[go: up one dir, main page]

JPH04272237A - Composite carbon fiber - Google Patents

Composite carbon fiber

Info

Publication number
JPH04272237A
JPH04272237A JP3033059A JP3305991A JPH04272237A JP H04272237 A JPH04272237 A JP H04272237A JP 3033059 A JP3033059 A JP 3033059A JP 3305991 A JP3305991 A JP 3305991A JP H04272237 A JPH04272237 A JP H04272237A
Authority
JP
Japan
Prior art keywords
carbon fiber
composite
silicon carbide
carbon
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3033059A
Other languages
Japanese (ja)
Other versions
JP2995583B2 (en
Inventor
Yasuhiro Obara
小原 庸博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP3033059A priority Critical patent/JP2995583B2/en
Publication of JPH04272237A publication Critical patent/JPH04272237A/en
Application granted granted Critical
Publication of JP2995583B2 publication Critical patent/JP2995583B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

PURPOSE:To provide the title fiber modified in its surface layer, capable of improving the mechanical properties of the composite materials reinforced therewith. CONSTITUTION:The objective carbon fiber with part or the whole of carbon fiber converted into silicon carbide, characterized by the crystal structure of said silicon carbide consisting mainly of 2H or 3C polytype or a mixture of said polytypes.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、複合炭素繊維に関し、
詳しくは宇宙、航空、防衛用の繊維強化複合材料や自動
車部品等の繊維強化複合材料に使用される複合炭素繊維
に関するものである。
[Industrial Application Field] The present invention relates to composite carbon fibers,
Specifically, the invention relates to composite carbon fibers used in fiber-reinforced composite materials for space, aviation, and defense, and fiber-reinforced composite materials for automobile parts.

【0002】0002

【従来の技術】金属やセラミックスの短所である強度、
剛性、耐摩耗性、熱膨張などの特性を炭素繊維により向
上させた材料が炭素繊維強化金属、炭素繊維強化セラミ
ックス、炭素結合炭素繊維複合材料(C/C複合体)で
あり、これらの材料は特に高温下での高強度軽量構造体
として常用されていることは周知である。
[Prior art] Strength, which is a disadvantage of metals and ceramics,
Materials with improved properties such as rigidity, wear resistance, and thermal expansion using carbon fiber are carbon fiber reinforced metals, carbon fiber reinforced ceramics, and carbon bonded carbon fiber composite materials (C/C composites). It is well known that it is commonly used as a high-strength, lightweight structure, especially at high temperatures.

【0003】しかし、炭素繊維強化金属を製造する場合
には、炭素繊維と金属マトリックス、特にアルミニウム
との場合は反応性が高く、高温で容易に反応してAl4
C3等を生成して強度低下することが大きな問題となっ
ている。これは特に黒鉛化率の低い炭素繊維で顕著であ
る。また、炭素繊維強化セラミックスを製造する場合に
は、炭素繊維とセラミックスとの濡れ性が悪く、両者の
界面での接着力を十分に高めることができない。炭素結
合炭素繊維複合材料(C/C複合体)においても、耐摩
耗性、耐酸化性などの点で限界がある。
However, when producing carbon fiber-reinforced metals, carbon fibers and metal matrix, especially aluminum, have high reactivity and easily react at high temperatures to form Al4.
A major problem is that C3 and the like are generated and the strength is reduced. This is particularly noticeable in carbon fibers with a low graphitization rate. Furthermore, when producing carbon fiber reinforced ceramics, the wettability between carbon fibers and ceramics is poor, and it is not possible to sufficiently increase the adhesive force at the interface between the two. Carbon-bonded carbon fiber composite materials (C/C composites) also have limitations in terms of wear resistance, oxidation resistance, and the like.

【0004】このため従来は、炭素繊維表面にCVD処
理やPVD処理、メッキ、溶射をして、SiC、WC、
TiC、W、Mo、Cuなどを沈積被覆してマトリック
ス物質や酸化性ガスとの反応を低くおさえたり、摺動特
性を改善することが試みられてきた。又、最近では特開
昭62−107038号公報に開示されているように炭
素繊維上にMgOやBeOなどの金属酸化物を被覆して
金属との反応を防止し、セラミックスとの濡れ性を改善
する方法が考えられてきた。
[0004] Conventionally, therefore, carbon fiber surfaces were subjected to CVD treatment, PVD treatment, plating, or thermal spraying to form SiC, WC,
Attempts have been made to deposit and coat TiC, W, Mo, Cu, etc. to suppress reactions with matrix substances and oxidizing gases, and to improve sliding properties. In addition, recently, as disclosed in Japanese Patent Application Laid-Open No. 62-107038, metal oxides such as MgO and BeO are coated on carbon fibers to prevent reactions with metals and improve wettability with ceramics. A method has been thought of to do so.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、従来か
ら行われてきた炭素繊維表面への高融点酸化物、非酸化
物、金属などのCVD処理、PVD処理、メッキ処理、
溶射などによる沈積被覆処理、あるいはMgOやBeO
などの金属酸化物の塗布による方法は、図4に示すよう
に炭素繊維19表面と被膜物質21とがファン・デル・
ワールス力等の物理的接着によって結合しているため、
炭素繊維19表面と被膜物質21との界面接着力が十分
でなく、マトリックス金属との複合体にして高温下で負
荷をかけて繰り返し使用した場合、強度劣化が速いとい
う問題があった。特に、炭素繊維を被覆する物質自体が
約1200℃以上の高温になると、急激に強度劣化を起
こし始めるという問題もあった。
[Problems to be Solved by the Invention] However, conventional CVD treatments, PVD treatments, plating treatments with high melting point oxides, non-oxides, metals, etc. on the surface of carbon fibers,
Deposited coating treatment such as thermal spraying, or MgO or BeO
As shown in FIG. 4, the method of applying a metal oxide such as
Because they are bonded by physical adhesion such as Waals force,
There was a problem in that the interfacial adhesion between the surface of the carbon fiber 19 and the coating substance 21 was insufficient, and when the carbon fiber 19 was made into a composite with a matrix metal and used repeatedly under load at high temperatures, the strength deteriorated quickly. In particular, there is a problem in that when the material covering the carbon fibers itself reaches a high temperature of approximately 1200° C. or higher, its strength begins to deteriorate rapidly.

【0006】[0006]

【課題を解決するための手段】本発明は、上記のような
問題点に対しなされたものであり、炭素繊維と金属、セ
ラミックス等との濡れ性を改善し、かつ高温下でも製造
された複合材料が強度劣化を起こさないような炭素繊維
強化材料の原料となる炭素繊維を見い出すことを目的と
する。すなわち、本発明は炭素繊維の一部又は全部を炭
化珪素に転化して成る複合炭素繊維であって、上記炭化
珪素の結晶構造が2Hあるいは3Cのポリタイプ、又は
2Hと3Cのポリタイプの混合物を主成分として成るこ
とを特徴とする複合炭素繊維を要旨とするものである。
[Means for Solving the Problems] The present invention has been made to address the above-mentioned problems, and provides a composite material that improves the wettability of carbon fibers with metals, ceramics, etc., and that can be produced even at high temperatures. The aim is to find carbon fibers that can be used as raw materials for carbon fiber-reinforced materials that do not cause strength deterioration. That is, the present invention provides a composite carbon fiber obtained by converting a part or all of carbon fiber into silicon carbide, the silicon carbide crystal structure being a polytype of 2H or 3C, or a mixture of polytypes of 2H and 3C. The gist of the invention is a composite carbon fiber characterized by having as a main component.

【0007】さて、炭素繊維表面層を炭化珪素に転化す
る方法としては、珪素蒸気又は各種珪素化合物と反応さ
せるか、パックセメンテーションを応用した方法がある
が、最も好ましい方法として一酸化珪素ガスと炭素繊維
を次式のように反応させる方法があげられる。 SiO(g)+2C=SiC+CO(g)この方法を用
いることによって、図3に示すように炭素繊維19の形
状、寸法を保持したままラムズデール記法による2H、
3C、4H、15R、6Hなどの結晶構造(ポリタイプ
)を持った珪化層20を形成することができる。
Now, methods for converting the carbon fiber surface layer into silicon carbide include reacting with silicon vapor or various silicon compounds, or applying pack cementation, but the most preferable method is to react with silicon monoxide gas and silicon carbide. A method of reacting carbon fibers as shown in the following equation is mentioned. SiO (g) + 2C = SiC + CO (g) By using this method, 2H according to Ramsdale notation can be obtained while maintaining the shape and dimensions of the carbon fiber 19 as shown in Fig. 3.
A silicide layer 20 having a crystal structure (polytype) such as 3C, 4H, 15R, or 6H can be formed.

【0008】この反応は1200℃〜2000℃の温度
範囲で加熱することにより進行する。ここで、一酸化珪
素ガスを発生させるには、珪素粉と二酸化珪素粉の混合
体、又は炭化珪素粉と二酸化珪素粉の混合体、あるいは
炭素粉と二酸化珪素粉の混合体、その他、各種珪素化合
物を1200℃〜2000℃に加熱することにより行な
うことができる。
[0008] This reaction proceeds by heating in a temperature range of 1200°C to 2000°C. Here, in order to generate silicon monoxide gas, a mixture of silicon powder and silicon dioxide powder, a mixture of silicon carbide powder and silicon dioxide powder, a mixture of carbon powder and silicon dioxide powder, and other various silicon This can be carried out by heating the compound to 1200°C to 2000°C.

【0009】炭素繊維と一酸化珪素とを反応させて炭素
繊維表面を炭化珪素に転化させるとき、処理温度を12
00℃〜1650℃の範囲で選択することによって、炭
素繊維表面の珪化層の中に未反応炭素を残留させ、結晶
構造が2Hのポリタイプを主成分とする炭化珪素を生成
させることができ、炭化珪素分の重量割合である珪化率
をいろいろ変えたものをつくることができる。又、処理
温度のほかに処理時間を調節することによっても炭素繊
維表面の珪化層の厚さをコントロールすることができる
。その他にも、一酸化珪素の濃度を調節することによっ
て珪化率、珪化層の厚さをコントロールすることができ
る。
[0009] When carbon fibers and silicon monoxide are reacted to convert the carbon fiber surface into silicon carbide, the treatment temperature is set to 12
By selecting the temperature within the range of 00°C to 1650°C, it is possible to leave unreacted carbon in the silicified layer on the surface of the carbon fiber, and to generate silicon carbide whose main component is a polytype with a crystal structure of 2H. It is possible to make products with various silicification ratios, which are the weight proportions of silicon carbide. Further, the thickness of the silicified layer on the carbon fiber surface can be controlled by adjusting the treatment time as well as the treatment temperature. In addition, the silicification rate and the thickness of the silicide layer can be controlled by adjusting the concentration of silicon monoxide.

【0010】同様に、炭素繊維と一酸化珪素との反応温
度を1650℃〜2000℃の範囲で選択することによ
って、炭素繊維表面の珪化層の中に未反応炭素を残留さ
せ、結晶構造が2Hと3Cのポリタイプの混合物、ある
いは3Cのポリタイプを主成分とする炭化珪素を生成す
ることができる。
Similarly, by selecting the reaction temperature between carbon fiber and silicon monoxide in the range of 1650°C to 2000°C, unreacted carbon remains in the silicified layer on the surface of the carbon fiber, and the crystal structure changes to 2H. It is possible to produce a mixture of the 3C and 3C polytypes, or a silicon carbide mainly composed of the 3C polytype.

【0011】炭素繊維表面層を炭化珪素に転化した複合
炭素繊維全体の中の未反応炭素を少なくとも10重量%
以上は残留させておくことが望ましい。このことによっ
て炭素と炭化珪素の海島構造による炭素繊維のフレキシ
ビリティーを確保することができる。
[0011] At least 10% by weight of unreacted carbon in the entire composite carbon fiber whose carbon fiber surface layer is converted to silicon carbide.
It is desirable to leave the above remaining. This makes it possible to ensure the flexibility of the carbon fiber due to the sea-island structure of carbon and silicon carbide.

【0012】次に炭素繊維を連続的に焼成して製造する
方法について図面を用いて説明する。図1は本発明の複
合炭素繊維を製造する装置の概略図である。図1におい
て、1は炭化前繊維又は炭素繊維であり、予熱ヒーター
2を用いて150℃〜300℃で処理する。炉内の雰囲
気ガスはガス供給口3より導入し、排気ガスは炉内の排
気ガス口7及び13より取り出す。
Next, a method for manufacturing carbon fiber by continuously firing it will be explained with reference to the drawings. FIG. 1 is a schematic diagram of an apparatus for manufacturing the composite carbon fiber of the present invention. In FIG. 1, 1 is a pre-carbonized fiber or carbon fiber, which is treated at 150°C to 300°C using a preheating heater 2. Atmospheric gas inside the furnace is introduced through the gas supply port 3, and exhaust gas is taken out through the exhaust gas ports 7 and 13 inside the furnace.

【0013】又、炉内のシール用水浴17を配した水封
部からはシール用ガスを供給口15より流し、炉内の排
気ガス口7及び13より取り出す。
[0013] Also, sealing gas is supplied from a water seal section in the furnace in which a sealing water bath 17 is arranged through a supply port 15 and taken out through exhaust gas ports 7 and 13 in the furnace.

【0014】予熱処理を受けた繊維は焼成炭化用ヒータ
ー5によって1000℃〜3000℃で加熱され炭化さ
れる。以上の処理を受けた炭素繊維はスリット12とス
リット14によって区切られた珪化帯域へ移り、表面層
を炭化珪素に転化される。ここで、珪化用ヒーター6を
用いて珪化帯域を1200℃〜2000℃になるように
する。又、一酸化珪素ガスは黒鉛ルツボ9内の一酸化珪
素ガス発生源10を1200℃〜2000℃に加熱する
ことによって発生させることができ、それを一酸化珪素
ガス供給口11より導入して炭素繊維と反応させる。1
200℃〜2000℃に加熱するには誘導加熱コイル8
を用いて黒鉛ルツボ9を加熱すればよい。残留一酸化珪
素ガスは炉内の排気ガス口13より排出する。
The preheated fibers are heated and carbonized at 1000° C. to 3000° C. by a firing/carbonizing heater 5. The carbon fibers subjected to the above treatment are transferred to a silicification zone separated by slits 12 and 14, and the surface layer is converted into silicon carbide. Here, the temperature of the silicification zone is set at 1200 DEG C. to 2000 DEG C. using the silicification heater 6. Further, silicon monoxide gas can be generated by heating the silicon monoxide gas generation source 10 in the graphite crucible 9 to 1200°C to 2000°C, and it is introduced from the silicon monoxide gas supply port 11 to generate carbon. React with fibers. 1
Induction heating coil 8 to heat between 200℃ and 2000℃
The graphite crucible 9 may be heated using. The residual silicon monoxide gas is exhausted from the exhaust gas port 13 inside the furnace.

【0015】表面層を炭化珪素に転化された炭素繊維は
スリット14とスリット18によって区切られた冷却帯
域を通って冷却され、スリット16を設けた水封部から
出てくる。
The carbon fibers whose surface layer has been converted to silicon carbide are cooled through a cooling zone defined by slits 14 and 18, and then emerge from a water seal section provided with slits 16.

【0016】ここで用いられる炭素繊維については特に
制限はないが、炭化珪素への転化反応のしやすさの点か
らはピッチ系炭素繊維が適している。
[0016] Although there are no particular restrictions on the carbon fibers used here, pitch-based carbon fibers are suitable from the viewpoint of ease of conversion reaction into silicon carbide.

【0017】[0017]

【発明の作用】本発明では炭素繊維表面層を一酸化珪素
ガスが浸透拡散していき、炭素繊維自体と反応させて炭
化珪素に転化させることが特徴になっており、CVD法
やPVD法、あるいはメッキ、溶射、塗布のように炭素
繊維表面の上に同一物質、又は別物質を沈積被膜化した
ものとは根本的に違っている。
[Operation of the invention] The present invention is characterized in that silicon monoxide gas permeates and diffuses through the carbon fiber surface layer, reacts with the carbon fiber itself, and is converted into silicon carbide. Alternatively, it is fundamentally different from methods such as plating, thermal spraying, and coating, in which the same substance or a different substance is deposited on the surface of the carbon fiber.

【0018】つまり、CVD法やPVD法、あるいはメ
ッキ、溶射、塗布などによって得られた炭素繊維表面は
沈積被膜物質と炭素繊維表面がファン・デル・ワールス
力等による物理的接着のみで結合しており、複合材料の
繊維フィラーとして用いられた場合、高温下での繰り返
し使用では沈積被膜物質が熱膨張差等が原因となって剥
離を起こし、強度劣化をはやめる。
[0018] In other words, the carbon fiber surface obtained by the CVD method, PVD method, plating, thermal spraying, coating, etc. is bonded to the deposited coating material and the carbon fiber surface only by physical adhesion due to van der Waals force or the like. When used as a fiber filler in composite materials, repeated use at high temperatures causes the deposited coating material to peel off due to differences in thermal expansion, resulting in a loss of strength.

【0019】しかし、本発明の炭素繊維表面の炭化珪素
層は繊維自体が一酸化珪素と反応して変化したものであ
るから境界は完全な連続の組織となっており、高温下で
の繰り返し使用によって珪化層が剥離することはない。
However, since the silicon carbide layer on the surface of the carbon fiber of the present invention has been changed by reacting with silicon monoxide, the boundary has a completely continuous structure, and it cannot be used repeatedly at high temperatures. The silicified layer will not peel off.

【0020】又、本発明の炭素繊維表面の炭化珪素層は
炭素繊維のポロシティーと同一であるので、CVD法や
PVD法による沈積被膜のようにほとんどポアーを持た
ないものにくらべ耐熱衝撃性が高く、マトリックスが炭
化珪素層の微少ポアー中に入り込むことによって、いわ
ゆる投錨効果がはたらくので、マトリックスと、より強
固に結合される。
Furthermore, since the silicon carbide layer on the surface of the carbon fiber of the present invention has the same porosity as the carbon fiber, it has higher thermal shock resistance than a film deposited by CVD or PVD, which has almost no pores. When the matrix penetrates into the minute pores of the silicon carbide layer, a so-called anchoring effect works, so that it is more firmly bonded to the matrix.

【0021】一方、結晶構造がはたす作用としては、本
発明の炭素繊維表面の炭化珪素の結晶構造を2Hのポリ
タイプを主成分とすることによって、この複合炭素繊維
の柔軟性が増すことが判明した。理由は明らかではない
が、2Hの炭化珪素結晶成分のイオン的凝集エネルギー
の寄与が大きいためと推定できる。
On the other hand, as for the effect of the crystal structure, it has been found that by making the crystal structure of silicon carbide on the surface of the carbon fiber of the present invention mainly composed of 2H polytype, the flexibility of this composite carbon fiber is increased. did. Although the reason is not clear, it can be assumed that this is due to the large contribution of the ionic cohesive energy of the 2H silicon carbide crystal component.

【0022】又、炭素繊維表面の炭化珪素の結晶構造を
3Cのポリタイプを主成分とすることによって3Cの炭
化珪素結晶成分固有の1200℃以上での強度増加の特
徴を発揮させ、複合材料の高温強度を高めることが可能
となる。
In addition, by making the crystal structure of silicon carbide on the surface of carbon fibers mainly composed of 3C polytype, the characteristic of increasing strength at temperatures above 1200°C, which is unique to the 3C silicon carbide crystal component, is exhibited, and the composite material is It becomes possible to increase high temperature strength.

【0023】同様にして、炭素繊維表面の炭化珪素の結
晶構造を2Hと3Cのポリタイプの混合物を主成分とす
ることによって、それぞれ柔軟性と高温高強度特性をあ
わせ持つ複合炭素繊維を得ることができる。
Similarly, by making the crystalline structure of silicon carbide on the carbon fiber surface mainly composed of a mixture of 2H and 3C polytypes, composite carbon fibers having both flexibility and high-temperature high strength properties can be obtained. Can be done.

【0024】そのほかにも、複合材料の耐摩耗性の点で
通常の炭素繊維フィラーの場合にくらべ本発明の複合炭
素繊維フィラーでは3Cのポリタイプの結晶構造を持つ
炭化珪素成分の作用で大巾に向上することが判明した。
In addition, in terms of the wear resistance of the composite material, compared to the case of ordinary carbon fiber fillers, the composite carbon fiber filler of the present invention has a much greater wear resistance due to the effect of the silicon carbide component having a 3C polytype crystal structure. was found to improve.

【0025】本発明は炭素繊維単体のほか、組み立てが
一次元やそれ以上の次元構造をとった各種のマットや布
、あるいは各種の不織布やヤーンなどの形態をとったも
のも含み、炭素繊維単体と同様極めて有効である。次に
、本発明を実施例によって具体的に説明する。
[0025] The present invention includes not only carbon fibers alone, but also those assembled in the form of various mats and cloths with one-dimensional or more dimensional structures, and various non-woven fabrics and yarns. It is also extremely effective. Next, the present invention will be specifically explained using examples.

【0026】[0026]

【実施例】実施例1 ピッチ系繊維(2デニール、フィラメント数10000
)を図1に示す装置を用いて焼成炭化、及び珪化処理を
行なった。ガス供給口3からは所定量の酸素を含んだ窒
素ガスを送り、ガス供給口15からは窒素ガスを送り込
んだ。
[Example] Example 1 Pitch fiber (2 denier, number of filaments 10,000
) was subjected to firing carbonization and silicification using the apparatus shown in FIG. Nitrogen gas containing a predetermined amount of oxygen was sent from the gas supply port 3, and nitrogen gas was sent from the gas supply port 15.

【0027】一酸化珪素ガス発生源10は珪素粉と二酸
化珪素粉の混合体300g(モル比1:1)を黒鉛ルツ
ボ9に入れ、誘導加熱によって1600℃に加熱して、
一酸化珪素を発生させた。炉内の温度は予熱ヒーター2
、焼成炭化用ヒーター5、珪化用ヒーター6を用いて図
2のように調整した。このようにして得られた表層が2
Hのポリタイプを主成分とした炭化珪素より成る複合炭
素繊維は柔軟性に富んだものであった。この複合炭素繊
維をアルミ箔と積層して所定の形状に成形した後、ホッ
トプレス法を用いて炭素繊維強化アルミニウム複合体を
作製した。作製した試料の炭素繊維含有体積分率は15
vol%、20vol%、30vol%とした。
The silicon monoxide gas generation source 10 is made by putting 300 g of a mixture of silicon powder and silicon dioxide powder (molar ratio 1:1) into a graphite crucible 9 and heating it to 1600° C. by induction heating.
Generated silicon monoxide. The temperature inside the furnace is determined by preheating heater 2.
, a calcination carbonization heater 5, and a silicification heater 6 as shown in FIG. The surface layer obtained in this way is 2
The composite carbon fiber made of silicon carbide mainly composed of polytype H was highly flexible. This composite carbon fiber was laminated with aluminum foil and molded into a predetermined shape, and then a carbon fiber reinforced aluminum composite was produced using a hot press method. The carbon fiber content volume fraction of the prepared sample was 15
vol%, 20vol%, and 30vol%.

【0028】得られた複合体の室温における引張強度は
複合則から計算される値の90%〜95%となった。 又、高温引張強度の測定の結果、580℃まではほぼ一
定値を示した。
The tensile strength of the obtained composite at room temperature was 90% to 95% of the value calculated from the composite rule. Furthermore, as a result of measuring high temperature tensile strength, it showed a nearly constant value up to 580°C.

【0029】実施例2 転化反応温度を1750℃とした他は実施例1と同じ方
法で得られた表層が2Hと3Cのポリタイプの混合物を
主成分とした炭化珪素より成る複合炭素繊維をバインダ
ーで調整されたSiC粉末といっしょに所定の形状に成
形した。これを1900℃で焼結して炭素繊維含有体積
分率15vol%、20vol%、30vol%の炭素
繊維強化SiC複合体を作製した。得られた複合体の高
温引張強度の測定の結果、1800℃まで強度を保つこ
とができた。
Example 2 A composite carbon fiber whose surface layer was made of silicon carbide whose main component was a mixture of 2H and 3C polytypes was obtained in the same manner as in Example 1 except that the conversion reaction temperature was 1750°C. It was molded into a predetermined shape together with the SiC powder prepared in . This was sintered at 1900° C. to produce carbon fiber-reinforced SiC composites with carbon fiber content volume fractions of 15 vol%, 20 vol%, and 30 vol%. As a result of measuring the high temperature tensile strength of the obtained composite, it was possible to maintain the strength up to 1800°C.

【0030】実施例3 転化反応温度を1900℃とした他は実施例1と同じ方
法で得られた表層が3Cのポリタイプを主成分とした炭
化珪素より成る複合炭素繊維をバインダーで調整された
SiC粉末といっしょに所定の形状に成形した。これを
1900℃で焼結して炭素繊維含有体積分率15vol
%、20vol%、30vol%の炭素繊維強化SiC
複合体を作製した。得られた複合体の高温引張強度の測
定の結果、1850℃まで強度を保つことができた。
Example 3 A composite carbon fiber whose surface layer was made of silicon carbide mainly composed of 3C polytype was prepared by the same method as in Example 1 except that the conversion reaction temperature was 1900° C. and was prepared with a binder. It was molded into a predetermined shape together with SiC powder. This was sintered at 1900°C and the carbon fiber content volume fraction was 15vol.
%, 20vol%, 30vol% carbon fiber reinforced SiC
A composite was created. As a result of measuring the high temperature tensile strength of the obtained composite, it was possible to maintain the strength up to 1850°C.

【0031】比較例1 実施例1において炭素繊維表面層の珪化処理を行なわな
いこと以外は全て同じ処理を行ない試料を作製した。得
られた複合体試料の室温における引張強度は複合則から
計算された値の55%〜65%となった。又、高温引張
強度の測定の結果、280℃までほぼ一定値を示した。
Comparative Example 1 A sample was prepared by carrying out all the same treatments as in Example 1 except that the silicification treatment of the carbon fiber surface layer was not performed. The tensile strength at room temperature of the obtained composite sample was 55% to 65% of the value calculated from the composite rule. Further, as a result of measuring high temperature tensile strength, it showed a nearly constant value up to 280°C.

【0032】比較例2 実施例2において炭素繊維表面層の珪化処理を行なわな
いこと以外は全て同じ処理を行ない試料を作製した。得
られた複合体試料の高温引張強度の測定の結果、125
0℃まで強度を保つことができた。
Comparative Example 2 A sample was prepared by carrying out all the same treatments as in Example 2 except that the silicification treatment of the carbon fiber surface layer was not performed. As a result of measuring the high temperature tensile strength of the obtained composite sample, 125
It was able to maintain its strength down to 0°C.

【0033】[0033]

【発明の効果】以上説明したように、本発明の複合炭素
繊維はその一部又は全部を結晶構造が2Hあるいは3C
のポリタイプ、又は2Hと3Cのポリタイプの混合物を
主成分として成る炭化珪素に転化させているため、炭素
繊維強化複合体を作製した場合、マトリックスの金属又
はセラミックスと、炭素繊維とが反応を起こしたり、浸
炭したりして強度劣化することがなく安心して使うこと
ができる。
Effects of the Invention As explained above, the composite carbon fiber of the present invention has a part or all crystal structure of 2H or 3C.
Since silicon carbide is mainly composed of polytypes of 2H and 3C, or a mixture of 2H and 3C polytypes, when a carbon fiber reinforced composite is produced, there is no reaction between the matrix metal or ceramics and the carbon fibers. It can be used with confidence because it does not deteriorate in strength due to being raised or carburized.

【0034】又、2Hのポリタイプの特徴である柔軟性
と3Cのポリタイプの特徴である1200℃以上におけ
る機械的強度の増加作用等を利用して高温域まで強度劣
化の起こらない炭素繊維強化複合体を得ることができる
In addition, by utilizing the flexibility characteristic of the 2H polytype and the increasing mechanical strength at temperatures above 1200°C, which is the characteristic of the 3C polytype, carbon fiber reinforcement is achieved that does not cause strength deterioration even in high temperature ranges. A complex can be obtained.

【0035】なお、本発明の複合炭素繊維の製造上、珪
化処理温度、処理時間、一酸化珪素ガス濃度等を自由に
調整することによって、いろいろな珪化率を持った炭素
繊維を得ることができ、炭素繊維複合体より成るメカニ
カルシール等の摺動特性も簡単に制御することができる
In the production of the composite carbon fiber of the present invention, carbon fibers with various silicification rates can be obtained by freely adjusting the silicification treatment temperature, treatment time, silicon monoxide gas concentration, etc. The sliding characteristics of mechanical seals made of carbon fiber composites can also be easily controlled.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の複合炭素繊維を製造する装置の断面図
である。
FIG. 1 is a sectional view of an apparatus for producing composite carbon fibers of the present invention.

【図2】図1に示す複合炭素繊維の製造装置内の温度分
布の一例を示すグラフである。
FIG. 2 is a graph showing an example of temperature distribution within the composite carbon fiber manufacturing apparatus shown in FIG. 1;

【図3】炭素繊維及び本発明の複合炭素繊維の断面図で
ある。
FIG. 3 is a cross-sectional view of a carbon fiber and a composite carbon fiber of the present invention.

【図4】炭素繊維及びCVD、PVD、塗布等による表
面コーティングされた複合炭素繊維の断面図である。
FIG. 4 is a cross-sectional view of a carbon fiber and a composite carbon fiber whose surface has been coated by CVD, PVD, coating, or the like.

【符号の説明】[Explanation of symbols]

1  繊維 2  予熱ヒーター 3、15  ガス供給口 4、12、14、16、18  スリット5  焼成炭
化用ヒーター 6  珪化用ヒーター 7、13  排気ガス口 8  誘導加熱コイル 9  黒鉛ルツボ 10  一酸化珪素ガス発生源 11  一酸化珪素ガス供給口 17  シール用水浴 19  炭素繊維 20  珪化層 21  被膜物質
1 Fiber 2 Preheating heater 3, 15 Gas supply port 4, 12, 14, 16, 18 Slit 5 Burning carbonization heater 6 Silicization heater 7, 13 Exhaust gas port 8 Induction heating coil 9 Graphite crucible 10 Silicon monoxide gas source 11 Silicon monoxide gas supply port 17 Sealing water bath 19 Carbon fiber 20 Silicized layer 21 Coating material

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  炭素繊維の一部又は全部を炭化珪素に
転化した複合炭素繊維であって、上記炭化珪素の結晶構
造が2Hあるいは3Cのポリタイプ、又は、2Hと3C
のポリタイプの混合物を主成分として成ることを特徴と
する複合炭素繊維。
1. A composite carbon fiber in which a part or all of carbon fiber is converted into silicon carbide, wherein the crystal structure of the silicon carbide is a polytype of 2H or 3C, or 2H and 3C.
Composite carbon fiber characterized by being mainly composed of a mixture of polytypes.
JP3033059A 1991-02-27 1991-02-27 Composite carbon fiber used for carbon bonded carbon fiber composite material Expired - Fee Related JP2995583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3033059A JP2995583B2 (en) 1991-02-27 1991-02-27 Composite carbon fiber used for carbon bonded carbon fiber composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3033059A JP2995583B2 (en) 1991-02-27 1991-02-27 Composite carbon fiber used for carbon bonded carbon fiber composite material

Publications (2)

Publication Number Publication Date
JPH04272237A true JPH04272237A (en) 1992-09-29
JP2995583B2 JP2995583B2 (en) 1999-12-27

Family

ID=12376178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3033059A Expired - Fee Related JP2995583B2 (en) 1991-02-27 1991-02-27 Composite carbon fiber used for carbon bonded carbon fiber composite material

Country Status (1)

Country Link
JP (1) JP2995583B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027756A1 (en) * 2009-09-04 2011-03-10 東洋炭素株式会社 Process for production of silicon-carbide-coated carbon base material, silicon-carbide-coated carbon base material, sintered (silicon carbide)-carbon complex, ceramic-coated sintered (silicon carbide)-carbon complex, and process for production of sintered (silicon carbide)-carbon complex
JP2015166288A (en) * 2014-03-03 2015-09-24 太平洋セメント株式会社 Method for producing silicon carbide

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011027756A1 (en) * 2009-09-04 2011-03-10 東洋炭素株式会社 Process for production of silicon-carbide-coated carbon base material, silicon-carbide-coated carbon base material, sintered (silicon carbide)-carbon complex, ceramic-coated sintered (silicon carbide)-carbon complex, and process for production of sintered (silicon carbide)-carbon complex
US9085493B2 (en) 2009-09-04 2015-07-21 Toyo Tanso Co., Ltd. Process for production of silicon-carbide-coated carbon base material, silicon-carbide-coated carbon base material, sintered (silicon carbide)-carbon complex, ceramic-coated sintered (silicon carbide)-carbon complex, and process for production of sintered (silicon carbide)-carbon complex
JP2015166288A (en) * 2014-03-03 2015-09-24 太平洋セメント株式会社 Method for producing silicon carbide

Also Published As

Publication number Publication date
JP2995583B2 (en) 1999-12-27

Similar Documents

Publication Publication Date Title
US5254397A (en) Carbon fiber-reinforced composite material having a gradient carbide coating
CN108264368B (en) Carbon-ceramic composite material with self-lubricating and anti-oxidation functions and preparation method thereof
JP2000327441A (en) Composite carbonaceous thermal insulant and its production
Wang et al. Oxidation and ablation resistant properties of pack-siliconized Si-C protective coating for carbon/carbon composites
Brennan Interfacial studies of chemical-vapor-infiltrated ceramic matrix composites
Yuan et al. Microstructure and thermal stability of low-oxygen SiC fibers prepared by an economical chemical vapor curing method
JP4539014B2 (en) Oxidation resistant C / C composite and method for producing the same
JPH0699865B2 (en) Composite carbon fiber and manufacturing method thereof
JPH04272237A (en) Composite carbon fiber
JP3081765B2 (en) Carbon member and method of manufacturing the same
US6069101A (en) Boron carbide/silicon carbide ceramics
US5362567A (en) Carbon-carbon composite and method of preparation
CN107058915B (en) A kind of infiltration powder containing chromium and its application in copper chrome-silicon modified carbon/ceramic friction material
JPH04300327A (en) Conjugate carbon fiber
Kmetz et al. Silicon carbide/silicon and silicon carbide/silicon carbide composites produced by chemical vapor infiltration
Mohammad et al. Development and characterization of Silicon Carbide Coating on Graphite Substrate
JP3853058B2 (en) Oxidation resistant C / C composite and method for producing the same
JPH06305863A (en) Process for producing silicon carbide coated carbon fiber reinforced carbon composite material
JPH08253876A (en) High adhesion oxidation resistant coating film for c/c composite material and its formation
Savage Gas phase impregnation/densification of carbon-carbon and other high-temperature composite materials
JPH0291270A (en) Oxidation-resistant carbon fiber-reinforced carbon material and production thereof
JPH09201896A (en) Heat resistant and oxidation resistant carbon material
JPH05170577A (en) Oxidation resistant coating method of carbon fiber reinforced carbon composite material using coating method
Liu et al. Research on manufacturing process of carbon-carbon composites as ablation resistance materials
WO1990004574A1 (en) Composite boron nitride material and process for its production

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071029

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees