JPH01104879A - Composite carbon fiber and its production - Google Patents
Composite carbon fiber and its productionInfo
- Publication number
- JPH01104879A JPH01104879A JP26048887A JP26048887A JPH01104879A JP H01104879 A JPH01104879 A JP H01104879A JP 26048887 A JP26048887 A JP 26048887A JP 26048887 A JP26048887 A JP 26048887A JP H01104879 A JPH01104879 A JP H01104879A
- Authority
- JP
- Japan
- Prior art keywords
- carbon fiber
- silicon
- silicon carbide
- carbon
- composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920000049 Carbon (fiber) Polymers 0.000 title claims abstract description 63
- 239000004917 carbon fiber Substances 0.000 title claims abstract description 63
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 52
- 239000002131 composite material Substances 0.000 title claims abstract description 32
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229910010271 silicon carbide Inorganic materials 0.000 claims abstract description 22
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 claims abstract description 14
- 239000002344 surface layer Substances 0.000 claims abstract description 12
- 238000010438 heat treatment Methods 0.000 claims description 7
- 238000011282 treatment Methods 0.000 abstract description 21
- 239000010410 layer Substances 0.000 abstract description 14
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 11
- 229910052751 metal Inorganic materials 0.000 abstract description 11
- 239000002184 metal Substances 0.000 abstract description 11
- 229910052814 silicon oxide Inorganic materials 0.000 abstract description 11
- 239000000835 fiber Substances 0.000 abstract description 10
- 239000000463 material Substances 0.000 abstract description 10
- 239000011159 matrix material Substances 0.000 abstract description 8
- 239000000919 ceramic Substances 0.000 abstract description 7
- 150000002739 metals Chemical class 0.000 abstract description 7
- 239000000203 mixture Substances 0.000 abstract description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 3
- 239000003733 fiber-reinforced composite Substances 0.000 abstract description 3
- 239000000843 powder Substances 0.000 abstract description 2
- 239000011863 silicon-based powder Substances 0.000 abstract description 2
- 230000015556 catabolic process Effects 0.000 abstract 2
- 238000006731 degradation reaction Methods 0.000 abstract 2
- 230000032798 delamination Effects 0.000 abstract 1
- 230000001131 transforming effect Effects 0.000 abstract 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 23
- 239000007789 gas Substances 0.000 description 22
- 229910052799 carbon Inorganic materials 0.000 description 18
- 238000000576 coating method Methods 0.000 description 12
- 239000011248 coating agent Substances 0.000 description 11
- 238000000034 method Methods 0.000 description 10
- 208000037998 chronic venous disease Diseases 0.000 description 5
- 238000007747 plating Methods 0.000 description 5
- 238000007751 thermal spraying Methods 0.000 description 5
- 238000003763 carbonization Methods 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 239000011226 reinforced ceramic Substances 0.000 description 2
- 150000003377 silicon compounds Chemical class 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000005087 graphitization Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Inorganic Fibers (AREA)
- Chemical Treatment Of Fibers During Manufacturing Processes (AREA)
Abstract
Description
【発明の詳細な説明】
(#東上の利用分野)
木発引は、複合炭素i#lra及びその製造方法に関し
、詳しくは宇宙、航空、防衛用の繊維強化複合材料や自
動車部品等の繊維強化複合材料に使用される複合炭素t
a維とその製造方法に関するものである。[Detailed Description of the Invention] (#Application field of Tojo) Kihikaki is concerned with composite carbon i#lra and its manufacturing method, and in detail, fiber reinforced composite materials for space, aviation, and defense, and fiber reinforced composite materials for automobile parts, etc. Composite carbon used in composite materials
This article relates to a fiber and its manufacturing method.
(従来の技術)
金属やセラミックスの短所である強度、剛性、耐摩耗性
、熱膨張などの特性を炭素繊維により向上させた材料が
炭素繊維強化金属、炭素繊維強化セラミックスであり、
この材料は特に高温下での高強度軽量構造体として常用
されていることは周知である。(Prior art) Carbon fiber reinforced metals and carbon fiber reinforced ceramics are materials that use carbon fiber to improve properties such as strength, rigidity, abrasion resistance, and thermal expansion, which are disadvantageous to metals and ceramics.
It is well known that this material is commonly used as high strength lightweight structures, especially at high temperatures.
しかし、炭素繊維強化金属を製造する場合には、炭素繊
維と金属マトリックス、特にアルミニウムとの場合は反
応性が高く、高温で容易に反応してAlaC−Jを生成
して強度低下することが大きな問題となっている。これ
は特に黒鉛化率の低い炭素繊維で顕著である。However, when manufacturing carbon fiber reinforced metals, carbon fibers and metal matrix, especially aluminum, are highly reactive and easily react at high temperatures to produce AlaC-J, resulting in a significant decrease in strength. This has become a problem. This is particularly noticeable in carbon fibers with a low graphitization rate.
また、炭素繊維強化セラミックスを製造する場合には、
炭素繊維とセラミックスとの濡れ性が悪く1両者の界面
での接着力を十分に高めることができない。In addition, when manufacturing carbon fiber reinforced ceramics,
The wettability between carbon fibers and ceramics is poor, making it impossible to sufficiently increase the adhesive force at the interface between the two.
このため従来は、炭素繊維表面にCVD処理やPVD処
理、メツキ、溶射をして、SiC%WC、T iC,W
、Mo、Cuなどを沈積被覆してマトリウクス物質との
反応を低くおさえることか試みられてきた。For this reason, conventional methods have been to apply CVD treatment, PVD treatment, plating, or thermal spraying to the carbon fiber surface to create SiC%WC, TiC,W
Attempts have been made to reduce the reaction with matrix materials by depositing coatings such as Mo, Cu, etc.
又、最近では特開昭62−107038号公報に開示さ
れているように炭素mix上にMgOやBeOなとの金
属酸化物を被覆して金属との反応を防止し、セラミック
スとの濡れ性を改善する方法が考えられてきた。Recently, as disclosed in Japanese Patent Application Laid-open No. 62-107038, metal oxides such as MgO and BeO are coated on carbon mix to prevent reaction with metals and improve wettability with ceramics. I've been thinking of ways to improve it.
(発明が解決しようとする問題点)
しかしながら、従来から行われてきた炭素ram表面へ
の高融点酸化物、非酸化物、金属などのCVD処理、P
VD処理、メツキ処理、溶射などによる沈積被覆処理、
あるし)はMgOやBeOなとの金属酸化物の塗布によ
る方法は、第4図に示′すように炭素jaJi(19)
表面と被g物ffl (21)とがファン・デル・ワー
ルスカ等の物理的接着によって結合しているため、炭素
繊!1(19)表面と被!I物質(21)との界面接着
力が十分でなく、マトリックス金属との複合体にして高
温化で負荷をかけて繰り返し使用し・た場合、強度劣化
が速いという問題があった。(Problems to be Solved by the Invention) However, the conventional CVD treatment of high melting point oxides, non-oxides, metals, etc. on the surface of carbon ram,
Deposited coating treatment by VD treatment, plating treatment, thermal spraying, etc.
The method by coating metal oxides such as MgO and BeO is the method of coating carbon jaJi (19) as shown in Figure 4.
Carbon fiber! 1 (19) Surface and cover! There was a problem in that the interfacial adhesion with substance I (21) was insufficient, and when it was made into a composite with a matrix metal and used repeatedly under load at high temperatures, the strength deteriorated quickly.
一方、炭素m、it表面へのCVD処理、pVD処理、
メツキ処理、溶射などの沈積被覆作業は生産性が悪くコ
ストダウンを進める上で大きな障害となっていた。On the other hand, CVD treatment, pVD treatment on carbon m, it surface,
Deposited coating operations such as plating and thermal spraying have poor productivity and have been a major obstacle to cost reduction.
(問題点を解決するための手段)
本発明は、上記のような問題点に対しなされたものであ
り、炭素mixと金属、セラミックスとの濡れ性を改善
し、かつ高温下でも製造された複合材料が強度劣化を起
こさないような炭素繊維強化材料の原料となる炭素mi
s及びその製造方法を見い出すことを目的とする。(Means for Solving the Problems) The present invention has been made to solve the problems described above, and provides a composite material that improves the wettability of carbon mix with metals and ceramics, and that can be manufactured even at high temperatures. Carbon mi is the raw material for carbon fiber reinforced materials that do not cause material strength deterioration.
The purpose of this research is to discover s and its manufacturing method.
すなわち、本発明は炭素繊維表面層の一部又は全部を炭
化珪素に転化して成る複合炭素m維を要旨とするもので
ある。That is, the gist of the present invention is a composite carbon m-fiber obtained by converting part or all of the carbon fiber surface layer into silicon carbide.
さて、炭素m雄表面層を炭化珪素に転化する方法として
は、珪素蒸気又は各種珪素化合物と反応させるか、パッ
クセメンチージョンを応用した方法があるが、最も好ま
しい方法として一酸化珪素ガスと炭素繊維を次式のよう
に反応させる方法があげられる。Now, methods for converting the carbon-molecular surface layer into silicon carbide include reacting it with silicon vapor or various silicon compounds, or applying packed cementation, but the most preferable method is to convert silicon monoxide gas and carbon into silicon carbide. One example is a method of reacting fibers as shown in the following equation.
S io(g)+2C=S ic+co(g)この方法
を用いることによって、第3図に示すように炭素繊m
(19)の形状1寸法を保持したまま珪化層(20)を
形成することができる。S io(g)+2C=S ic+co(g) By using this method, carbon fiber m
The silicided layer (20) can be formed while maintaining one dimension of the shape (19).
この反応は1300℃〜2300℃の温度範囲で加熱す
ることにより進行する。ここで、−酸化珪素ガスを発生
させるには、珪素粉と二酸化珪素粉の混合体、又は炭化
珪素粉と二酸化珪素粉の混合体、あるいは炭素粉と二酸
化珪素粉の混合体。This reaction proceeds by heating in a temperature range of 1300°C to 2300°C. Here, - to generate silicon oxide gas, a mixture of silicon powder and silicon dioxide powder, a mixture of silicon carbide powder and silicon dioxide powder, or a mixture of carbon powder and silicon dioxide powder is used.
その他、各種珪素化合物を1200℃〜2300℃に加
熱することにより行なうことができる。In addition, it can be carried out by heating various silicon compounds to 1200°C to 2300°C.
炭素繊維と一酸化珪素とを反応させて炭素繊維表面を炭
化珪素に転化させるとき、処理温度を1400℃〜23
00℃の範囲で選択することによって、炭素#ll衣表
面珪化層の中に未反応炭素を残留させ、炭化珪素分の割
合である珪化率をいろいろ変えたものをつくることがで
きる。又1M!理温度のほかに処理時間を調節すること
によっても炭素繊維表面の珪化層の厚さをコントロール
することができる。その他にも、−酸化珪素の濃度を3
11mすることによって珪化率、珪化層の厚さをコント
ロールすることができる。When carbon fibers and silicon monoxide are reacted to convert the carbon fiber surface into silicon carbide, the treatment temperature is 1400°C to 23°C.
By selecting the temperature within the range of 00°C, unreacted carbon remains in the silicified layer on the surface of the carbon coating, and it is possible to produce products with various silicification ratios, which are the proportions of silicon carbide. Another 1M! In addition to the treatment temperature, the thickness of the silicified layer on the carbon fiber surface can also be controlled by adjusting the treatment time. In addition, - the concentration of silicon oxide is 3
By setting the thickness to 11 m, the silicification rate and the thickness of the silicide layer can be controlled.
炭素繊維表面層を炭化珪素に転化した珪化層の巾には未
反応炭素を少なくとも10%以上は残留させておくこと
が望ましい。このことによって炭素繊維のフレキシビリ
ティ−を確保することができる。It is desirable that at least 10% or more of unreacted carbon remains in the width of the silicified layer obtained by converting the carbon fiber surface layer into silicon carbide. This makes it possible to ensure the flexibility of the carbon fiber.
次に炭素繊維を連続的に焼成して製造する方法について
図面を用いて説明する。Next, a method for manufacturing carbon fiber by continuously firing it will be explained using the drawings.
第1図は本発明の複合炭素繊維を製造する装置の概略図
である。FIG. 1 is a schematic diagram of an apparatus for producing the composite carbon fiber of the present invention.
第1図において、(1)は炭化前繊維又は炭素繊雄であ
り、予熱ヒーター(2)を用いて150℃〜250℃で
処理する。炉内の雰囲気ガスはガス供給口(3)より導
入し、排気ガスは炉内の排気ガス口(7)及び(13)
より取り出す。In FIG. 1, (1) is pre-carbonized fiber or carbon fiber, which is treated at 150°C to 250°C using a preheating heater (2). Atmospheric gas inside the furnace is introduced through the gas supply port (3), and exhaust gas is introduced through the exhaust gas ports (7) and (13) inside the furnace.
Take it out.
又、炉内のシール用水浴(17)を配した本封部からは
シール用ガスを供給口(15)より流し、炉内の排気ガ
ス口(7)及び(13)より取り出す。Further, from the main sealing section in which the sealing water bath (17) is arranged inside the furnace, sealing gas is allowed to flow through the supply port (15) and taken out through the exhaust gas ports (7) and (13) inside the furnace.
予熱処理を受けたla、Ilは焼成炭化用ヒーター(5
)によってtooo℃〜3000℃で加熱され炭化され
る0以上の処理を受けた炭素m維はスリット(+2)と
スリット(14)によって区切られた珪化帯域へ移り、
表面層を炭化珪素に転化される。ここで、珪化用ヒータ
ー(6)を用いて珪化帯域を1400℃〜2300℃に
なるようにする。又、−酸化珪素ガスは黒鉛ルツボ(9
)内の一酸化珪素ガス発生源(lO)を1300℃〜2
300℃に加熱することによって発生させることができ
、それを−酸化珪素ガス供給口(11)より導入して炭
素繊維と反応させる。1300℃〜2300℃に加熱す
るには誘導加勢コイル(8)を用いて黒鉛ルツボ(9)
を加熱すればよい、残留−酸化珪素ガスは炉内の排気ガ
ス口(13)より排出する。la and Il that have undergone preheating treatment are heated using a sintering carbonization heater (5
) The carbon fibers, which have undergone a treatment of 0 or more and are carbonized by heating at temperatures between tooo C and 3000 C, move to a silicification zone separated by slits (+2) and slits (14),
The surface layer is converted to silicon carbide. Here, the temperature of the silicification zone is set at 1400°C to 2300°C using the silicification heater (6). Moreover, -silicon oxide gas is placed in a graphite crucible (9
) in the silicon monoxide gas generation source (lO) from 1300℃ to 2
It can be generated by heating to 300°C, and it is introduced from the silicon oxide gas supply port (11) and reacted with the carbon fibers. The graphite crucible (9) is heated to 1300°C to 2300°C using an induction coil (8).
The remaining silicon oxide gas is discharged from the exhaust gas port (13) in the furnace.
表面層を炭化珪素に転化された炭素繊維はスリット(1
4)とスリット(1B)によって区切られた冷却帯域を
通って冷却され、スリット(16)を設けた本封部から
出てくる。The carbon fiber whose surface layer has been converted to silicon carbide has a slit (1
4) and the cooling zone separated by the slit (1B), and exits from the main sealing section provided with the slit (16).
(発明の作用)
本発明では炭素繊維表面層を一酸化珪素ガスが浸透拡散
していき、炭素繊維自体と反応させて炭化珪素に転化さ
せることが特徴になっており、CVD法やPVD法、あ
るいはメツキ、溶射、塗布のように炭素繊維表面の上に
同一物質、又は別物質を沈積被膜化したものとは根本的
に違っている。(Function of the invention) The present invention is characterized in that silicon monoxide gas permeates and diffuses through the carbon fiber surface layer, reacts with the carbon fiber itself, and is converted into silicon carbide. Alternatively, it is fundamentally different from methods such as plating, thermal spraying, and coating, in which the same substance or a different substance is deposited on the surface of the carbon fiber.
つまり、CVD法やPVD法、あるいはメツキ、溶射、
塗布などによって得られた炭素繊維表面は沈積被膜物質
と炭素繊維表面がファン・デル・ワールスカ等による物
理的接着のみで結合しており、複合材料の繊維フィラー
として用いられた場合、高級下での繰り返し使用では沈
積被膜物質が熱膨張差等が原因となって剥離を起こし1
強度劣化をはやめる。In other words, CVD method, PVD method, plating, thermal spraying,
The carbon fiber surface obtained by coating etc. is bonded to the deposited coating material only by physical adhesion by van der Waalska et al., and when used as a fiber filler in composite materials, With repeated use, the deposited coating material may peel off due to differences in thermal expansion, etc.1
Stop strength deterioration.
しかし、本発明の炭素mta表面の炭化珪素層は繊維自
体が一酸化珪素と反応して変化したものであるから境界
は完全な連続の組織となっており、高温下での繰り返し
使用によって珪化層が剥離することはない。However, since the silicon carbide layer on the surface of the carbon mta of the present invention is one that has changed due to the fiber itself reacting with silicon monoxide, the boundary has a completely continuous structure, and the silicified layer is formed by repeated use at high temperatures. will not peel off.
又、本発明の炭素繊維表面の炭化珪素層は炭素1ara
のポロシティ−と同一であるので、CVD法やPVD法
による沈積被膜のようにほとんどボアーを持たないもの
にくらべ体熱衝撃性が高く、マトリックスが炭化珪素層
の微少ボアー中に入り込むことによって、いわゆる投錨
効果がはたらくので、マトリックスと、より強固に結合
される。Further, the silicon carbide layer on the surface of the carbon fiber of the present invention is carbon 1ara
The porosity is the same as that of the silicon carbide layer, so the thermal shock resistance is higher than that of films deposited by CVD or PVD, which have almost no pores, and the matrix penetrates into the minute pores of the silicon carbide layer, resulting in the so-called Since it has an anchoring effect, it is more firmly connected to the matrix.
そのほかにも、複合材料の耐摩耗性の点で通常の炭素繊
維フィラーの場合にくらべ本発明の複合炭素amフィラ
ーでは大巾に向上することが判明した。In addition, it has been found that the composite carbon am filler of the present invention greatly improves the abrasion resistance of the composite material compared to the case of ordinary carbon fiber fillers.
本発明は炭素繊維単体のほか、マット、布、不織布、ヤ
ーンなとでも極めて有効である。The present invention is extremely effective not only for carbon fibers alone but also for mats, cloth, nonwoven fabrics, and yarns.
次に、本発明を実施例によって具体的に説明する。Next, the present invention will be specifically explained using examples.
(実施例)
1凰■ユ
PAN系繊Jl(2デニール、フィラメント数1000
0)を第1図に示す装置を用いて焼I&炭化、及び珪化
処理を行なった。ガス供給口(3)からは所定量の酸素
を含んだ窒素ガスを送り、ガス供給口(15)からは窒
素ガスを送り込んだ。(Example) 1凰■Yu PAN type fiber Jl (2 denier, number of filaments 1000
0) was subjected to sintering, carbonization, and silicification using the apparatus shown in FIG. Nitrogen gas containing a predetermined amount of oxygen was sent from the gas supply port (3), and nitrogen gas was sent from the gas supply port (15).
−酸化珪素ガス発生源(lO)は珪素粉と二酸化珪素粉
の混合体300g (モル比L:l)を黒鉛ルツボ(9
)に入れ、誘導加熱によって1850℃に加熱して、−
酸化珪素を発生させた。炉内の温度は予熱ヒーター(2
)、焼成炭化用ヒーター(5)、珪化用ヒーター(6)
を用いて第2図のように調整した。このようにして得ら
れた複合炭素繊維をアルミ箔と積層して所定の形状に成
形した後、ホ・シトプレス法を用いて炭素mix強化ア
ルミニウム複合体を作製した。作製した試料の炭素繊維
含有体積分率は15V01%、20VO1%、30vo
1%とした。- The silicon oxide gas generation source (lO) is a graphite crucible (9
) and heated to 1850℃ by induction heating to -
Generated silicon oxide. The temperature inside the furnace is controlled by a preheating heater (2
), calcination carbonization heater (5), silicification heater (6)
Adjustments were made as shown in Figure 2 using The composite carbon fiber thus obtained was laminated with aluminum foil and molded into a predetermined shape, and then a carbon mix-reinforced aluminum composite was produced using a sheet press method. The carbon fiber content volume fraction of the prepared sample was 15V01%, 20VO1%, 30vo
It was set at 1%.
得られた複合体の室温に8ける引張強度は複合則から計
算される値の85%〜95%となった。The tensile strength of the resulting composite at room temperature was 85% to 95% of the value calculated from the composite rule.
又、高温引張強度の測定の結果、580℃まではほぼ一
定値を示した。Furthermore, as a result of measuring high temperature tensile strength, it showed a nearly constant value up to 580°C.
塞jlil12
実施例1と同じ方法で得られた複合炭素繊維をバインダ
ーで1111されたSiC粉末といっしょに所定の形状
に成形した。これを2000℃で焼結して炭素繊維含有
体積分率15vo1%、20vo1%、30vo1%の
炭素繊維強化SiC複合体を作製した。Composite carbon fiber obtained in the same manner as in Example 1 was molded into a predetermined shape together with SiC powder treated with a binder. This was sintered at 2000° C. to produce carbon fiber-reinforced SiC composites with carbon fiber content volume fractions of 15 vol %, 20 vol 1%, and 30 vol %.
得られた複合体の高温引張強度の測定の結果。Results of high-temperature tensile strength measurements of the obtained composites.
1800℃まで強度を保つことができた。It was able to maintain its strength up to 1800°C.
よ勉亘1
実施例1において炭素繊維表面層の珪化処理を行なわな
いこと以外は全て同じ処理を行ない試料を作製した。Study 1 A sample was prepared by performing all the same treatments as in Example 1 except that the silicification treatment of the carbon fiber surface layer was not performed.
得られた複合体試料の室温における引張強度は複合則か
ら計算された値の55%〜65%となった。The tensile strength at room temperature of the obtained composite sample was 55% to 65% of the value calculated from the composite rule.
又、高温引張強度の測定の結果、280°Cまでほぼ一
定値を示した。Further, as a result of measuring the high temperature tensile strength, it showed a nearly constant value up to 280°C.
比較例2
実施例2において炭素繊維表面層の珪化処理を行なわな
いこと以外は全て同じ処理を行ない試料を作製した。Comparative Example 2 A sample was prepared by performing all the same treatments as in Example 2 except that the carbon fiber surface layer was not subjected to the silicification treatment.
得られた複合体試料の高温引張強度の測定の結果、13
20℃まで強度を保つことができた。As a result of measuring the high temperature tensile strength of the obtained composite sample, 13
It was able to maintain its strength up to 20°C.
(発明の効果)
以上説明したように1本発明の複合炭素繊維は表面層の
一部又は全部を炭化珪素に転化させているため、炭素繊
維強化複合体を作製した場合、マトリックスの金属又は
セラミックスと、炭素繊維とが反応を起こしたり、炭化
珪素の層が剥離して強度劣化することがなく高温でも安
心して使うことができる。(Effects of the Invention) As explained above, in the composite carbon fiber of the present invention, part or all of the surface layer is converted to silicon carbide, so when a carbon fiber reinforced composite is produced, the matrix metal or ceramic It can be used safely even at high temperatures without causing a reaction between the carbon fiber and the silicon carbide layer, and without deteriorating the strength due to peeling of the silicon carbide layer.
又、炭素繊維の珪化処理も簡単な装置で連続して行なう
ことができ、生産性を大巾に高めコストダウンを図るこ
とができる。In addition, the silicification treatment of carbon fibers can be carried out continuously using a simple device, greatly increasing productivity and reducing costs.
なお1本発明の複合炭素繊維の製造上、珪化処理温度、
処理時間、−酸化珪素ガス濃度等を自由に調整すること
によって、いろいろな珪化率を持った炭素繊維を得るこ
とができ、炭素繊維複合体の摺動特性を簡単に制御てき
る。Note that in the production of the composite carbon fiber of the present invention, the silicification treatment temperature,
By freely adjusting the treatment time, silicon oxide gas concentration, etc., carbon fibers with various silicification rates can be obtained, and the sliding properties of the carbon fiber composite can be easily controlled.
第1図は本発明の複合炭素繊維を製造する装置の断面図
、第2図は第1図に示す複合炭素繊維の製造装置内の温
度分布を示すグラフ、第3図は炭素繊維及び本発明の複
合炭素繊維の断面図、第4図は炭素繊維及びCVD、P
VD、塗布等による表面コーティングされた複合炭素繊
維の断面図である。
符号の説明
l・・・繊維、 2−・・予熱ヒーター、3.15
−・・ガス供給口、
4、12.14.16. 18−−・スリット、5・・
・焼成炭化用ヒーター、
6・・・珪化用ヒーター、 7,13・・・排気ガス
口。
8・・・誘導加熱コイル、 9−・・黒鉛ルツボ。
10−・・−酸化珪素ガス発生源、
11−・・−酸化珪素ガス供給口。
17−・・シール用水浴、 1!l−・・炭素繊維、
2 G−・・珪化層、21−・・被膜物質。FIG. 1 is a cross-sectional view of an apparatus for manufacturing the composite carbon fiber of the present invention, FIG. 2 is a graph showing the temperature distribution inside the composite carbon fiber manufacturing apparatus shown in FIG. 1, and FIG. 3 is a graph showing the carbon fiber and the present invention. Fig. 4 is a cross-sectional view of composite carbon fiber of carbon fiber and CVD, P
FIG. 2 is a cross-sectional view of a composite carbon fiber whose surface has been coated by VD, coating, or the like. Explanation of symbols l...Fiber, 2-...Preheating heater, 3.15
---Gas supply port, 4, 12.14.16. 18--Slit, 5...
- Heater for firing carbonization, 6... Heater for silicification, 7, 13... Exhaust gas port. 8... Induction heating coil, 9-... Graphite crucible. 10-...-Silicon oxide gas generation source, 11-...-Silicon oxide gas supply port. 17-... Seal water bath, 1! l-...carbon fiber,
2 G-...silicified layer, 21-... coating material.
Claims (1)
して成ることを特徴とする複合炭素繊維。 2)、炭素繊維を一酸化珪素ガスを主成分とする雰囲気
中で1300℃〜2300℃の範囲に加熱することを特
徴とする複合炭素繊維の製造方法。[Scope of Claims] 1) A composite carbon fiber characterized in that part or all of the surface layer of the carbon fiber is converted to silicon carbide. 2) A method for producing composite carbon fibers, which comprises heating carbon fibers to a temperature in the range of 1300°C to 2300°C in an atmosphere containing silicon monoxide gas as a main component.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62260488A JPH0699865B2 (en) | 1987-10-15 | 1987-10-15 | Composite carbon fiber and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62260488A JPH0699865B2 (en) | 1987-10-15 | 1987-10-15 | Composite carbon fiber and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01104879A true JPH01104879A (en) | 1989-04-21 |
JPH0699865B2 JPH0699865B2 (en) | 1994-12-07 |
Family
ID=17348661
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62260488A Expired - Lifetime JPH0699865B2 (en) | 1987-10-15 | 1987-10-15 | Composite carbon fiber and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0699865B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01229874A (en) * | 1988-03-02 | 1989-09-13 | Agency Of Ind Science & Technol | Woven and knitted cloth consisting of silicon-carbon conjugated fiber and production thereof |
EP0353052A2 (en) * | 1988-07-29 | 1990-01-31 | Alcan International Limited | Process for producing fibres composed of or coated with carbides or nitrides |
US5292408A (en) * | 1990-06-19 | 1994-03-08 | Osaka Gas Company Limited | Pitch-based high-modulus carbon fibers and method of producing same |
JP2017114746A (en) * | 2015-12-25 | 2017-06-29 | Jfeスチール株式会社 | Magnesia/carbon brick and production method thereof |
CN109957859A (en) * | 2019-03-21 | 2019-07-02 | 武汉工程大学 | A kind of silicon carbide fiber and preparation method thereof |
CN109987955A (en) * | 2019-04-12 | 2019-07-09 | 王小玲 | A kind of C effectively improving interfacial combined functionf/ SiC ceramic matrix composite material and preparation method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103981467B (en) * | 2014-05-22 | 2016-01-20 | 天津大学 | A kind of carbon/silicon carbide composite fibers strengthens the preparation method of alumina-based foam material |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5029528A (en) * | 1973-02-15 | 1975-03-25 |
-
1987
- 1987-10-15 JP JP62260488A patent/JPH0699865B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5029528A (en) * | 1973-02-15 | 1975-03-25 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01229874A (en) * | 1988-03-02 | 1989-09-13 | Agency Of Ind Science & Technol | Woven and knitted cloth consisting of silicon-carbon conjugated fiber and production thereof |
JPH0316422B2 (en) * | 1988-03-02 | 1991-03-05 | Kogyo Gijutsu Incho | |
EP0353052A2 (en) * | 1988-07-29 | 1990-01-31 | Alcan International Limited | Process for producing fibres composed of or coated with carbides or nitrides |
US5116679A (en) * | 1988-07-29 | 1992-05-26 | Alcan International Limited | Process for producing fibres composed of or coated with carbides or nitrides |
US5292408A (en) * | 1990-06-19 | 1994-03-08 | Osaka Gas Company Limited | Pitch-based high-modulus carbon fibers and method of producing same |
JP2017114746A (en) * | 2015-12-25 | 2017-06-29 | Jfeスチール株式会社 | Magnesia/carbon brick and production method thereof |
CN109957859A (en) * | 2019-03-21 | 2019-07-02 | 武汉工程大学 | A kind of silicon carbide fiber and preparation method thereof |
CN109957859B (en) * | 2019-03-21 | 2021-07-13 | 武汉工程大学 | A kind of silicon carbide fiber and preparation method thereof |
CN109987955A (en) * | 2019-04-12 | 2019-07-09 | 王小玲 | A kind of C effectively improving interfacial combined functionf/ SiC ceramic matrix composite material and preparation method |
Also Published As
Publication number | Publication date |
---|---|
JPH0699865B2 (en) | 1994-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5254397A (en) | Carbon fiber-reinforced composite material having a gradient carbide coating | |
CN108264368B (en) | Carbon-ceramic composite material with self-lubricating and anti-oxidation functions and preparation method thereof | |
US5294387A (en) | Method of producing fiber-reinforced and particle-dispersion reinforced mullite composite material | |
Tang et al. | A novel approach for preparing a SiC coating on a C/C-SiC composite by slurry painting and chemical vapor reaction | |
JPH0543364A (en) | Oxidation-resistant corbon fiber-reinforced carbon composite material and its production | |
JPH01104879A (en) | Composite carbon fiber and its production | |
Maury et al. | Chemical vapor co-deposition of C and SiC at moderate temperature for the synthesis of compositionally modulated SixC1-x ceramic layers | |
JP2660346B2 (en) | Ceramic composite materials | |
Kmetz et al. | Silicon carbide/silicon and silicon carbide/silicon carbide composites produced by chemical vapor infiltration | |
Ghanem et al. | Oxidation behavior of silicon carbide based biomorphic ceramics prepared by chemical vapor infiltration and reaction technique | |
JPH04272237A (en) | Composite carbon fiber | |
EP0444426B1 (en) | Process for producing a silicon carbide whisker-reinforced silicon nitride composite material | |
JPH0380172A (en) | Coated carbon fiber reinforced composite material | |
JPH0789776A (en) | Production of boron nitride coated carbon material | |
JPH06305863A (en) | Process for producing silicon carbide coated carbon fiber reinforced carbon composite material | |
JPH06345571A (en) | Production of high-temperature oxidation resistant c/c composite material | |
Coblenz et al. | Formation of ceramic composites and coatings utilizing polymer pyrolysis | |
JPH04300327A (en) | Conjugate carbon fiber | |
JPH06345570A (en) | Productiom of oxidation resistant c/c composite material | |
JPH0291270A (en) | Oxidation-resistant carbon fiber-reinforced carbon material and production thereof | |
JPH0274671A (en) | Oxidation-resistant carbon fiber-reinforced carbonaceous material and production thereof | |
JPH0524212B2 (en) | ||
JPH11199354A (en) | Oxidation resistant C / C composite and method for producing the same | |
Savage | Gas phase impregnation/densification of carbon-carbon and other high-temperature composite materials | |
JPH0274670A (en) | Oxidation-resistant carbon fiber-reinforced material and production thereof |