[go: up one dir, main page]

JPH0149555B2 - - Google Patents

Info

Publication number
JPH0149555B2
JPH0149555B2 JP61165592A JP16559286A JPH0149555B2 JP H0149555 B2 JPH0149555 B2 JP H0149555B2 JP 61165592 A JP61165592 A JP 61165592A JP 16559286 A JP16559286 A JP 16559286A JP H0149555 B2 JPH0149555 B2 JP H0149555B2
Authority
JP
Japan
Prior art keywords
nitrification
ammonia
denitrification
water
nitrifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP61165592A
Other languages
Japanese (ja)
Other versions
JPS6323795A (en
Inventor
Takayuki Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Research Co Ltd
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Research Co Ltd, Ebara Infilco Co Ltd filed Critical Ebara Research Co Ltd
Priority to JP61165592A priority Critical patent/JPS6323795A/en
Publication of JPS6323795A publication Critical patent/JPS6323795A/en
Publication of JPH0149555B2 publication Critical patent/JPH0149555B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、水系の汚濁の原因となる廃水中に含
まれているアンモニアを、媒体に付着した硝化菌
を利用してNO2 -に硝化することによつて、省エ
ネルギー、省資源的に効率よく除去する方法を提
供することを目的とするものである。 〔発明の技術的背景〕 生物学的脱窒素法は、硝化菌(亜硝酸菌、硝酸
菌)の作用を利用して窒素化合物を好気的条件下
でNOx(NO2、NO3)に硝化(酸化)したのち、
脱窒素菌の作用を利用してNOxを嫌気的条件下
でN2ガスにまで還元除去するものである。脱窒
素が終了するまでの反応過程を化学量論的に表わ
すと次式のようになる。 硝化反応(好気的条件) NH4 ++1.5O2→NO2 -+2H++H2O
亜硝酸菌…(1) NO2 -+0.5O2→NO3 - 硝酸菌…(2) 脱窒素反応(嫌気的条件) NO3 -+H2→NO2 -+H2O 脱窒素菌…(3) NO2 -+1.5H2→0.5N2↑+OH-+H2O
脱窒素菌…(4) 上記硝化反応の条件は、他の好気的微生物反応
と同様に、溶存酸素、水温、PHが適当に維持され
ていることであるが、硝化反応は炭素性化合物を
酸化する場合と異なり、(1)式に示されているよう
に、アンモニア1当量に対して2当量のH+を発
生する生酸反応なので、硝化が進行すれば、PHは
低下する。ところが、硝化菌の至適PH範囲は7.8
〜8.8にあり、PHが5程度まで低下すると硝化は
ほとんど停止する。このため、順調な硝化反応が
行なわれるには、廃水のPHが中性付近に維持され
なければならない。 上記(1)〜(4)式に示されるように、硝化には酸
素、脱窒素には水素供与体の供給が必要がある
が、廃水に含有される大量の窒素分を処理する場
合には、酸素供給動力費、水素供与体として使用
されているメタノール、PH制御用のアルカリ剤な
ど有価の工業薬品が大量に消費され、脱窒素処理
装置の運転経費のうえから大きな問題となつてい
る。脱窒素処理装置の硝化工程では、通常アンモ
ニアをNO3にまで硝化しているが、上記(1)〜(4)
式からわかるように、硝化をNO2でとどめて脱
窒素処理する方が、硝化の酸素供給、脱窒素の水
素供与体供給量が少なくて済み、運転経費の点で
有利である。すなわち、NO2型硝化の酸素量は
NO3型硝化の3/4(1.5O2/2O2)で済み、NOxの
還元に消費される水素供与体量もNO2はNO3
3/5(1.5H2/2.5H2)で足りる。このように、
NO2型硝化の脱窒素処理には自明の利点がある
にもかかわらず、実際の脱窒素処理のほとんどが
NO3型硝化で行なわれている。これは、NO2
硝化を脱窒素処理装置内で維持することが極めて
困難であるからに外ならない。しかしながら、PH
およびアンモニア濃度が高いほどNO2型硝化に
なりやすいという報告(下水道協会誌vol.7、No.
74、1970/7、遠矢泰典「生物学的脱窒素法に関
する研究(1)」)がなされている。これは次の化学
平衡式から、遊離のNH3がNO2をNO3に硝化す
る硝酸菌の活性を阻害するためであるということ
が容易に推定できる。 NH4 ++OH-→NH3+H2O …(5) NH3:遊離アンモニア この(5)式から、アンモニア濃度、PHの高いほど
遊離NH3濃度が増加し、NO2型硝化の条件範囲
となるが、硝化をこのような条件で行なうことは
窒素除去率、アルカリ剤の供給経費のうえから困
難であり、実施されるに至つていない。 〔発明の目的〕 本発明は、アンモニア含有水溶液中のアンモニ
アを硝化するに際して、省エネルギー、省資源的
にみて好ましいNO2型硝化形式に制御しつゝア
ンモニアの硝化を行う方法を提供することを目的
とする。 〔発明の構成〕 本発明は、アンモニアを含有する水溶液を、媒
体に付着した硝化菌を保有する2個の硝化槽に順
次に通して該アンモニアを硝化する方法におい
て、アンモニア含有水溶液の流れる方向を交互に
切り換えると共に、アンモニア含有水溶液を最初
に導入する側の硝化槽のPHを8.5〜10.5の範囲内
に保持するように制御することを特徴とするアン
モニア含有廃水の生物学的硝化方法である。 次に本発明の一実施態様を図面を参照しながら
説明する。 第1図において、アンモニア含有廃水は廃水導
入管1から微生物付着媒体が充填され、かつ、PH
が8.5〜10.5に維持されている硝化槽2に導入さ
れ、アンモニアの一部(通常約50%以上)が硝化
された後、同じく微生物付着媒体が充填され、PH
が中性付近に維持されている硝化槽3に導入さ
れ、残部のアンモニアが硝化される。このときバ
ルブ4,8,7は開かれ、バルブ5,9,6は閉
じられており、処理水は処理水排出管10を経て
通常は次の脱窒工程に導かれる。 次にバルブ5,9,6を開とし、バルブ4,
7,8を閉とすることにより廃水1の流れが切り
換えられ、廃水1は先づ硝化槽3に導入され、該
硝化槽3のPHが8.5〜10.5になるように調整され、
該槽中において廃水中のアンモニアの一部(通常
約50%)が硝化された後、PHが中性付近以上にな
るように維持されている硝化槽2に導入され、つ
いで、処理水は処理水排出管を経て通常は次の脱
窒工程に導かれる。 廃水の流入経路の切り換えは一定日数毎に行な
われ、この切り換えによりアンモニアはNO2 -
硝化される。これは、硝化槽2および3が交互に
高いPHに保持されるため、その間NO2 -をNO3 -
に硝化する硝化菌のみがその活性を阻害され、か
つ一定日数NO2 -をNO3 -に酸化する能力を回復
しない性質を利用したものである。 したがつて、切り替えの時点は、硝化処理水中
のNO2 -および/またはNO3 -の濃度を手動ある
いは自動的に分析し、NO2 -の濃度が所定値より
低くなつた時点あるいはNO3 -濃度が所定値より
高くなつた時点で切り換えるのが確実である。 硝化工程への酸素の供給は、空気を用いても或
いは純酸素を用いても、その何れでもよい。 硝化工程で栓流が形成されている場合、高濃度
のアンモニアを硝化するためには、硝化工程
(槽)2および3の流出水を夫々循環し、アンモ
ニアを希釈するのが好ましく、この場合PHコント
ロールの為のアルカリ剤12は循環ライン11に
注入すればよい。 一方、硝化槽2および3が夫々完全混合型の場
合には各槽からの流出水の循環は不要であり、ま
たアルカリ剤は該アルカリ剤によりPHを調整すべ
き硝化槽に直接注入するとよい。 また、PHを8.5〜10.5に調整する硝化工程にお
いては、PHを間欠的に8.5〜10.5の範囲内に維持
してもNO2型硝化を行うことができる。 次に本発明の実施例について説明する。 実施にあたり、第1図に示すフローの装置を用
いて硝化を行つた。 実施の条件は次の通りである。 ◎硝化工程A、B2塔 砂を媒体とした流動層式
固定床、完全混合型、硝化水循環設備なし、ア
ルカリ剤は硝化工程に直接注入 ◎硝化工程A、B 各10、計20 ◎設定PH 原水流入硝化工程8.5 硝化水流出硝化工程7.0 ◎原水のNH3−N濃度および流量 表1参照 ◎空気導入量 A、B塔それぞれに1.0m3/日
[Industrial Application Field] The present invention saves energy by nitrifying ammonia contained in wastewater, which causes water pollution, to NO 2 - using nitrifying bacteria attached to the medium. , the purpose is to provide a method for efficiently removing resources while saving resources. [Technical background of the invention] Biological denitrification method uses the action of nitrifying bacteria (nitrite bacteria, nitrate bacteria) to nitrify nitrogen compounds into NOx (NO 2 , NO 3 ) under aerobic conditions. After (oxidation),
It uses the action of denitrifying bacteria to reduce and remove NOx to N2 gas under anaerobic conditions. The reaction process until the completion of denitrification is expressed stoichiometrically as shown in the following equation. Nitrification reaction (aerobic conditions) NH 4 + +1.5O 2 →NO 2 - +2H + +H 2 O
Nitrite bacteria...(1) NO 2 - +0.5O 2 →NO 3 -Nitrate bacteria...(2) Denitrification reaction (anaerobic conditions) NO 3 - +H 2 →NO 2 - +H 2 O Denitrification bacteria...(3 ) NO 2 - +1.5H 2 →0.5N 2 ↑+OH - +H 2 O
Denitrification bacteria...(4) The conditions for the nitrification reaction described above, like other aerobic microbial reactions, are that dissolved oxygen, water temperature, and pH are maintained appropriately, but the nitrification reaction requires the removal of carbonaceous compounds. Unlike the case of oxidation, as shown in equation (1), it is a live acid reaction that generates 2 equivalents of H + per 1 equivalent of ammonia, so as nitrification progresses, the pH decreases. However, the optimal pH range for nitrifying bacteria is 7.8.
~8.8, and nitrification almost stops when the pH drops to about 5. Therefore, in order for the nitrification reaction to proceed smoothly, the pH of the wastewater must be maintained near neutrality. As shown in equations (1) to (4) above, it is necessary to supply oxygen for nitrification and a hydrogen donor for denitrification, but when treating a large amount of nitrogen contained in wastewater, This has become a major problem in terms of the cost of oxygen supply power, the consumption of valuable industrial chemicals such as methanol used as a hydrogen donor, and alkaline agents for pH control, and the operating costs of denitrification treatment equipment. In the nitrification process of denitrification treatment equipment, ammonia is usually nitrified to NO 3 , but the above (1) to (4)
As can be seen from the equation, denitrification treatment by stopping nitrification with NO 2 requires less oxygen supply for nitrification and less hydrogen donor supply for denitrification, which is advantageous in terms of operating costs. In other words, the amount of oxygen for NO2 type nitrification is
NO 3 type nitrification requires 3/4 (1.5O 2 /2O 2 ), and the amount of hydrogen donor consumed for NOx reduction is 3/5 (1.5H 2 /2.5H 2 ) of NO 3 . Enough. in this way,
Despite the obvious advantages of NO2 -type nitrification denitrification treatment, most of the actual denitrification treatments are
It is carried out using NO 3 type nitrification. This is because it is extremely difficult to maintain NO 2 type nitrification in a denitrification treatment equipment. However, PH
and a report that the higher the ammonia concentration, the more likely NO2 type nitrification is to occur (Journal of Japan Sewage Works Association Vol. 7, No.
74, 1970/7, Yasunori Toya, "Research on biological denitrification methods (1)"). It can be easily inferred from the following chemical equilibrium equation that this is because free NH 3 inhibits the activity of nitrate bacteria that nitrifies NO 2 to NO 3 . NH 4 + +OH - →NH 3 +H 2 O...(5) NH 3 : Free ammonia From this equation (5), the higher the ammonia concentration and pH, the higher the free NH 3 concentration, and the condition range for NO 2 type nitrification. However, it is difficult to carry out nitrification under such conditions due to the nitrogen removal rate and the cost of supplying an alkali agent, and it has not been carried out yet. [Object of the Invention] An object of the present invention is to provide a method for nitrifying ammonia in an ammonia-containing aqueous solution while controlling the NO 2 type nitrification format, which is preferable from the viewpoint of energy saving and resource saving. shall be. [Structure of the Invention] The present invention provides a method for nitrifying ammonia by sequentially passing an ammonia-containing aqueous solution through two nitrification tanks containing nitrifying bacteria attached to a medium, in which the flow direction of the ammonia-containing aqueous solution is This is a biological nitrification method for ammonia-containing wastewater, which is characterized in that the pH of the nitrification tank on the side into which the ammonia-containing aqueous solution is first introduced is controlled to be maintained within the range of 8.5 to 10.5. Next, one embodiment of the present invention will be described with reference to the drawings. In Figure 1, ammonia-containing wastewater is filled with a microbial adhesion medium from wastewater introduction pipe 1, and has a pH of
Ammonia is introduced into nitrification tank 2, where the pH is maintained at 8.5 to 10.5, and after a part of the ammonia (usually about 50% or more) is nitrified, it is also filled with a microbial adhesion medium, and the PH
is introduced into the nitrification tank 3, which is maintained near neutrality, and the remaining ammonia is nitrified. At this time, valves 4, 8, and 7 are opened, valves 5, 9, and 6 are closed, and the treated water is normally led to the next denitrification process through the treated water discharge pipe 10. Next, open valves 5, 9, and 6, and open valves 4 and 6.
By closing 7 and 8, the flow of the waste water 1 is switched, and the waste water 1 is first introduced into the nitrification tank 3, and the pH of the nitrification tank 3 is adjusted to 8.5 to 10.5.
After a part of the ammonia in the wastewater (usually about 50%) is nitrified in the tank, it is introduced into the nitrification tank 2, where the pH is maintained at around neutrality or higher, and then the treated water is treated. The water is normally led to the next denitrification process via a water discharge pipe. The wastewater inflow route is switched every certain number of days, and ammonia is nitrified to NO 2 - by this switching. This is because nitrification tanks 2 and 3 are alternately maintained at a high pH, during which time NO 2 - is converted into NO 3 -
This method takes advantage of the fact that only the nitrifying bacteria that nitrify NO 2 - to NO 3 - have their activity inhibited and do not recover their ability to oxidize NO 2 - to NO 3 - for a certain number of days. Therefore, the switching point is determined by manually or automatically analyzing the concentration of NO 2 - and/or NO 3 - in the nitrification water, and when the concentration of NO 2 - becomes lower than a predetermined value or when the concentration of NO 3 - becomes lower than a predetermined value. It is certain to switch when the density becomes higher than a predetermined value. Oxygen may be supplied to the nitrification process either by using air or by using pure oxygen. When plug flow is formed in the nitrification process, in order to nitrify high-concentration ammonia, it is preferable to circulate the effluent water of nitrification processes (tanks) 2 and 3 respectively to dilute the ammonia. The alkaline agent 12 for control may be injected into the circulation line 11. On the other hand, when the nitrification tanks 2 and 3 are of a complete mixing type, there is no need to circulate the water flowing out from each tank, and the alkaline agent is preferably directly injected into the nitrification tank whose pH is to be adjusted by the alkaline agent. Furthermore, in the nitrification step of adjusting the pH to 8.5 to 10.5, NO2 type nitrification can be performed even if the pH is intermittently maintained within the range of 8.5 to 10.5. Next, examples of the present invention will be described. In carrying out the experiment, nitrification was carried out using an apparatus having the flow shown in FIG. The conditions for implementation are as follows. ◎Nitrification process A, B2 towers Fixed bed fluidized bed using sand as a medium, completely mixed type, no nitrification water circulation equipment, alkaline agent is directly injected into the nitrification process ◎Nitrification process A, B 10 each, total 20 ◎Setting PH Raw water Inflow nitrification process 8.5 Nitrified water outflow nitrification process 7.0 ◎ NH 3 -N concentration and flow rate of raw water See Table 1 ◎ Air introduction amount 1.0 m 3 /day to each of towers A and B

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によつて硝化脱窒を次のよ
うに経済的に優れた方法に改良することができ
る。 硝化の酸素供給量が少なくて済むので、酸素
供給動力費を節減することができる。 脱窒を行うに際して、アルコールの添加量が
少なくすることができる。
As described above, according to the present invention, nitrification and denitrification can be improved into an economically superior method as described below. Since the amount of oxygen supplied for nitrification is small, the cost of oxygen supply power can be reduced. When performing denitrification, the amount of alcohol added can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施態様を説明するための
フロー概略図、第2図は実施例における経過時間
と原水注入工程切り換え時点および処理水中の
NO2 -−Nの関係を示す図である。 1……原水導入管、2,3……硝化槽、12…
…アルカリ剤。
Fig. 1 is a flow diagram for explaining one embodiment of the present invention, and Fig. 2 shows the elapsed time in the embodiment, the raw water injection process switching point, and the amount of water in the treated water.
It is a figure which shows the relationship of NO2 -- N. 1... Raw water introduction pipe, 2, 3... Nitrification tank, 12...
...Alkaline agent.

Claims (1)

【特許請求の範囲】[Claims] 1 アンモニアを含有する水溶液を、媒体に付着
した硝化菌を保有する2個の硝化槽に順次に通し
て該アンモニアを硝化する方法において、アンモ
ニア含有水溶液の流れる方向を交互に切り換える
と共に、アンモニア含有水溶液を最初に導入する
側の硝化槽のPHを8.5〜10.5の範囲内に保持する
ように制御することを特徴とするアンモニア含有
廃水の生物学的硝化方法。
1. In a method of nitrifying ammonia by sequentially passing an ammonia-containing aqueous solution through two nitrifying tanks containing nitrifying bacteria attached to the medium, the flow direction of the ammonia-containing aqueous solution is alternately switched, and the ammonia-containing aqueous solution is A biological nitrification method for ammonia-containing wastewater, characterized by controlling the pH of the nitrification tank where the ammonia is first introduced to be maintained within the range of 8.5 to 10.5.
JP61165592A 1986-07-16 1986-07-16 Biological nitrification of ammonia-containing aqueous solution Granted JPS6323795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61165592A JPS6323795A (en) 1986-07-16 1986-07-16 Biological nitrification of ammonia-containing aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61165592A JPS6323795A (en) 1986-07-16 1986-07-16 Biological nitrification of ammonia-containing aqueous solution

Publications (2)

Publication Number Publication Date
JPS6323795A JPS6323795A (en) 1988-02-01
JPH0149555B2 true JPH0149555B2 (en) 1989-10-25

Family

ID=15815281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61165592A Granted JPS6323795A (en) 1986-07-16 1986-07-16 Biological nitrification of ammonia-containing aqueous solution

Country Status (1)

Country Link
JP (1) JPS6323795A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4882175B2 (en) * 2001-07-17 2012-02-22 栗田工業株式会社 Nitrification method
JP2005131451A (en) * 2003-10-28 2005-05-26 Kobelco Eco-Solutions Co Ltd Nitrification method for wastewater containing ammonia nitrogen
JP2005131452A (en) * 2003-10-28 2005-05-26 Kobelco Eco-Solutions Co Ltd Nitrification method for wastewater containing ammonia nitrogen
CN104016545B (en) * 2014-06-12 2016-08-24 北京汇恒环保工程有限公司 Landfill leachate treatment Apparatus and method for

Also Published As

Publication number Publication date
JPS6323795A (en) 1988-02-01

Similar Documents

Publication Publication Date Title
JP6227509B2 (en) Waste water treatment apparatus and waste water treatment method
JP5115908B2 (en) Waste water treatment apparatus and treatment method
JPH0122039B2 (en)
JP2003024983A (en) Nitrification treatment method
JP4876343B2 (en) Denitrification method and denitrification apparatus
JP5451283B2 (en) Nitrogen-containing wastewater treatment method
JP4113759B2 (en) Waste water treatment method and waste water treatment equipment
JPH0149555B2 (en)
JP2000308900A (en) Treatment of wastewater containing ammonia
JPS6365399B2 (en)
JPH05115897A (en) Waste water treatment using sulfur bacteria and device therefor
JPH06178995A (en) Anaerobic digestion treatment of organic waste water
JP2000189995A (en) Method and device for removing nitrogen in waste water
JPS62286598A (en) Biological nitration and denitrification of high temperature ammonia-containing waste water
JPH05228493A (en) Method for treating waste water using sulfur bacterium and apparatus therefor
JPH08108195A (en) Method and apparatus for removing nitrogen in water
JPS6038095A (en) Treatment of organic sewage
JPS6117559B2 (en)
JPS602917B2 (en) Biological treatment method for wastewater
JP3396959B2 (en) Nitrification method and apparatus
JP3944981B2 (en) Method for treating selenium and nitrogen-containing water
JPS6015399B2 (en) Biological denitrification method for ammonia-containing wastewater
JPH11216493A (en) Intermittent aeration activated sludge treatment method
JPS5936600A (en) Treatment of waste water
JPH0880497A (en) Nitrification equipment