も速く、設備
の小型化ならびに運転経費の節減を行える効果が
得られる。
以上、本発明の各種条件に関して説明してきた
が、硝化反応を亜硝酸型に制御する上では先の条
件が最も重要であり、従来技術と比較した場合
の本発明の最大の特徴もこの条件にある。この
点について詳細に説明する。本発明の発明者は、
生物学的脱窒法における各反応の反応速度につい
て検討した結果、単一の反応槽において亜硝酸菌
と脱窒素菌の活動を阻害せずこれらが同時に活動
できる環境を提供すると、硝化と脱窒が同じ箇所
で同時進行し、脱窒の殆どが第2図の反応と
で行われることを見出した。すなわち、従来の反
応槽では反応槽の入口と出口でBOD値とアンモ
ニア性窒素の濃度に大きな差が生じていた。その
結果、反応槽の入口では、酸素がBODの除去に
消費されるとともにNH4-N濃度が高く、硝化菌
の活性が低下して酸化反応が不十分になり、反応
槽の出口では、逆に水素供与体量が不足して
NO2-NがN2に還元されるよりも酸化される率が
大きくなつていた。これに対して、反応槽内の全
体を均質化し、BODやアンモニア性窒素の濃度
差がない完全混合型の反応槽の場合は、同一反応
槽内の同じ箇所で硝化と脱窒が同時進行し、反応
槽内のPHや酸素濃度を亜硝酸菌の適性環境に維持
できる特徴がある。しかも、本発明者の実験によ
つて求められた第7図が示すように、反応槽に投
入する被処理水を反応槽内の処理済混合液で100
倍以上に希釈することによつて充分に攪拌混合す
れば、全酸化窒素NOx-N中の硝酸型窒素NO3-N
割合を50%未満にできて硝化反応が亜硝酸型にな
り、経済的に運転できるとともに窒素の除去率も
高い効果がある。
以下、本発明の実施例を比較例と対比しながら
説明する。
第1図は本発明の脱窒用水処理方法を実施する
にあたつて使用した水処理設備のフローシートを
示している。これは、夾雑物除去等の前処理を施
した生し尿等の被処理水を供給路1から反応槽2
に導くとともに、反応槽2からの処理済中に対す
る固液分離装置3から返送路4を通じて活性汚泥
を反応槽2に導く。反応槽2では、空気等の酸素
含有ガスを給気路5により被処理水中に吹き込む
とともに、ポンプ流路6により被処理水を10〜
100m程度の比較的深い下降流路2aと、それに
連なる上昇流路2aとにわたつて循環流動させ、
活性汚泥中に生息する脱窒素菌によつて被処理水
中のBOD値を低下させるとともに、被処理水中
に溶在しているアンモニア性窒素NH4-を硝化し
た後、窒素ガスN2として除去する。この設備の
反応槽容量は32m3、固液分離装置の容量は16m3で
ある。
実験に使用した生し尿の性状
PH:8.1〜8.3
SS ppm:13000〜16500
BOD ppm:9000〜12500
NH4−N ppm:2400〜2900
Kj−N ppm:3000〜3700
Clイオン ppm:2800〜3800
実験No.・は前記深槽型の反応槽を本発明の
条件で運転し、実験No.・は希釈倍率を同様に
してその他の値を変更し、実験No.は被処理液の
流下方向に対して長い矩形の反応槽において希釈
倍率をも変更して運転した。その結果は次頁の表
の通りである。
(注)
1 希釈倍率は、処理済混合液の循環量をし尿の
投入量で除した値である。
2 T−N=NH4-N+NO2-N+NO3-Nである。
3 除去窒素量当たり消費酸素量
実験No.〜は酸素利用率46%
実験No.は酸素利用率8%
The present invention relates to a denitrification water treatment method for treating water to be treated, which contains ammonia nitrogen and does not contain nitrite nitrogen or nitrate nitrogen, by nitrification and denitrification using an activated sludge method. The production method for removing nitrogen from treated water containing ammonia nitrogen is a method for removing nitrogen dissolved in treated water by rationally combining the physiological actions of nitrifying bacteria and denitrifying bacteria that live in activated sludge. After oxidizing ammonia nitrogen to nitrite or nitric acid,
This method involves reduction treatment to inert nitrogen gas. The reaction will be explained in more detail based on FIG. 2 of the drawings. NH 4 -N in the water to be treated becomes NO 2- N due to the action of Nitrozomonas, a nitrite bacterium (reaction/nitrite-type nitrification), and a part of this NO 2- N is absorbed by Nitrobacter, a nitrite bacterium. The remaining NO 2- N becomes N 2 through the action of denitrifying bacteria (reaction), and the above-mentioned
This is a reaction in which NO 3- N becomes N 2 through NO 2- N through the action of denitrifying bacteria. When planning the denitrification process, if it is possible to artificially control the nitrification reaction by stopping it at the nitrification stage, the amount of oxygen required for the nitrification process and the hydrogen donor that should be supplied for the denitrification process should be determined. can reduce the amount,
It is already known that the reduction rate by denitrifying bacteria is also fast. Research has been progressing on water treatment methods for denitrification that increase the activity of nitrite bacteria by controlling pH and water temperature by focusing on the difference in the suitable return environment between nitrite bacteria and nitrate bacteria, but this has not been put into practical use. has not yet been reached. The present invention controls the nitrification reaction to the nitrite type by simultaneously proceeding nitrification and denitrification treatments at the same location in the same reaction tank, and provides denitrification water that can be operated economically and has a high nitrogen removal rate. The purpose is to provide processing methods. In order to achieve the above object, the denitrification water treatment method of the present invention dilutes the water to be treated, which is introduced into the reaction tank, with the treated mixed liquid in the reaction tank by a factor of 100 or more, and thoroughly stirs the water. In addition to controlling the mixture to a completely mixed type, the PH value in the reaction tank is set to 7 to 8.5,
Keep the water temperature between 15 and 40℃ and the concentration of ammonia nitrogen.
20ppm or more, BOD value 30ppm or more, DO value
Nitrification and denitrification are carried out simultaneously in the same reaction tank, maintaining the concentration between 0.2 and 1.1 ppm. In order to control the nitrification reaction to nitrite type during nitrification of ammonia nitrogen, the inventor of the present invention has
In other words, nitrate nitrogen NO 3- N in total nitrogen oxide NO x- N
In order to make the ratio less than 50%, preferably less than 30%, the following conditions were satisfied in the reaction vessel. By diluting the water to be treated, which is introduced into the reaction tank, by a factor of 100 or more with the treatment agent mixture in the reaction tank, the water is controlled to be a completely mixed type in which the water is sufficiently stirred and mixed. The pH value of the water to be treated is maintained between 7 and 8.5, preferably between 7 and 8. The temperature of the water to be treated should be between 15 and 40℃, preferably
Maintain at 25-35°C. The concentration of ammonia nitrogen is maintained at 20 ppm or higher, preferably 30 ppm or higher. BOD value of 30ppm or more, preferably 40ppm
Maintain above. The DO value should be between 0.2 and 0.2 in the majority of the reactor.
Keep it at 1.1pm. Preferably, the water to be treated in the reaction tank is
Maintain MLSS value above 10000ppm. Desirably, the oxygen supply rate to the water to be treated in the reaction tank was maintained at 0.2 g-o 2 /g-ss·day. The influence of these various conditions on denitrification treatment will be explained. Using a reaction tank with a depth of 10 m and a capacity ratio of upflow chamber and downflow chamber of 391:9, the correlation between water depth and DO value was obtained, and the results shown in Figure 8 were obtained, indicating that the above oxidation and reduction reactions ~ When we investigated the correlation between this and the operating conditions of the reaction tank, we obtained the results shown in Figures 3 to 8. Figure 3 shows that the reaction is significantly faster than the reaction when the DO value in more than 80% of the reaction vessels is in the range of 0.2 to 1.1 ppm. FIG. 4 shows that the reaction is significantly faster than the reaction when the pH value in the reaction tank is in the range of 7 to 0.5. Figure 5 shows the ammonia nitrogen content at 20ppm.
By doing the above, Figure 6 shows the BOD value.
By increasing the concentration to 30 ppm or more, Figure 7 shows that the water to be treated that is input into the reaction tank can be treated with the treatment agent mixture in the reaction tank.
By diluting 100 times or more, the proportion of nitrate-type nitrogen NO 3- N in total nitrogen oxide NO x- N can be reduced to 50%.
It shows that you can do less than that. From this,
It can be seen that the above conditions are important factors in controlling the nitrification reaction to the nitrite type.
In addition, in order to sufficiently maintain the activity of activated sludge, it is necessary to satisfy the above conditions, and in the case of performing high-load treatment, it is necessary to satisfy the above conditions, preferably all of them together. That is, by satisfying at least the above-mentioned conditions, the proportion of nitrate-type nitrogen NO 3- N in total nitrogen oxide NO x- N can be controlled to less than 50%.
As a result, oxygen consumption is low, and even when the amount of organic matter in the water to be treated is low, there is no need to add chemicals such as caustic soda or methanol as hydrogen donors, and nitrification and denitrification are good, and the treatment speed is fast. , it is possible to achieve the effect of downsizing the equipment and reducing operating costs. The various conditions of the present invention have been explained above, but the above conditions are the most important in controlling the nitrification reaction to the nitrite type, and the greatest feature of the present invention when compared with the conventional technology is also based on these conditions. be. This point will be explained in detail. The inventor of the present invention is
As a result of examining the reaction rate of each reaction in the biological denitrification method, it was found that providing an environment in which nitrite bacteria and denitrification bacteria can operate simultaneously without inhibiting their activities in a single reaction tank will result in nitrification and denitrification. It was found that most of the denitrification occurred at the same location and at the same time as the reaction shown in Figure 2. In other words, in conventional reactors, there was a large difference in BOD value and ammonia nitrogen concentration between the inlet and outlet of the reactor. As a result, at the inlet of the reaction tank, oxygen is consumed for BOD removal and the NH4 - N concentration is high, reducing the activity of nitrifying bacteria and making the oxidation reaction insufficient. There is a shortage of hydrogen donors in
The rate at which NO 2- N was oxidized was greater than that at which it was reduced to N 2 . On the other hand, in the case of a completely mixed reactor where the entire reactor is homogenized and there is no difference in BOD or ammonia nitrogen concentration, nitrification and denitrification proceed simultaneously at the same location in the same reactor. It has the feature of being able to maintain the pH and oxygen concentration in the reaction tank to a suitable environment for nitrite bacteria. Moreover, as shown in FIG. 7, which was obtained through experiments conducted by the present inventor, the amount of water to be treated that is introduced into the reaction tank is 100% by the treated mixed liquid in the reaction tank.
If diluted to more than double and sufficiently stirred and mixed, nitrate nitrogen NO 3- N in total nitrogen oxide NO x- N
By reducing the ratio to less than 50%, the nitrification reaction becomes a nitrite type, which allows for economical operation and a high nitrogen removal rate. Examples of the present invention will be described below while comparing them with comparative examples. FIG. 1 shows a flow sheet of water treatment equipment used to carry out the denitrification water treatment method of the present invention. In this system, water to be treated, such as human waste, which has been pretreated to remove impurities, is transferred from a supply path 1 to a reaction tank 2.
At the same time, the activated sludge is introduced into the reaction tank 2 from the solid-liquid separator 3 for the treated sludge from the reaction tank 2 through the return path 4. In the reaction tank 2, an oxygen-containing gas such as air is blown into the water to be treated through the air supply path 5, and the water to be treated is blown into the water through the pump flow path 6.
The fluid is circulated through a relatively deep descending channel 2a of about 100 m and an ascending channel 2a connected thereto,
The BOD value in the water to be treated is lowered by denitrifying bacteria living in the activated sludge, and after nitrifying the ammonia nitrogen NH4- dissolved in the water to be treated, it is removed as nitrogen gas N2 . . The capacity of the reaction tank of this equipment is 32 m 3 and the capacity of the solid-liquid separator is 16 m 3 . Properties of raw human urine used in the experiment PH: 8.1-8.3 SS ppm: 13000-16500 BOD ppm: 9000-12500 NH 4 -N ppm: 2400-2900 Kj-N ppm: 3000-3700 Cl ion ppm: 2800-3800 Experiment In experiment No., the deep tank type reaction tank described above was operated under the conditions of the present invention, and in experiment No., the dilution ratio was the same and other values were changed. The dilution ratio was also varied in a long rectangular reaction tank. The results are shown in the table on the next page. (Note) 1 The dilution ratio is the value obtained by dividing the circulating volume of the treated mixed liquid by the input volume of human waste. 2T-N=NH4 - N+NO2 - N+NO3 - N. 3 Amount of oxygen consumed per amount of nitrogen removed Experiment No. ~ has an oxygen utilization rate of 46% Experiment No. has an oxygen utilization rate of 8%
【表】【table】
【表】
この実験結果が示すように、実験・に比べ
て実施例〜では全酸化窒素NOx-N中の硝酸
型窒素NO3-Nの割合が非常に高く、酸素消費量
も多い。特に、希釈倍率をも変更して運転した実
験では、水素供与体としてメタノールを投入し
ていながらT−N除去率は90%を超えず、本発明
との差が顕著に現れている。
以上、本発明の実施例では、反応槽2として循
環流動方式のものを示したが、強制攪拌混合によ
つて被処理水の希釈倍率を100倍以上にしても良
く、そのような希釈機能を有するものを本発明で
は完全混合型の反応槽と総称する。また、反応槽
の具体構造は、浅い槽タイプや地上設置タイプ等
各種変更できる。PH値、温度、アンモニア性窒素
含有量、BOD値、DO値、MLSS値、酸素供給速
度等の検出手段や制御手段は自由に変更できる。
本発明は、生し尿に限らず、し尿混入下水、浄化
槽汚泥混入下水等、アンモニア性窒素および有機
炭素分を含む各種汚水を処理対象にできる。
尚、特許請求の範囲の項に図面との対照を便利
にする為に符号を記すが、該記入により本発明は
添付図面の構造に限定されるものではない。[Table] As shown by the experimental results, the proportion of nitrate-type nitrogen NO 3- N in the total nitrogen oxide NO x- N is very high in Examples ~ compared to Experiment 1, and the amount of oxygen consumed is also large. In particular, in an experiment in which the dilution ratio was changed and the operation was carried out, the TN removal rate did not exceed 90% even though methanol was introduced as a hydrogen donor, and the difference with the present invention was remarkable. As described above, in the embodiments of the present invention, a circulating flow system was shown as the reaction tank 2, but the dilution ratio of the water to be treated may be increased to 100 times or more by forced stirring and mixing, and such a dilution function may be used. In the present invention, those having this type are collectively referred to as complete mixing type reaction vessels. Further, the specific structure of the reaction tank can be changed in various ways, such as a shallow tank type or a ground-mounted type. Detection and control means for PH value, temperature, ammonia nitrogen content, BOD value, DO value, MLSS value, oxygen supply rate, etc. can be freely changed.
The present invention is not limited to raw human waste, and can treat various kinds of wastewater containing ammonia nitrogen and organic carbon, such as sewage mixed with human waste and sewage mixed with septic tank sludge. Incidentally, although reference numerals are written in the claims section for convenient comparison with the drawings, the present invention is not limited to the structure shown in the accompanying drawings.
第1図は、水処理設備のフローシート、第2図
は脱窒反応の説明図、第3図乃至第8図は夫々実
験結果のグラフである。
1……被処理水の供給路、2……反応槽。
FIG. 1 is a flow sheet of the water treatment equipment, FIG. 2 is an explanatory diagram of the denitrification reaction, and FIGS. 3 to 8 are graphs of experimental results. 1... Supply path of water to be treated, 2... Reaction tank.
Claims (1)
硝酸性窒素を含まない被処理水を活性汚泥法によ
つて硝化脱窒処理する脱窒用水処理方法におい
て、供給路1を通じて反応槽2に投入する被処理
水を反応槽2内の処理済混合液で100倍以上に希
釈することによつて充分に撹拌混合した完全混合
型に制御するとともに、前記反応槽2内のPH値を
7乃至8.5に、水温を15乃至40℃に、アンモニア
性窒素の濃度を20ppm以上に、BOD値を30ppm
以上に、DO値を0.2乃至1.1ppmに維持して、同
一反応槽2内の同じ箇所で硝化と脱窒処理を同時
に行うことを特徴とする脱窒用水処理方法。 2 前記反応槽2において、被処理水中のMLSS
値を10000ppm以上に維持する請求項1記載の脱
窒用水処理方法。 3 前記反応槽2において、被処理水への酸素供
給速度を0.2g−o2/g−ss・日に維持する請求
項2記載の脱窒用水処理方法。[Scope of Claims] 1 In a denitrification water treatment method in which water to be treated that contains ammonia nitrogen and does not contain nitrite nitrogen or nitrate nitrogen is subjected to nitrification and denitrification treatment by an activated sludge method, a reaction is carried out through the supply path 1. By diluting the water to be treated into tank 2 with the treated mixed liquid in reaction tank 2 more than 100 times, it is controlled to be a completely mixed type with sufficient stirring and mixing, and the PH value in reaction tank 2 is controlled. 7-8.5, water temperature 15-40℃, ammonia nitrogen concentration 20ppm or more, BOD value 30ppm.
As described above, the denitrification water treatment method is characterized in that the DO value is maintained at 0.2 to 1.1 ppm and nitrification and denitrification treatments are performed simultaneously at the same location in the same reaction tank 2. 2 In the reaction tank 2, MLSS in the water to be treated
2. The method for treating water for denitrification according to claim 1, wherein the denitrification value is maintained at 10,000 ppm or more. 3. The denitrification water treatment method according to claim 2, wherein in the reaction tank 2, the oxygen supply rate to the water to be treated is maintained at 0.2 g- o2 /g-ss/day.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9013881A JPS57204294A (en) | 1981-06-10 | 1981-06-10 | Denitrification of water |
KR8200965A KR850001929B1 (en) | 1981-06-10 | 1982-03-06 | Method for treatment of sewage |
GB8209008A GB2099807B (en) | 1981-06-10 | 1982-03-26 | Waste water treatment apparatus for denitrification |
AU81979/82A AU544855B2 (en) | 1981-06-10 | 1982-03-26 | Denitrification |
NZ200142A NZ200142A (en) | 1981-06-10 | 1982-03-26 | Denitrification apparatus and method for waste water |
IN368/CAL/82A IN158592B (en) | 1981-06-10 | 1982-04-01 | |
PH27090A PH22769A (en) | 1981-06-10 | 1982-04-05 | Waste water treating apparatus for denitrification |
HK12185A HK12185A (en) | 1981-06-10 | 1985-02-12 | Waste water denitrification process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9013881A JPS57204294A (en) | 1981-06-10 | 1981-06-10 | Denitrification of water |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57204294A JPS57204294A (en) | 1982-12-14 |
JPH0122039B2 true JPH0122039B2 (en) | 1989-04-25 |
Family
ID=13990143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9013881A Granted JPS57204294A (en) | 1981-06-10 | 1981-06-10 | Denitrification of water |
Country Status (8)
Country | Link |
---|---|
JP (1) | JPS57204294A (en) |
KR (1) | KR850001929B1 (en) |
AU (1) | AU544855B2 (en) |
GB (1) | GB2099807B (en) |
HK (1) | HK12185A (en) |
IN (1) | IN158592B (en) |
NZ (1) | NZ200142A (en) |
PH (1) | PH22769A (en) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4537682A (en) * | 1982-01-29 | 1985-08-27 | Environmental Research & Technology | Activated sludge wastewater treating process |
JPS59160593A (en) * | 1983-03-03 | 1984-09-11 | Nippon Kokan Kk <Nkk> | Treatment of waste liquid of high ammonia concentration with activated sludge |
JPS6019098A (en) * | 1983-07-12 | 1985-01-31 | Ataka Kogyo Kk | Treatment of waste water |
WO1986003734A1 (en) * | 1984-12-21 | 1986-07-03 | Commonwealth Scientific And Industrial Research Or | Nitrification/denitrification of waste material |
EP0327184B1 (en) * | 1988-02-05 | 1995-01-18 | Gist-Brocades N.V. | Anoxic ammonia oxidation |
NL8902573A (en) * | 1989-10-17 | 1991-05-16 | Ecotechniek Bv | METHOD AND APPARATUS FOR PROCESSING MANURE |
JPH0630784B2 (en) * | 1990-05-14 | 1994-04-27 | 三菱化工機株式会社 | Treatment method for human waste |
EP0509152A1 (en) * | 1991-04-17 | 1992-10-21 | Ecotechniek B.V. | Method and apparatus for processing manure |
JP2563015B2 (en) * | 1991-09-06 | 1996-12-11 | 株式会社荏原製作所 | Biological treatment method of organic wastewater |
DE19638492C2 (en) * | 1996-09-19 | 2003-05-15 | Alfred Albert | Process for setting a mixture of microorganisms and the amount of food in a biotechnological process, in particular activated sludge process in wastewater treatment |
FR2787782B1 (en) | 1998-12-23 | 2001-03-16 | Omnium Traitement Valorisa | PROCESS FOR TREATING AN EFFLUENT USING SIMULTANEOUS NITRIFICATION / DENITRIFICATION IN A BIOFILTER |
JP5292658B2 (en) * | 2001-07-04 | 2013-09-18 | 栗田工業株式会社 | A method for nitrification of ammonia nitrogen-containing water |
JP5292659B2 (en) * | 2001-07-16 | 2013-09-18 | 栗田工業株式会社 | A method for nitrification of ammonia nitrogen-containing water |
JP2003053382A (en) * | 2001-08-09 | 2003-02-25 | Kurita Water Ind Ltd | Nitrification and denitrification treatment method |
JP4203853B2 (en) * | 2003-11-13 | 2009-01-07 | 株式会社日立プラントテクノロジー | Method for producing nitrite-type nitrification carrier |
JP2006289277A (en) * | 2005-04-12 | 2006-10-26 | Tsukishima Kikai Co Ltd | Nitrite type nitrification denitrification method, nitrification denitrification method of ammonia nitrogen-containing liquid, and nitrite type nitrification denitrification equipment |
JP5592677B2 (en) * | 2010-03-12 | 2014-09-17 | 新日鐵住金株式会社 | Biological nitrogen treatment method of ammonia containing wastewater |
JP2014018744A (en) * | 2012-07-19 | 2014-02-03 | Yachiyo Industry Co Ltd | Wastewater treatment system |
CN106986447B (en) * | 2017-04-11 | 2019-11-26 | 清华大学 | It is a kind of for controlling the processing system and processing method of corrosive pipeline stench |
CN113896320B (en) * | 2021-09-23 | 2023-02-17 | 苏州金泽环境发展有限公司 | Deep well aeration test device capable of simulating high-pressure low-temperature anaerobism |
-
1981
- 1981-06-10 JP JP9013881A patent/JPS57204294A/en active Granted
-
1982
- 1982-03-06 KR KR8200965A patent/KR850001929B1/en active
- 1982-03-26 NZ NZ200142A patent/NZ200142A/en unknown
- 1982-03-26 AU AU81979/82A patent/AU544855B2/en not_active Ceased
- 1982-03-26 GB GB8209008A patent/GB2099807B/en not_active Expired
- 1982-04-01 IN IN368/CAL/82A patent/IN158592B/en unknown
- 1982-04-05 PH PH27090A patent/PH22769A/en unknown
-
1985
- 1985-02-12 HK HK12185A patent/HK12185A/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
GB2099807A (en) | 1982-12-15 |
AU8197982A (en) | 1982-12-16 |
KR850001929B1 (en) | 1985-12-31 |
NZ200142A (en) | 1984-12-14 |
GB2099807B (en) | 1984-08-30 |
PH22769A (en) | 1988-12-12 |
IN158592B (en) | 1986-12-20 |
AU544855B2 (en) | 1985-06-13 |
JPS57204294A (en) | 1982-12-14 |
HK12185A (en) | 1985-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0122039B2 (en) | ||
JP2000308900A (en) | Treatment of wastewater containing ammonia | |
JP3656426B2 (en) | Biological treatment of ammoniacal nitrogen | |
CN112551677A (en) | Novel Fenton oxidation method industrial wastewater treatment process | |
JPH0722757B2 (en) | Biological removal method of nitrogen and phosphorus and its treatment device | |
JPH06178995A (en) | Anaerobic digestion treatment of organic waste water | |
JPS585118B2 (en) | Yuukiseihaisuino | |
Chang et al. | Using sequencing batch biofilm reactor (SBBR) to treat ABS wastewater | |
JPS6316100A (en) | Biological nitraification and denitrification for drainage containing ammonia | |
JPS6038095A (en) | Treatment of organic sewage | |
JPS6222678B2 (en) | ||
JPS643560B2 (en) | ||
KR100357771B1 (en) | The advanced wastewater treatment method and equipment using the circular oxidation ditch of intermittent aeration method to improve the removal of nitrogen and phosphorus | |
JPS6358639B2 (en) | ||
JPH0149555B2 (en) | ||
JPH0722756B2 (en) | Biological denitrification and dephosphorization methods for wastewater | |
JPS59109293A (en) | Biological denitrification method of waste water | |
JP2002192189A (en) | Treatment method for nitrogen-containing wastewater | |
JPS6253238B2 (en) | ||
JPS6121790A (en) | Treatment of sewage | |
KR20240034389A (en) | Rapid and efficient method for treatment of wastewater containing hypersaline-wastewater | |
JPS6258799B2 (en) | ||
JPS6014997A (en) | Treatment of organic filthy water | |
JPS5851988A (en) | Slightly-diluting double-stage active sludge process | |
JPH05285491A (en) | Coke oven effluent treatment method |