JPH06178995A - Anaerobic digestion treatment of organic waste water - Google Patents
Anaerobic digestion treatment of organic waste waterInfo
- Publication number
- JPH06178995A JPH06178995A JP35282492A JP35282492A JPH06178995A JP H06178995 A JPH06178995 A JP H06178995A JP 35282492 A JP35282492 A JP 35282492A JP 35282492 A JP35282492 A JP 35282492A JP H06178995 A JPH06178995 A JP H06178995A
- Authority
- JP
- Japan
- Prior art keywords
- ammonia
- anaerobic digestion
- treated
- digestion treatment
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 68
- 230000029087 digestion Effects 0.000 title claims abstract description 45
- 239000010815 organic waste Substances 0.000 title 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims abstract description 186
- 229910021529 ammonia Inorganic materials 0.000 claims abstract description 94
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 50
- 238000000034 method Methods 0.000 claims abstract description 48
- 239000002351 wastewater Substances 0.000 claims abstract description 18
- 239000007788 liquid Substances 0.000 claims abstract description 16
- 239000005416 organic matter Substances 0.000 claims description 9
- 238000000855 fermentation Methods 0.000 abstract description 11
- 230000004151 fermentation Effects 0.000 abstract description 11
- 239000000126 substance Substances 0.000 abstract description 8
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 12
- 239000010802 sludge Substances 0.000 description 10
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 241000894006 Bacteria Species 0.000 description 5
- -1 ammonia ions Chemical class 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 4
- 239000010800 human waste Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000005273 aeration Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000009280 upflow anaerobic sludge blanket technology Methods 0.000 description 3
- 210000002700 urine Anatomy 0.000 description 3
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- MMDJDBSEMBIJBB-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] MMDJDBSEMBIJBB-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 235000011114 ammonium hydroxide Nutrition 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- IOVCWXUNBOPUCH-UHFFFAOYSA-N Nitrous acid Chemical compound ON=O IOVCWXUNBOPUCH-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000010801 sewage sludge Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000005063 solubilization Methods 0.000 description 1
- 230000007928 solubilization Effects 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 241001148471 unidentified anaerobic bacterium Species 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- Y02W10/12—
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、有機性廃水の嫌気性消
化処理方法に係り、特に高濃度のアンモニアを含有する
有機性廃水からの薬剤を用いない嫌気性消化処理方法に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for anaerobic digestion of organic wastewater, and more particularly to a method for treating anaerobic digestion of organic wastewater containing a high concentration of ammonia without using a chemical.
【0002】[0002]
【従来の技術】し尿等のアンモニアを含有する有機性廃
水を嫌気性消化処理して、廃水中の有機物をメタン菌に
よってメタン化する方法は従来から公知であり、実用的
方法として広く採用されてきた。また、下水処理場では
最初沈殿池汚泥、余剰活性汚泥を嫌気性処理して減容化
する方法も広く行われている。2. Description of the Related Art A method of anaerobic digestion of ammonia-containing organic wastewater such as human waste and the methanation of organic matter in the wastewater by a methane bacterium has been conventionally known, and has been widely adopted as a practical method. It was In addition, at the sewage treatment plant, a method of anaerobically treating the sludge in the first settling tank and the surplus activated sludge to reduce the volume is widely used.
【0003】嫌気性消化処理で重要な役割を果たすメタ
ン菌はアンモニア濃度が高いと、その毒性によってメタ
ン菌の活性が低下するため、メタン発酵槽のアンモニア
性窒素濃度は1500mg/l以下、好ましくは1000
mg/l以下か、さらに低濃度である方が良い。例えば、
嫌気性消化処理日数30日間を要するし尿では、アンモ
ニア性窒素濃度は3000〜4000mg/l程度と高い
が、これは円滑なメタン発酵を阻害する濃度である。When the methane bacterium, which plays an important role in anaerobic digestion, has a high ammonia concentration, the toxicity of the methane bacterium reduces the activity of the methane bacterium. Therefore, the ammonia nitrogen concentration in the methane fermentation tank is 1500 mg / l or less, preferably 1000
It is better to have a concentration of mg / l or less, or a lower concentration. For example,
In human urine, which requires 30 days for anaerobic digestion, the ammonia nitrogen concentration is as high as about 3000 to 4000 mg / l, which is a concentration that inhibits smooth methane fermentation.
【0004】水中のアンモニアは(1)式に示されてい
るように、アンモニアイオン(NH4 + )と遊離アンモ
ニア(NH3 )に平衡状態で存在しているので、遊離ア
ンモニアを予め液中から放散して、低減しておけばアン
モニアによる阻害は緩和される。 NH4 + +OH- ⇔ NH3 +H2 O (1)As shown in the formula (1), ammonia in water exists in equilibrium with ammonia ions (NH 4 + ) and free ammonia (NH 3 ). If it is released and reduced, the inhibition by ammonia will be alleviated. NH 4 + + OH - ⇔ NH 3 + H 2 O (1)
【0005】しかしながら、し尿のようにアンモニアと
ともに有機酸のような酸性物質を高濃度に含有する廃水
では、アルカリ性物質であるアンモニアの放散によって
pHバランスがくずれ、液のpHが低下してアンモニア
が遊離(ガス化)しなくなる。このため、水蒸気を用い
てし尿中のアンモニアを加熱放散してもアンモニアの除
去率はせいぜい50%程度が限界である。放散によるア
ンモニア除去率を100%程度に上昇させるために、水
酸化ナトリウム(NaOH)などのアルカリ剤を添加す
ることによってアンモニアを遊離態に移動させる方法が
公知であるが、薬品使用量が嵩むため、実用化は経済的
に困難であった。However, in wastewater containing a high concentration of an acidic substance such as an organic acid together with ammonia, such as human waste, the pH balance is destroyed due to the emission of ammonia, which is an alkaline substance, and the pH of the liquid is lowered to release ammonia. It will not (gasify). Therefore, even if ammonia in human waste is heated and dissipated using water vapor, the removal rate of ammonia is limited to about 50% at the maximum. In order to increase the removal rate of ammonia by emission to about 100%, a method of moving ammonia to a free state by adding an alkaline agent such as sodium hydroxide (NaOH) is known, but since the amount of chemicals used increases, Practical application was economically difficult.
【0006】これは、pH上昇用の水酸化ナトリウムに
加えて、有機酸がメタン化されると(2)式に示すよう
に、水酸イオンが遊離して処理水のpHが上昇するた
め、処理水pH中和のための酸も必要とするからであ
る。 CH3 COONa+H2 O → CH4 +CO2 +Na+ +OH- (2) また、下水汚泥の嫌気性消化処理においても、汚泥の可
溶化によってアンモニアが溶出して、発酵槽のアンモニ
ア性窒素が高濃度に蓄積し、メタン発酵の速やかな反応
を阻害する。This is because, in addition to sodium hydroxide for increasing the pH, when the organic acid is methanated, as shown in the formula (2), hydroxide ions are released and the pH of the treated water increases. This is because an acid for neutralizing the pH of the treated water is also required. CH 3 COONa + H 2 O → CH 4 + CO 2 + Na + + OH - (2) Also in the anaerobic digestion process of sewage sludge, in ammonia eluted with solubilization of the sludge, the ammonium nitrogen is a high concentration in the fermentor It accumulates and inhibits the rapid reaction of methane fermentation.
【0007】[0007]
【発明が解決しようとする課題】本発明は、上記のよう
な従来技術の問題点に鑑み、薬剤を用いることなくアン
モニア濃度を低減し、効率的にメタン発酵を行うことの
できる有機性廃水の嫌気性消化処理方法を提供すること
を課題とする。DISCLOSURE OF THE INVENTION In view of the above-mentioned problems of the prior art, the present invention reduces the concentration of ammonia without using chemicals and enables organic methane fermentation to be performed efficiently. An object is to provide an anaerobic digestion treatment method.
【0008】[0008]
【課題を解決するための手段】上記課題を解決するため
に、本発明は、アンモニアを含有する有機性廃水の嫌気
性消化処理方法において、該有機性廃水を嫌気性消化処
理工程で処理して廃水中の有機物をメタンガスに分解
し、得られる嫌気性消化処理液からアンモニアを除去
し、このアンモニア処理水の一部を前記嫌気性消化処理
工程に循環して、被処理液中のアンモニア濃度を希釈す
ることとしたものである。In order to solve the above problems, the present invention provides a method for anaerobic digestion of organic wastewater containing ammonia, wherein the organic wastewater is treated in an anaerobic digestion treatment step. The organic matter in the wastewater is decomposed into methane gas, ammonia is removed from the obtained anaerobic digestion treatment liquid, and a part of this ammonia-treated water is circulated to the anaerobic digestion treatment step to change the concentration of ammonia in the liquid to be treated. It was decided to dilute.
【0009】次に、本発明を図1を参照にして詳細に説
明する。図1において、原水1は、アンモニア除去工程
4から導入された循環アンモニア処理水6とともに嫌気
性消化処理工程2に流入し、原水中の有機物がメタン3
に還元分解されたのちに、アンモニア除去工程4に導入
され、アンモニアが除去される。アンモニア処理水5の
一部6は嫌気性処理工程2に循環され、該工程2に流入
する原水1のアンモニア濃度を希釈低減する。アンモニ
ア処理水5の残部は放流あるいは更に高度の処理が行わ
れる。Next, the present invention will be described in detail with reference to FIG. In FIG. 1, the raw water 1 flows into the anaerobic digestion treatment step 2 together with the circulating ammonia-treated water 6 introduced from the ammonia removal step 4, and the organic matter in the raw water is converted to methane 3
After being reduced and decomposed into ammonia, it is introduced into ammonia removal step 4 to remove ammonia. A part 6 of the ammonia-treated water 5 is circulated to the anaerobic treatment step 2 to dilute and reduce the ammonia concentration of the raw water 1 flowing into the step 2. The rest of the ammonia-treated water 5 is discharged or subjected to higher-level treatment.
【0010】嫌気性処理工程2は、従来のガス攪拌等の
行われている浮遊式のメタン発酵方式でも、UASB
(上向流嫌気性汚泥ろ床)方式などいずれの嫌気性処理
方式でも利用することができる。アンモニア除去工程4
はアンモニア放散(ストリッピング)法あるいは生物学
的硝化脱窒処理法が推奨される。更にアンモニア吸着能
のあるゼオライトによるイオン交換、塩素などのアンモ
ニア分解等の公知のアンモニア除去技術も利用すること
ができるが、これらの技術は現時点では処理費用が高価
で実用的ではない。The anaerobic treatment step 2 is carried out by the UASB even in the floating methane fermentation system in which the conventional gas stirring and the like are performed.
Any anaerobic treatment method such as (upflow anaerobic sludge filter bed) method can be used. Ammonia removal process 4
Ammonia stripping method or biological nitrification / denitrification treatment method is recommended. Further, known ammonia removal techniques such as ion exchange with zeolite capable of adsorbing ammonia and decomposition of ammonia such as chlorine can be used, but these techniques are expensive at present and are not practical.
【0011】アンモニア除去工程4に生物学的硝化脱窒
処理法を適用する場合には、アンモニア処理水5中のア
ンモニア及び窒素酸化物(硝酸、亜硝酸)の濃度は可能
な限り低いことが望ましい。これは、アンモニアのメタ
ン菌についての毒性は前記した通りであるが、窒素酸化
物もメタン発酵を阻害するからである。窒素酸化物中の
酸素はメタン発酵において、絶対嫌気条件の維持を妨害
して円滑なメタン発酵を妨げるとともに、原水中の有機
物を酸化消失するためにメタン生成量を低下せしめる。
嫌気性消化処理工程2へ流入可能な窒素酸化物量は、嫌
気性消化処理工程2への流入原水の有機物量によって異
なるため、予備実験によって許容可能な窒素酸化物流入
量を確認し、適切な生物学的硝化脱窒処理法をアンモニ
ア除去工程4として選定すると良い。When the biological nitrification denitrification treatment method is applied to the ammonia removal step 4, it is desirable that the concentrations of ammonia and nitrogen oxides (nitric acid, nitrous acid) in the ammonia-treated water 5 are as low as possible. . This is because the toxicity of ammonia to methane bacteria is as described above, but nitrogen oxide also inhibits methane fermentation. Oxygen in nitrogen oxides interferes with the maintenance of absolute anaerobic conditions in methane fermentation, hinders smooth methane fermentation, and reduces the amount of methane produced by oxidizing and eliminating organic matter in raw water.
The amount of nitrogen oxides that can flow into the anaerobic digestion treatment process 2 differs depending on the amount of organic matter in the raw water that flows into the anaerobic digestion treatment process 2. The biological nitrification and denitrification treatment method should be selected as the ammonia removal step 4.
【0012】[0012]
【作用】上記のような本発明の処理方法においては、嫌
気性消化処理工程2におけるアンモニア性窒素濃度は、
アンモニア処理水5の原水1に対する循環率(循環水量
/し尿処理量)によって決定される。例えば、アンモニ
ア性窒素濃度を原水、アンモニア処理水、それぞれ30
00、0mg/リットルとし、循環率を4倍に設定すれ
ば、嫌気性処理工程2におけるアンモニア性窒素濃度は
600mg/リットル{=3000mg/リットル×1/
(1+4)}となる。In the treatment method of the present invention as described above, the concentration of ammonia nitrogen in the anaerobic digestion treatment step 2 is
It is determined by the circulation rate of the ammonia-treated water 5 to the raw water 1 (circulation water amount / human waste treatment amount). For example, the ammonia nitrogen concentration is 30 for raw water and ammonia-treated water.
If the circulation rate is set to 4 times, the concentration of ammonia nitrogen in the anaerobic treatment step 2 is 600 mg / liter {= 3000 mg / liter × 1 /
(1 + 4)}.
【0013】嫌気性消化処理工程2におけるアンモニア
性窒素濃度は低くなるほど望ましいが、必要以上に循環
率を大きくすることは、嫌気性処理工程2、アンモニア
除去工程4の水量負荷を増加し、また循環動力消費量が
多くなるので好ましくない。循環倍率について予備実験
によって最適値を確認しておくことにより、嫌気性消化
処理に影響を及ぼさずに、効率的にメタン発酵の行える
アンモニア濃度とすることができる。It is desirable that the concentration of ammonia nitrogen in the anaerobic digestion treatment step 2 is lower, but increasing the circulation rate more than necessary increases the water amount load of the anaerobic digestion step 2 and the ammonia removal step 4, and also circulates it. This is not preferable because it consumes a large amount of power. By confirming the optimum value for the circulation rate by preliminary experiments, it is possible to set the ammonia concentration at which methane fermentation can be efficiently performed without affecting the anaerobic digestion treatment.
【0014】[0014]
【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれらの実施例に限定されるものではな
い。 実施例1 図2は、アンモニア除去工程に生物学的硝化脱窒処理法
を適用した場合の工程図である。図2において、原水1
の一部は分注原水7,8として脱窒素槽に移送され、残
部は硝化脱窒工程9から流出した循環アンモニア処理水
6とともに嫌気性消化処理工程2に流入し、原水中の有
機物はメタン3に還元分解されたのちに、返送汚泥1
0、循環硝化液11とともに嫌気的条件下にある第一脱
窒槽12に導入される。EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. Example 1 FIG. 2 is a process diagram when a biological nitrification denitrification treatment method is applied to the ammonia removal process. In FIG. 2, raw water 1
Part of the water is transferred to the denitrification tank as the dispensed raw water 7 and 8, and the rest flows into the anaerobic digestion treatment step 2 together with the circulating ammonia-treated water 6 flowing out from the nitrification denitrification step 9, and the organic matter in the raw water is methane. After being reduced and decomposed into 3, returned sludge 1
0, and the circulating nitrification solution 11 is introduced into the first denitrification tank 12 under anaerobic conditions.
【0015】循環硝化液11中の硝酸態窒素は、嫌気性
消化処理工程2の流出液中の残留BOD成分及び分注原
水7中のBOD成分を還元基質として生物学的に脱窒さ
れたのちに、活性汚泥混合液は好気的条件下にある硝化
槽13に導入され、アンモニアが硝酸に硝化され、硝化
液の一部は第一脱窒槽12に循環される。残部の硝化液
は嫌気的条件下にある第二脱窒槽14に流入し、液中の
硝酸態窒素は分注原水8中のBOD成分を還元基質とし
て生物学的に脱窒されたのちに、好気的条件下にある再
曝気槽15に流入し、残留BODが除去されたのちに、
沈殿槽16に流入し、アンモニア処理水5と活性汚泥に
分離される。活性汚泥は第一脱窒槽12に返送され、ア
ンモニア処理水5の一部6は嫌気性消化処理工程2に循
環される。The nitrate nitrogen in the circulating nitrification solution 11 is biologically denitrified with the residual BOD component in the effluent of the anaerobic digestion treatment step 2 and the BOD component in the dispensed raw water 7 as a reducing substrate. First, the activated sludge mixed solution is introduced into the nitrification tank 13 under aerobic conditions, ammonia is nitrified into nitric acid, and a part of the nitrification solution is circulated to the first denitrification tank 12. The remaining nitrification liquid flows into the second denitrification tank 14 under anaerobic conditions, and the nitrate nitrogen in the liquid is biologically denitrified after the biological denitrification using the BOD component in the dispensed raw water 8 as a reducing substrate. After flowing into the re-aeration tank 15 under aerobic conditions to remove residual BOD,
It flows into the settling tank 16 and is separated into the ammonia-treated water 5 and the activated sludge. The activated sludge is returned to the first denitrification tank 12, and a part 6 of the ammonia-treated water 5 is circulated to the anaerobic digestion treatment step 2.
【0016】次に、上記図2の工程図に従って処理した
処理例を示す。被処理水として、表1に記載の濃厚人工
原水を用いて、次の条件で処理した。 (a) 装置容積、 嫌気性消化槽2(UASB方式): 900リットル
(原水滞留日数9日)、 第一脱窒槽12: 300リットル、 硝化槽13: 300リットル、 第二脱窒槽14: 100リットル、 再曝気槽15: 50リットル、 沈殿槽16: 200リットル、Next, an example of processing performed according to the process diagram of FIG. 2 will be shown. As the water to be treated, the concentrated artificial raw water shown in Table 1 was used and treated under the following conditions. (a) Equipment volume, anaerobic digestion tank 2 (UASB method): 900 liters (raw water retention days 9 days), first denitrification tank 12: 300 liters, nitrification tank 13: 300 liters, second denitrification tank 14: 100 liters Re-aeration tank 15: 50 liters, Settling tank 16: 200 liters,
【0017】(b) 運転条件、 原水量1: 100リットル/日、 循環アンモニア水量6: 200リットル/日、 原水分注量7: 7リットル/日、 原水分注量8: 3リットル/日、 返送汚泥量10: 290リットル/日、 循環硝化液量11: 4000リットル/日、 硝化槽MLSS濃度: 9500mg/l、 実施結果を表1に示す。表1から、嫌気性消化処理工程
において、濃厚人工廃水を滞留日数9日の処理でBOD
濃度が99%以上減少していることがわかる。(B) Operating conditions, raw water amount 1: 100 liters / day, circulating ammonia water amount 6: 200 liters / day, raw water content injection amount 7: 7 liters / day, raw water content injection amount 8: 3 liters / day, Return sludge amount 10: 290 liters / day, circulating nitrification liquid amount 11: 4000 liters / day, nitrification tank MLSS concentration: 9500 mg / l, and the execution results are shown in Table 1. From Table 1, in the anaerobic digestion treatment process, the concentrated artificial wastewater was treated with BOD after treatment for 9 days.
It can be seen that the concentration has decreased by 99% or more.
【0018】[0018]
【表1】 [Table 1]
【0019】実施例2 図3は、アンモニア除去工程に蒸気によるアンモニア放
散を適用し、熱交換を行う場合の工程図である。図3に
おいて、原水1は、アンモニア放散工程18から流出し
た循環アンモニア処理水6とともに嫌気性消化処理工程
2に流入し、原水中の有機物がメタン3に還元分解され
たのちに、熱交換器17を経由して加温され、接触材が
充填されているアンモニア放散工程18で蒸気19と向
流接触し、アンモニア20が放散除去される。Example 2 FIG. 3 is a process diagram in the case of applying ammonia emission by vapor to the ammonia removal process to perform heat exchange. In FIG. 3, the raw water 1 flows into the anaerobic digestion treatment step 2 together with the circulating ammonia-treated water 6 that has flowed out from the ammonia diffusion step 18, and the organic matter in the raw water is reduced and decomposed into methane 3 and then the heat exchanger 17 The ammonia 20 is countercurrently contacted with the vapor 19 in the ammonia diffusion step 18 in which the contact material is filled with the ammonia 20 and is removed by diffusion.
【0020】アンモニア処理水5の一部は、循環アンモ
ニア処理水6として熱交換器17を経由して嫌気性消化
処理工程2に循環され、残部は放流あるいは更に高度の
処理が行われる。嫌気性消化処理工程2における水温
は、60℃近傍以上になると嫌気性菌が失活するので、
嫌気性消化処理工程2流入水(原水1と循環アンモニア
処理水6の混合液)の水温を60℃以下にすることが望
ましい。A part of the ammonia-treated water 5 is circulated as the circulating ammonia-treated water 6 via the heat exchanger 17 to the anaerobic digestion treatment step 2, and the rest is discharged or further treated. When the water temperature in the anaerobic digestion treatment step 2 is around 60 ° C. or higher, the anaerobic bacteria are inactivated,
It is desirable that the water temperature of the inflow water (mixed liquid of the raw water 1 and the circulating ammonia-treated water 6) in the anaerobic digestion treatment step 2 is 60 ° C. or lower.
【0021】嫌気性消化処理工程2における水温は、ア
ンモニア処理水5の原水1に対する循環率(循環水量/
原水処理量)によって決定される。例えば、原水1、ア
ンモニア処理水5の水温をそれぞれ20、100℃と
し、熱交換器17の熱交換率を100%、処理プロセス
全体の熱損失を零とすれば、嫌気性処理工程2の水温を
50℃にするための循環率は1.6倍と計算される。実
際には、プロセスの材質、保温材厚み等によって熱損失
量が異なり、また熱交換器の機種、運転条件によって熱
交換率が変わるので、プロセス設計時に詳細な熱計算を
行ってから循環率を決定しなければならない。The water temperature in the anaerobic digestion process 2 is the circulation ratio of the ammonia-treated water 5 to the raw water 1 (circulation water amount / circulation water amount /
Raw water treatment amount). For example, if the water temperatures of the raw water 1 and the ammonia-treated water 5 are respectively 20 and 100 ° C., the heat exchange rate of the heat exchanger 17 is 100%, and the heat loss of the entire treatment process is zero, the water temperature of the anaerobic treatment step 2 is set. The circulation rate to bring the temperature to 50 ° C is calculated to be 1.6 times. Actually, the amount of heat loss varies depending on the material of the process, the thickness of the heat insulating material, etc., and the heat exchange rate varies depending on the model of the heat exchanger and the operating conditions. I have to decide.
【0022】熱交換器17を経由してアンモニア放散塔
18に導入された液は、水蒸気19によってアンモニア
が放散されるが、放散塔18は塔頂から液を噴霧するス
クラバー式あるいは多段接触式等を用い、水蒸気19を
交流で接触すると良い。尚、図示していないが、嫌気性
消化処理工程2と熱交換器17の間には、必要に応じて
貯留槽を配備すると、原水1流入量の変動に柔軟に対応
することができる。The liquid introduced into the ammonia stripping tower 18 via the heat exchanger 17 is stripped of ammonia by the steam 19. The stripping tower 18 sprays the liquid from the top of the tower by a scrubber type or multistage contact type. It is advisable to contact the water vapor 19 with an alternating current. Although not shown, if a storage tank is provided between the anaerobic digestion treatment step 2 and the heat exchanger 17, it is possible to flexibly cope with the fluctuation of the inflow amount of the raw water 1.
【0023】液中のアンモニアは(1)式に示したよう
に、アンモニアイオンと遊離アンモニアに解離してい
る。遊離アンモニアはガスとして液中から放散される
が、加熱することによってアンモニアの放散が容易とな
るので、水蒸気の利用はアンモニアの除去効率を向上す
るうえで望ましい。放散アンモニア3は、触媒による酸
化分解、酸による吸収等公知のアンモニア処理技術によ
って処理することができる。メタン3は蒸気19発生装
置等の燃料として利用することができる。Ammonia in the liquid is dissociated into ammonia ions and free ammonia as shown in the equation (1). Although free ammonia is released from the liquid as a gas, the heating facilitates the release of ammonia, and the use of water vapor is desirable for improving the removal efficiency of ammonia. The stripped ammonia 3 can be treated by a known ammonia treatment technique such as oxidative decomposition by a catalyst and absorption by an acid. Methane 3 can be used as fuel for the steam 19 generator and the like.
【0024】次に、上記図3の工程図に従って処理した
処理例を示す。被処理液として、表2に記載のろ過し尿
10kl/日を用いて、次の条件で処理した。 (a) 装置容積及び運転条件 嫌気性消化槽2(UASB方式): 30m3 、 アンモニア放散塔18(多段接触式放散塔): 1m3
(0.45m×6.3m)、 水蒸気量19: 250kg/klし尿、 循環アンモニア水量6: 20m3 /日、Next, an example of processing performed according to the process diagram of FIG. 3 will be shown. As the liquid to be treated, 10 kl / day of filtered urine shown in Table 2 was used and treated under the following conditions. (a) Equipment volume and operating conditions Anaerobic digestion tank 2 (UASB method): 30 m 3 , Ammonia stripping tower 18 (multistage contact stripping tower): 1 m 3
(0.45m × 6.3m), the amount of water vapor 19: 250kg / kl raw sewage, circulation ammonia water 6: 20m 3 / day,
【0025】実施結果を表2に示す。表2から、嫌気的
消化処理工程において、ろ過し尿を滞留日数3日の処理
でBOD濃度が約95%以上減少し、またアンモニア放
散処理によって99%以上のアンモニアが除去された、
アンモニア処理水が得られることがわかる。The results of the tests are shown in Table 2. From Table 2, in the anaerobic digestion treatment step, BOD concentration was reduced by about 95% or more by the treatment of retaining urine for 3 days, and 99% or more of ammonia was removed by the ammonia emission treatment.
It can be seen that ammonia-treated water is obtained.
【0026】[0026]
【表2】 [Table 2]
【0027】[0027]
【発明の効果】本発明によって従来技術では得られなか
った次の効果を得ることができる。 (1) アンモニア処理水の循環を行うことによって、廃水
の汚濁成分であるBOD成分(有機物)をアンモニア処
理用の薬品を用いずに経済的に処理することができる。 (2) 嫌気性消化処理の有害物質であるアンモニアの濃度
を容易に低減できるので、嫌気性消化処理(メタン発
酵)の効率を簡単に上昇することができる。According to the present invention, the following effects which cannot be obtained by the prior art can be obtained. (1) By circulating the ammonia-treated water, it is possible to economically treat the BOD component (organic matter), which is a pollutant component of wastewater, without using a chemical for ammonia treatment. (2) Since the concentration of ammonia, which is a harmful substance in anaerobic digestion treatment, can be easily reduced, the efficiency of anaerobic digestion treatment (methane fermentation) can be easily increased.
【図1】本発明の処理方法を示す基本的な工程図。FIG. 1 is a basic process diagram showing a processing method of the present invention.
【図2】アンモニア除去工程に生物学的硝化脱窒処理を
用いた工程図。FIG. 2 is a process diagram in which a biological nitrification denitrification process is used in the ammonia removal process.
【図3】アンモニア除去工程に蒸気による放散処理を用
いた工程図。FIG. 3 is a process diagram in which a diffusion process using steam is used in an ammonia removal process.
1:原水、2:嫌気性消化処理工程、3:メタン、4:
アンモニア除去工程、5:アンモニア処理水、6:循環
アンモニア処理水、7,8:分注原水、9:硝化脱窒工
程、10:返送汚泥、11:循環硝化液、12:第一脱
窒槽、13:硝化槽、14:第二脱窒槽、15:再曝気
槽、16:沈殿槽、17:熱交換器、18:アンモニア
放散工程、19:水蒸気、20:アンモニア1: Raw water, 2: Anaerobic digestion process, 3: Methane, 4:
Ammonia removal step, 5: Ammonia treated water, 6: Circulated ammonia treated water, 7, 8: Dispensing raw water, 9: Nitrification denitrification step, 10: Return sludge, 11: Circulating nitrification solution, 12: First denitrification tank, 13: Nitrification tank, 14: Second denitrification tank, 15: Re-aeration tank, 16: Precipitation tank, 17: Heat exchanger, 18: Ammonia emission step, 19: Water vapor, 20: Ammonia
Claims (1)
性消化処理方法において、該有機性廃水を嫌気性消化処
理工程で処理して廃水中の有機物をメタンガスに分解
し、得られる嫌気性消化処理液からアンモニアを除去
し、このアンモニア処理水の一部を前記嫌気性消化処理
工程に循環して、被処理液中のアンモニア濃度を希釈す
ることを特徴とする有機性廃水の嫌気性消化処理方法。1. A method for anaerobic digestion treatment of an organic wastewater containing ammonia, wherein the organic wastewater is treated in an anaerobic digestion treatment step to decompose organic matter in the wastewater into methane gas, and the resulting anaerobic digestion treatment is obtained. Anaerobic digestion treatment method of organic wastewater, characterized in that ammonia is removed from the liquid, and a part of this ammonia-treated water is circulated to the anaerobic digestion treatment step to dilute the ammonia concentration in the liquid to be treated. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35282492A JPH06178995A (en) | 1992-12-14 | 1992-12-14 | Anaerobic digestion treatment of organic waste water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35282492A JPH06178995A (en) | 1992-12-14 | 1992-12-14 | Anaerobic digestion treatment of organic waste water |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH06178995A true JPH06178995A (en) | 1994-06-28 |
Family
ID=18426692
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35282492A Pending JPH06178995A (en) | 1992-12-14 | 1992-12-14 | Anaerobic digestion treatment of organic waste water |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH06178995A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000015231A (en) * | 1998-07-06 | 2000-01-18 | Kubota Corp | Method for methane fermentation of organic waste |
JP2001276880A (en) * | 2000-03-31 | 2001-10-09 | Ataka Construction & Engineering Co Ltd | Waste treatment method and device therefor |
JP2002066588A (en) * | 2000-08-25 | 2002-03-05 | Toshiba Corp | Waste water treatment equipment |
JP2006255580A (en) * | 2005-03-17 | 2006-09-28 | Mitsui Eng & Shipbuild Co Ltd | Ammonia concentration reduction apparatus and method of fermented solution |
JP2007117948A (en) * | 2005-10-31 | 2007-05-17 | Ebara Corp | High concentration organic waste liquid treatment method and apparatus |
JP2008136955A (en) * | 2006-12-04 | 2008-06-19 | Kajima Corp | Ammonia inhibition suppression type methane fermentation equipment |
US8327581B2 (en) | 2006-12-04 | 2012-12-11 | Makoto Shinohara | Method for producing biomineral-containing substance and organic hydroponics method |
CN109678242A (en) * | 2017-10-18 | 2019-04-26 | 中国石油化工股份有限公司 | The method for handling the waste water of nitrate nitrogen containing high concentration |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58150496A (en) * | 1982-03-02 | 1983-09-07 | Sumitomo Jukikai Envirotec Kk | Process for methane fermentation of waste liquid highly contg. nitrogen |
JPS61185399A (en) * | 1985-02-12 | 1986-08-19 | Kurita Water Ind Ltd | Organic wastewater treatment equipment |
JPH02253898A (en) * | 1989-03-28 | 1990-10-12 | Ishikawajima Harima Heavy Ind Co Ltd | Anaerobic treatment of waste water |
-
1992
- 1992-12-14 JP JP35282492A patent/JPH06178995A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58150496A (en) * | 1982-03-02 | 1983-09-07 | Sumitomo Jukikai Envirotec Kk | Process for methane fermentation of waste liquid highly contg. nitrogen |
JPS61185399A (en) * | 1985-02-12 | 1986-08-19 | Kurita Water Ind Ltd | Organic wastewater treatment equipment |
JPH02253898A (en) * | 1989-03-28 | 1990-10-12 | Ishikawajima Harima Heavy Ind Co Ltd | Anaerobic treatment of waste water |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000015231A (en) * | 1998-07-06 | 2000-01-18 | Kubota Corp | Method for methane fermentation of organic waste |
JP2001276880A (en) * | 2000-03-31 | 2001-10-09 | Ataka Construction & Engineering Co Ltd | Waste treatment method and device therefor |
JP2002066588A (en) * | 2000-08-25 | 2002-03-05 | Toshiba Corp | Waste water treatment equipment |
JP2006255580A (en) * | 2005-03-17 | 2006-09-28 | Mitsui Eng & Shipbuild Co Ltd | Ammonia concentration reduction apparatus and method of fermented solution |
JP2007117948A (en) * | 2005-10-31 | 2007-05-17 | Ebara Corp | High concentration organic waste liquid treatment method and apparatus |
JP4642635B2 (en) * | 2005-10-31 | 2011-03-02 | 荏原エンジニアリングサービス株式会社 | High concentration organic waste liquid treatment method and apparatus |
JP2008136955A (en) * | 2006-12-04 | 2008-06-19 | Kajima Corp | Ammonia inhibition suppression type methane fermentation equipment |
US8327581B2 (en) | 2006-12-04 | 2012-12-11 | Makoto Shinohara | Method for producing biomineral-containing substance and organic hydroponics method |
CN109678242A (en) * | 2017-10-18 | 2019-04-26 | 中国石油化工股份有限公司 | The method for handling the waste water of nitrate nitrogen containing high concentration |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3531481B2 (en) | Wastewater treatment method and apparatus | |
JP5100091B2 (en) | Water treatment method | |
JPH0122039B2 (en) | ||
JPH10500611A (en) | In particular, a method and apparatus for treating wastewater containing organic matter by wet oxidation with internal recirculation of solid residue, and a purification facility therefor | |
KR102085614B1 (en) | Wastewater treatment method and treatment device | |
JPH06178995A (en) | Anaerobic digestion treatment of organic waste water | |
JP2000308900A (en) | Treatment of wastewater containing ammonia | |
JPH0824920B2 (en) | Solid waste and wastewater treatment methods | |
JPS6254075B2 (en) | ||
JPS585118B2 (en) | Yuukiseihaisuino | |
JPS6365399B2 (en) | ||
JPS6153120B2 (en) | ||
JPS5976597A (en) | Biological treatment of waste water containing nitrogen compound and dithionic acid | |
JP3944981B2 (en) | Method for treating selenium and nitrogen-containing water | |
KR950000212B1 (en) | Wastewater Purification Method | |
JP2003094096A (en) | Method for treating organic waste, apparatus therefor, and sludge | |
JP2006035094A (en) | Method and apparatus for treating high concentration waste water | |
JP3837763B2 (en) | Method for treating selenium-containing water | |
JPH0123197B2 (en) | ||
JPH0149555B2 (en) | ||
JPH09122687A (en) | Selenium-containing water treatment method | |
JPS62155987A (en) | Treatment method for dithionic acid-containing wastewater in which nitrite ions coexist | |
JPH0116560B2 (en) | ||
JPS6253238B2 (en) | ||
JPS61230792A (en) | Method for nitrating and denitriding coke oven gas liquid |