[go: up one dir, main page]

JPS6258799B2 - - Google Patents

Info

Publication number
JPS6258799B2
JPS6258799B2 JP19082681A JP19082681A JPS6258799B2 JP S6258799 B2 JPS6258799 B2 JP S6258799B2 JP 19082681 A JP19082681 A JP 19082681A JP 19082681 A JP19082681 A JP 19082681A JP S6258799 B2 JPS6258799 B2 JP S6258799B2
Authority
JP
Japan
Prior art keywords
denitrification
bod
nitrification
liquid
nox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19082681A
Other languages
Japanese (ja)
Other versions
JPS5892498A (en
Inventor
Takayuki Suzuki
Taisuke Tooya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP19082681A priority Critical patent/JPS5892498A/en
Publication of JPS5892498A publication Critical patent/JPS5892498A/en
Publication of JPS6258799B2 publication Critical patent/JPS6258799B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は内生呼吸型の生物学的脱窒素方法によ
る廃水の窒素除去方法の改良に関するものであ
る。 生物学的硝化脱窒素法は、廃水中の窒素(以下
「NH3」と略記する)を硝化菌を利用してNOx
(NO2及び/又はNO3)としたのち、NOxを脱窒素
菌を利用して嫌気的条件下でN2ガスにまで還元
して除去(脱窒素)する方法である。NOxの還
元剤としては通常メタノールなどの窒素を含有し
ない有機炭源が使用される。しかしながら、メタ
ノールは有価の工業薬品であるためランニングコ
ストを節減する目的でメタノールを添加せず活性
汚泥自体の保有する還元力を利用する内生呼吸型
脱窒素(これに対し外部から有機炭素源を添加す
る脱窒素は外生呼吸型脱窒素といわれる)も採用
されている。 この内生呼吸型脱窒素は脱窒素速度が小さいた
め外生呼吸型の脱窒素を利用した脱窒素工程に比
べその容量が大きくなるという欠点があるが、メ
タノールを使わない省資源的方法であるため採用
例も多い。 内生呼吸型の脱窒素も他の生物反応と同様に水
温の上昇によつて反応速度が大きくなり、また脱
窒素量は微生物濃度に比例し、したがつて汚泥濃
度を増加することによつて単位反応容積あたりの
脱窒素量を大きくすることができる。 本発明者らは内生呼吸型脱窒素の、その工程容
量が大きくなるという欠点を解消するため高水
温、高MLSS(20000mg/くらい)でし尿の内
生呼吸による脱窒素の連続試験を行なつていた
が、処理水中に高濃度のBOD、NH3が残留するこ
とを知得した。このBOD、NH3の生因を調べるた
めに、試験装置から汚泥を引き抜き脱窒素の回分
試験を行なつたところ第1図〜第4図に示す結果
が得られた。 これらの実験の条件は、 (1) 第1図……水温20℃、MLSS濃度20000mg/
(2) 第2図……水温30℃、MLSS濃度 同 上 (3) 第3図……水温40℃、MLSS濃度 同 上 (4) 第4図……水温同上、MLSS濃度10000mg/
である。 第1図〜第3図から、NH3−NはNO3−Nの有
無にかかわらず上昇しているが、BODはNO3−N
が消失してから急増し、NH3−N、BODともに水
温の高いほど増加することおよび、第3図、第4
図からMLSS濃度の高いほどBOD、NH3−Nが増
大することがわかる。これらの回分試験ののち連
続試験のデータを検討したところ、MLSS濃度の
高いとき、春よりも水温の高かつた夏に残留する
BOD、NH3−N濃度が高く、回分試験の結果と良
く合致することがわかつた。 そこで連続試験では、脱窒素槽の後段に設けて
あるばつ気槽の空気供給量を大幅に増加したとこ
ろ、BODの残留濃度は低下したがNH3はNO3に硝
化されたため窒素濃度としては低下しなかつた。 また脱窒素槽ではBOD、NH3−Nが上昇した
が、この理由は、汚泥の分解によつてBOD成
分、NH3生じ、このBOD成分はNO3の存在する間
はNO3の脱窒素に利用されて消失するためNH3
Nのみが上昇するが、NO3が消失してからはBOD
成分が消費されないためBODとNH3が同時に上昇
したものと考えられる。水温40℃、MLSS20000
mg/に設定した前記回分試験(第3図)の24時
間後の液は有機酸系統の悪臭を放つていたので、
汚泥は恐らく酸性発酵を生じたものと思われる。 前述のように脱窒素速度は水温の低下によつて
減少するので、年間を通じて高率の脱窒素を安定
して行なうため冬期の最低水温を用いて脱窒素槽
の容積を決定するが、夏期には容積が過大となつ
てBOD、NH3−Nが高濃度に残留することにな
る。 すなわち、第1図、第2図及び第3図の比較か
ら明らかなように、NO3−Nの残留濃度が最低値
になるのに要する時間は第1図〜第3図の順にそ
れぞれ9時間、6時間、4.3時間となつており、
同一MLSS濃度では水温が高いほどNO3−Nの消
失速度が大きく、またBOD、NH3−Nの残留濃度
も低い。したがつて水温の高低に対応して脱窒素
処理時間を設定することが望ましいのであるが、
実際の装置ではこのような操作は困難であり、ま
たMLSS濃度についても冬期、夏期の水温変動に
拘らずほぼ同一にして処理しているため、上記の
ように夏期においては脱窒素処理時間が過大とな
り汚泥の分解によるBOD、NH3−Nの増大を招
き、処理水質が悪化することになるのである。こ
れに対し、メタノールなどの炭素源を添加する外
生呼吸型の脱窒素ではこのようなBOD、NH3−N
の上昇はみられなかつた。 本発明は以上述べた内生呼吸型脱窒素槽の
BODの上昇を防止するとともに脱窒素処理水の
残留窒素量を減少できる方法を提供することを目
的とするものである。 すなわち本発明は、廃水の生物学的脱窒素工程
において、硝化工程の前段に廃水と当該硝化工程
から循環された硝化液の接触する脱窒素工程を、
硝化工程の後段に内生呼吸型脱窒素工程をそれぞ
れ配備すると共に、当該内生呼吸型脱窒素工程か
ら前記硝化工程に、及び/又は前記内生呼吸型脱
窒素工程の後段に設けた曝気工程から前記硝化工
程に液を循環させて処理することを特徴とする廃
水の生物学的脱窒素方法である。 次に本発明の一実施態様を第5図に基づいて説
明すると、NH3とBODを含有する廃水1は返送汚
泥2、硝化工程4からの循環硝化液12とともに
嫌気的条件にある第1脱窒素工程3に流入し、循
環硝化液12中のNOx(NO2及び/又はNO3)は
廃水1中のBOD成分を炭素源として脱窒素菌に
よつてN2ガスに還元分解され、NH3と残留BOD
成分は次段の硝化工程4に流入してNH3はNOxに
硝化され、残留BOD成分は酸化除去されたの
ち、NOxの一部は第1脱窒素工程3に循環さ
れ、残部のNOxは内生呼吸による脱窒素の行な
われる第2脱窒素工程5に流入して脱窒素され
る。 しかして、前述のように第2脱窒素工程5を年
間を通じて全く同一条件で運転することは管理的
にも経済的(水温コントロールに使う重油費ある
いは電気費)にも無理であり、このため水温の上
昇する夏期には第2脱窒素工程5ではBODが大
幅に増大しNH3−N濃度の上昇も避けられない。 そこで本発明ではBOD、NH3−N濃度の上昇を
防止する方法として、第2脱窒素工程5の液をバ
ルブ10,9を経由して硝化工程4に循環する。
これによつて、返送されたBOD成分が酸化除去
されるのと同時に、返送されたNH3は第1脱窒素
工程3からの残留NH3と共にNOxに酸化され、こ
れらのNOxが第2脱窒素工程5へ流入するため
該工程内のNOx量が増大する結果、該工程で汚
泥から発生する多量のBOD成分はこのNOxの還
元(N2ガス化)に消費されてNOxとBODの処理
が同時に進行する。この場合、上記第2脱窒素工
程5内の液が硝化工程4からの流入液によつて希
釈される効果も得られる。 第2脱窒素工程5で残留したNH3及びBOD成分
は、ばつ気工程6で処理されたBOD成分は酸化
分解により消失し、NH3はNOxに変化するが、こ
のNOx量が所望の水質を超える場合にはばつ気
工程6の液をバルブ11,9を経由して硝化工程
4へ返送すればよく、上記と同様の効果を得るこ
とができる。なお、必要により第2脱窒素工程5
とばつ気工程6から同時に硝化工程4へ液を返送
してもよいことは勿論である。図中8は循環ポン
プである。 以上の方法によつてBOD、NH3−Nの低下した
第2脱窒素工程5の流出水はばつ気工程6に流入
するが、BODが低下しているので上記ばつ気工
程6の容量を小さくすることができる。このばつ
気工程6で残留BODの除去された混合液は固液
分離工程7に流入し分離水13が得られるが、こ
れは処理水として放流してもよいし、さらに高度
処理をしてもよい。一方、分離した汚泥は返送汚
泥2として第1脱窒素工程3に返送される。 しかして、本発明においては循環硝化液12の
流量すなわち循環液量は次のように決められる。
この循環硝化液12は硝化工程4で生成した
NOxを廃水1のBOD成分を利用して脱窒素する
ためのものであり、循環液量Cは硝化工程4の
NOx濃度と流入する廃水のBOD量で決まるの
で、NH3はすべて硝化されるとすれば次式で表わ
すことができる。 n・Q・BOD=C・NH3−N・Q/C+R+Q …… ここで、 Q:廃水流入量(m3/日) BOD:廃水のBOD濃度(mg/) C:循環液量(m3/日) NH3−N:廃水NH3−N濃度(mg/) R:返送汚泥量(m3/日) n:NOx−Nを除去するに必要なBOD(Kg/
Kg)、すなわち(BOD/NOx−N) なお、nはBOD/NO2−Nでは2.5、BOD/
NO3−Nでは4程度をみておけばよい。 次に、第2脱窒素工程5から硝化工程4に循環
する液量について第1図及び第3図を参照して説
明する。 冬期水温20℃、MLSS20000mg/、流入NO3
−N濃度120mg/とすると、第2脱窒素工程5
の容積VBは流入水滞留時間を第1図より9時間
としなければならないから、 V/Q′=9/24 …… ∴VB≒0.38Q′ ……′ ここで、 VB:第2脱窒素工程5の容積(m3) Q′:同上工程への流入水量(m3/日) なお、式における数字24は1日の時間数であ
り、′式から例えばQ′が100m3/日の場合、VB
はおよそ38m3となる。 一方、夏期に水温が40℃となれば上記滞留時間
においては、第3図より第2脱窒素工程5の
BOD、NH3−Nはそれぞ100mg/、43mg/に
上昇してしまうのでこれを避けるため第2脱窒素
工程5の液を硝化工程4に循環して滞留時間を
4.3時間(NO3−Nが最低値になる)にすればよ
い(第2脱窒素工程5内の液の循環によつて硝化
工程4の液のNO3−Nは多少変化するが、ここで
は変わらないものとする)。この場合は、第2脱
窒素工程5から硝化工程4への循環液量
C′(m3/日)は次式で表わすことができる。 V/Q′+C′=4.3/24 …… ∴VB≒0.18(Q′+C′) ……′ したがつて、Q′を100m3/日、VBを38m3とす
れば′式からC′は約111m3/日となる。なお、
B、Q′の意味は上記のとおりである。 かくて第2脱窒素工程5の液の循環により、該
工程の流出液の第3図よりBODは18mg/、NH3
−Nは23mg/×Q′/Q′+C′≒11mg/となる。 次に、本発明の実施例(第5図のフローシート
に則して実施)について説明する。 実施条件 ●廃水の種類 ………し尿 ●処理量 ………10Kg/日 ●硝化液循環量 ………200m3/日 ●返送汚泥量 ………5m3/日 ●硝化槽MLSS ………20000mg/ ●第1脱窒素工程容量 ………20m3 ●第2脱窒素工程容量 ………18m3 ●硝化工程容量 ………20m3 ●ばつ気工程容量 ………10m3 ●水温 ………40℃ 実施結果
The present invention relates to an improvement in a method for removing nitrogen from wastewater by an endorespiration type biological denitrification method. The biological nitrification and denitrification method uses nitrifying bacteria to convert nitrogen (hereinafter abbreviated as NH 3 ) in wastewater into NOx.
(NO 2 and/or NO 3 ), and then removes NOx by reducing it to N 2 gas under anaerobic conditions using denitrifying bacteria (denitrification). As a NOx reducing agent, a nitrogen-free organic carbon source such as methanol is usually used. However, since methanol is a valuable industrial chemical, in order to reduce running costs, endogenous respiration denitrification is used, which uses the reducing power of activated sludge itself without adding methanol. Additive denitrification (called exogenous respiration denitrification) is also used. This endogenous respiration type denitrification has the disadvantage that the denitrification rate is low, so the capacity is larger than the denitrification process using exogenous respiration type denitrification, but it is a resource-saving method that does not use methanol. Therefore, there are many examples of its adoption. Like other biological reactions, the reaction rate of endogenous respiration-type denitrification increases as water temperature increases, and the amount of denitrification is proportional to the microbial concentration, so increasing the sludge concentration increases the rate of denitrification. The amount of denitrification per unit reaction volume can be increased. The present inventors conducted a continuous test of denitrification by endogenous respiration of human waste at high water temperature and high MLSS (approximately 20,000 mg/approx.) in order to overcome the disadvantage of endogenous respiration denitrification that the process volume is large. However, it was learned that high concentrations of BOD and NH 3 remained in the treated water. In order to investigate the causes of this BOD and NH 3 , sludge was pulled out from the test equipment and a batch denitrification test was conducted, and the results shown in Figures 1 to 4 were obtained. The conditions for these experiments are: (1) Figure 1...Water temperature 20℃, MLSS concentration 20000mg/
(2) Figure 2... Water temperature 30℃, MLSS concentration Same as above (3) Figure 3... Water temperature 40℃, MLSS concentration Same as above (4) Figure 4... Water temperature Same as above, MLSS concentration 10000mg/
It is. From Figures 1 to 3, NH 3 -N increases regardless of the presence or absence of NO 3 -N, but BOD increases with NO 3 -N.
NH 3 −N and BOD increase rapidly after disappearing, and both NH 3 −N and BOD increase as the water temperature increases.
The figure shows that BOD and NH 3 -N increase as the MLSS concentration increases. After examining the data from continuous tests after these batch tests, we found that when MLSS concentrations were high, they remained in the summer when the water temperature was higher than in the spring.
It was found that the BOD and NH 3 -N concentrations were high and matched well with the results of the batch test. Therefore, in continuous tests, when the air supply amount to the aeration tank installed after the denitrification tank was significantly increased, the residual concentration of BOD decreased, but as NH 3 was nitrified to NO 3 , the nitrogen concentration decreased. I didn't. In addition, BOD and NH 3 -N increased in the denitrification tank, but the reason for this is that sludge decomposition produces BOD components and NH 3 , and while NO 3 exists, this BOD component cannot be used for NO 3 denitrification. NH 3 − because it is used and disappears.
Only N increases, but after NO 3 disappears, BOD
It is thought that BOD and NH 3 increased simultaneously because the components were not consumed. Water temperature 40℃, MLSS20000
After 24 hours of the batch test (Figure 3), which was set at mg/mg/ml, the liquid emitted a foul odor of organic acids.
The sludge probably underwent acidic fermentation. As mentioned above, the denitrification rate decreases as the water temperature decreases, so in order to stably perform a high rate of denitrification throughout the year, the minimum water temperature in winter is used to determine the volume of the denitrification tank. The volume becomes too large and BOD and NH 3 -N remain at high concentrations. That is, as is clear from the comparison of Figures 1, 2, and 3, the time required for the residual concentration of NO 3 -N to reach its minimum value is 9 hours in each of Figures 1 to 3. , 6 hours, 4.3 hours,
At the same MLSS concentration, the higher the water temperature, the faster the rate of disappearance of NO 3 -N, and the lower the residual concentrations of BOD and NH 3 -N. Therefore, it is desirable to set the denitrification treatment time depending on the water temperature.
This kind of operation is difficult in actual equipment, and the MLSS concentration is kept almost the same regardless of water temperature fluctuations in winter and summer, so as mentioned above, the denitrification treatment time is too long in summer. This leads to an increase in BOD and NH 3 -N due to the decomposition of the sludge, and the quality of the treated water deteriorates. On the other hand, in exogenous respiration type denitrification that adds a carbon source such as methanol, such BOD, NH 3 −N
No increase was observed. The present invention relates to the endogenous respiration type denitrification tank described above.
The purpose of this invention is to provide a method that can prevent an increase in BOD and reduce the amount of residual nitrogen in denitrified water. That is, in the biological denitrification process of wastewater, the present invention includes a denitrification process in which the wastewater and the nitrification liquid circulated from the nitrification process come into contact with each other before the nitrification process.
An endogenous respiration type denitrification process is provided after the nitrification process, and an aeration process is provided from the endogenous respiration type denitrification process to the nitrification process and/or after the endogenous respiration type denitrification process. This is a biological denitrification method for wastewater, characterized in that the liquid is circulated from the nitrification process to the nitrification process. Next, one embodiment of the present invention will be explained based on FIG. 5. The wastewater 1 containing NH 3 and BOD, together with the returned sludge 2 and the circulating nitrification liquid 12 from the nitrification process 4, is sent to the first desorber under anaerobic conditions. Flowing into the nitrogen process 3, NOx (NO 2 and/or NO 3 ) in the circulating nitrification liquid 12 is reduced and decomposed into N 2 gas by denitrifying bacteria using the BOD component in the wastewater 1 as a carbon source, and then NH 3 and residual BOD
The components flow into the next nitrification step 4, where NH 3 is nitrified to NOx, residual BOD components are oxidized and removed, and then part of the NOx is recycled to the first denitrification step 3, and the remaining NOx is internally removed. It flows into the second denitrification step 5 where denitrification is performed by living respiration and is denitrified. However, as mentioned above, it is impossible to operate the second denitrification process 5 under exactly the same conditions throughout the year, both in terms of management and economics (costs of heavy oil or electricity used to control water temperature). During the summer season when the NH 3 −N concentration increases, the BOD increases significantly in the second denitrification step 5, and an increase in the NH 3 −N concentration is unavoidable. Therefore, in the present invention, as a method for preventing increases in BOD and NH 3 -N concentrations, the liquid from the second denitrification step 5 is circulated to the nitrification step 4 via the valves 10 and 9.
As a result, the returned BOD components are oxidized and removed, and at the same time, the returned NH 3 is oxidized to NOx together with the residual NH 3 from the first denitrification step 3, and these NOx are removed in the second denitrification step 3. As the amount of NOx in this process increases because it flows into process 5, a large amount of BOD components generated from sludge in this process are consumed in the reduction of this NOx (N 2 gasification), and NOx and BOD are treated at the same time. proceed. In this case, the effect that the liquid in the second denitrification process 5 is diluted by the inflow liquid from the nitrification process 4 can also be obtained. The NH 3 and BOD components remaining in the second denitrification step 5 are treated in the aeration step 6, and the BOD components disappear through oxidative decomposition, and NH 3 changes to NOx. If it exceeds the nitrification process, the liquid from the aeration process 6 may be returned to the nitrification process 4 via the valves 11 and 9, and the same effect as described above can be obtained. In addition, if necessary, the second denitrification step 5
Of course, the liquid may be returned from the aeration process 6 to the nitrification process 4 at the same time. 8 in the figure is a circulation pump. The effluent from the second denitrification process 5 whose BOD and NH 3 -N have been reduced by the above method flows into the aeration process 6, but since the BOD has decreased, the capacity of the aeration process 6 is reduced. can do. The mixed liquid from which residual BOD has been removed in the aeration step 6 flows into the solid-liquid separation step 7 to obtain separated water 13, which may be discharged as treated water or subjected to further advanced treatment. good. On the other hand, the separated sludge is returned to the first denitrification step 3 as return sludge 2. Therefore, in the present invention, the flow rate of the circulating nitrifying liquid 12, that is, the amount of circulating liquid is determined as follows.
This circulating nitrification liquid 12 was generated in the nitrification process 4.
This is to denitrify NOx using the BOD component of wastewater 1, and the circulating fluid volume C is the same as that of nitrification process 4.
Since it is determined by the NOx concentration and the BOD amount of inflowing wastewater, assuming that all NH 3 is nitrified, it can be expressed by the following equation. n・Q・BOD=C・NH 3 −N・Q/C+R+Q ... where, Q: Wastewater inflow (m 3 /day) BOD: Wastewater BOD concentration (mg/) C: Circulating fluid amount (m 3 /day) NH 3 -N: Wastewater NH 3 -N concentration (mg/) R: Returned sludge amount (m 3 /day) n: BOD required to remove NOx-N (Kg/
Kg), that is, (BOD/NOx-N). Note that n is 2.5 for BOD/NO 2 -N, and BOD/
For NO 3 -N, it is sufficient to look at about 4. Next, the amount of liquid circulating from the second denitrification process 5 to the nitrification process 4 will be explained with reference to FIGS. 1 and 3. Winter water temperature 20℃, MLSS 20000mg/, inflow NO 3
- If the N concentration is 120mg/, the second denitrification step 5
Since the volume V B of the inflow water residence time must be 9 hours from Figure 1, V B /Q'=9/24... ∴V B ≒0.38Q'...' Here, V B : 2 Volume of denitrification process 5 (m 3 ) Q′: Amount of water flowing into the same process (m 3 /day) The number 24 in the equation is the number of hours in a day, and from the equation ′, for example, Q′ is 100 m 3 /day, V B
is approximately 38m3 . On the other hand, if the water temperature reaches 40°C in the summer, the second denitrification step 5 will occur at the above residence time, as shown in Figure 3.
BOD and NH 3 -N would rise to 100 mg/ and 43 mg/, respectively, so to avoid this, the liquid from the second denitrification step 5 is circulated to the nitrification step 4 to increase the residence time.
4.3 hours (NO 3 -N reaches its lowest value) (assumed to remain unchanged). In this case, the amount of circulating liquid from the second denitrification process 5 to the nitrification process 4
C′ (m 3 /day) can be expressed by the following formula. V B /Q'+C'=4.3/24... ∴V B ≒0.18 (Q'+C')...' Therefore, if Q' is 100m 3 /day and V B is 38m 3 ' From the formula, C′ is approximately 111 m 3 /day. In addition,
The meanings of V B and Q' are as described above. Thus, by circulating the liquid in the second denitrification process 5, the BOD of the effluent from this process is 18 mg/NH 3
-N is 23 mg/×Q'/Q'+C'≒11 mg/. Next, an example of the present invention (implemented according to the flow sheet shown in FIG. 5) will be described. Implementation conditions ● Type of wastewater... Human waste ● Processing amount...... 10Kg/day ● Nitrification fluid circulation amount...... 200m 3 / day ● Returned sludge amount...... 5m 3 / day ● Nitrification tank MLSS...... 20000mg / ●First denitrification process capacity: 20m 3 ●Second denitrification process capacity: 18m 3 ●Nitrification process capacity: 20m 3 ●Aeration process capacity: 10m 3 ●Water temperature: 40 ℃ Implementation results

【表】 上表から、第2脱窒素工程及び/又はばつ気工
程から液の循環処理を行なうことによつて、従来
法に比べて著しく良質の処理水が得られることが
わかる。 以上述べたように本発明によれば、年間を通じ
て安定して良質の処理水が得られ、内生呼吸型脱
窒素処理の利点を有効に生かせた処理が行なえる
効果がある。
[Table] From the above table, it can be seen that by performing the liquid circulation treatment from the second denitrification step and/or aeration step, significantly better quality treated water can be obtained than in the conventional method. As described above, according to the present invention, high-quality treated water can be obtained stably throughout the year, and treatment can be carried out that effectively utilizes the advantages of endogenous respiration type denitrification treatment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は本発明完成のための基礎実験
の結果を示すグラフ、第5図は本発明の実施態様
を示すフローシートである。 1……廃水、2……返送汚泥、3……第1脱窒
素工程、4……硝化工程、5……第2脱窒素工
程、6……ばつ気工程、7……固液分離工程、8
……循環ポンプ、9〜11……バルブ、12……
循環硝化液、13……分離水。
1 to 4 are graphs showing the results of basic experiments for completing the present invention, and FIG. 5 is a flow sheet showing an embodiment of the present invention. 1... Wastewater, 2... Returned sludge, 3... First denitrification process, 4... Nitrification process, 5... Second denitrification process, 6... Aeration process, 7... Solid-liquid separation process, 8
...Circulation pump, 9-11...Valve, 12...
Circulating nitrification liquid, 13...separated water.

Claims (1)

【特許請求の範囲】[Claims] 1 原水が流入する第1脱窒素工程と硝化工程と
内生呼吸型の第2脱窒素工程と曝気工程とをこの
順序に直列配備し、前記硝化工程から硝化液の少
なくとも一部を前記第1脱窒素工程へ返送すると
共に、前記第2脱窒素工程の液の少なくとも一部
及び/又は前記曝気工程の液の少なくとも一部を
前記硝化工程へ返送することを特徴とする廃水の
生物学的脱窒素方法。
1 A first denitrification process into which raw water flows, a nitrification process, a second denitrification process of endogenous respiration type, and an aeration process are arranged in series in this order, and at least a part of the nitrified liquid from the nitrification process is transferred to the first denitrification process. Biological denitrification of wastewater, characterized in that at least a portion of the liquid from the second denitrification step and/or at least a portion of the liquid from the aeration step are returned to the nitrification step as well as the liquid from the second denitrification step. Nitrogen method.
JP19082681A 1981-11-30 1981-11-30 Biological denitrification of waste water Granted JPS5892498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19082681A JPS5892498A (en) 1981-11-30 1981-11-30 Biological denitrification of waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19082681A JPS5892498A (en) 1981-11-30 1981-11-30 Biological denitrification of waste water

Publications (2)

Publication Number Publication Date
JPS5892498A JPS5892498A (en) 1983-06-01
JPS6258799B2 true JPS6258799B2 (en) 1987-12-08

Family

ID=16264398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19082681A Granted JPS5892498A (en) 1981-11-30 1981-11-30 Biological denitrification of waste water

Country Status (1)

Country Link
JP (1) JPS5892498A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60153999A (en) * 1984-01-24 1985-08-13 Ebara Infilco Co Ltd Treatment of waste water
JPH0661559B2 (en) * 1986-01-29 1994-08-17 三井石油化学工業株式会社 Organic wastewater treatment method
NO334703B1 (en) 2011-04-06 2014-05-12 Yara Int Asa Process for treating industrial wastewater

Also Published As

Publication number Publication date
JPS5892498A (en) 1983-06-01

Similar Documents

Publication Publication Date Title
US7147778B1 (en) Method and system for nitrifying and denitrifying wastewater
JP3248233B2 (en) Activated sludge treatment method
JPS6258799B2 (en)
JPS6254075B2 (en)
JPH06178995A (en) Anaerobic digestion treatment of organic waste water
KR100470350B1 (en) Method for disposing of livestock waste water
JPS6222678B2 (en)
JP3155458B2 (en) Nitrification and denitrification treatment method of organic wastewater
JP3916697B2 (en) Wastewater treatment method
JP3808936B2 (en) Efficient denitrification method of coke oven gas liquid by hydrogen donor addition
JPH09290290A (en) Treatment of coke-oven gas liquor
JPS584599B2 (en) How to digest organic sludge
JP3837763B2 (en) Method for treating selenium-containing water
JPH07115031B2 (en) Nitrification and denitrification method of organic wastewater
JP3591031B2 (en) Biological nitrogen removal method of septic tank sludge
JPS586557B2 (en) Biological denitrification treatment method
JPH09290296A (en) Biological denitrification treatment of cyan-containing coke-oven gas liquor
JPS6253238B2 (en)
JPH09290295A (en) Treatment of coke-oven liquor by nitrification liquid circulating method
JPS5845919B2 (en) Water treatment method for denitrification
JPS5834093A (en) Treatment of waste water
JPS5939199B2 (en) Biological denitrification method of wastewater
JPS6216159B2 (en)
KR19990081030A (en) Biological Nitrogen / Phosphorus Removal Method with Changes in Inflow Sewage Nitrogen
JPS59109293A (en) Biological denitrification method of waste water