[go: up one dir, main page]

JPH01229874A - Woven and knitted cloth consisting of silicon-carbon conjugated fiber and production thereof - Google Patents

Woven and knitted cloth consisting of silicon-carbon conjugated fiber and production thereof

Info

Publication number
JPH01229874A
JPH01229874A JP63050234A JP5023488A JPH01229874A JP H01229874 A JPH01229874 A JP H01229874A JP 63050234 A JP63050234 A JP 63050234A JP 5023488 A JP5023488 A JP 5023488A JP H01229874 A JPH01229874 A JP H01229874A
Authority
JP
Japan
Prior art keywords
silicon
woven
carbon
carbon fiber
knitted cloth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63050234A
Other languages
Japanese (ja)
Other versions
JPH0316422B2 (en
Inventor
Shigeru Ikeda
茂 池田
Hiroshi Shioyama
洋 塩山
Shoji Hori
昭二 堀
Masakazu Adachi
足立 正和
Rokuro Fujii
藤井 禄郎
Takeshi Tanamura
武司 田那村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIKISHIMA KANBASU KK
Shikishima Canvas KK
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
SHIKISHIMA KANBASU KK
Agency of Industrial Science and Technology
Shikishima Canvas KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIKISHIMA KANBASU KK, Agency of Industrial Science and Technology, Shikishima Canvas KK filed Critical SHIKISHIMA KANBASU KK
Priority to JP63050234A priority Critical patent/JPH01229874A/en
Publication of JPH01229874A publication Critical patent/JPH01229874A/en
Publication of JPH0316422B2 publication Critical patent/JPH0316422B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • C04B30/02Compositions for artificial stone, not containing binders containing fibrous materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Knitting Of Fabric (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Woven Fabrics (AREA)

Abstract

PURPOSE:To improve physical properties such as antioxidation and mechanical strength of woven cloth by forming a silicon and/or silicon carbide coating film layer on the surface of yarn of woven and knitted cloth consisting of carbon fiber. CONSTITUTION:Woven and knitted cloth consisting of carbon fiber is maintained in vapor of silicon and/or silicon carbide, then heat-treated at 1,300-2,600 deg.C and the carbon fiber yarn is silicified to give the aimed woven and knitted cloth. For example, first Si is piled on the surface of the carbon fiber yarn and reacted with the carbon fiber yarn by the successive heat treatment to form an interfacial layer consisting of SiC between Si and C (type I). Coating films of types II, III and IV are formed by heating condition, heat-treating condition and retention time thereof. Physical properties of the woven and knitted cloth consisting of the silicon-carbon conjugated fiber thus obtained are improved and the woven and knitted cloth is useful as a reinforcing base material of composite material obtained by combining the woven and knitted cloth with ceramic (glass, etc.), metal (aluminum, etc.), etc.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、新規な構成を有するケイ素一炭素複合繊維か
らなる織物乃至編物およびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a woven or knitted fabric made of a silicon-carbon composite fiber having a novel structure and a method for producing the same.

従来技術とその問題点 炭素繊維からなる織物乃至編物(以下特に必要でない限
り単に織物という)をケイ素または炭化ケイ素で被覆す
ることにより、その物性改善を図ることは、従来から試
みられている。例えば、CVD,PVD、溶射法などに
より、炭素繊維織物にケイ素または炭化ケイ素の被覆層
を形成することが可能であるが、この場合には、織物の
外面に被覆層が形成されるだけで、内部に存在する糸の
表面には、被覆層は全く形成されない。従って、これら
の方法では、炭素繊維織物の物性を実質的に改善するこ
とは、出来ない。
Prior art and its problems It has been attempted in the past to improve the physical properties of woven or knitted fabrics (hereinafter simply referred to as woven fabrics unless otherwise required) made of carbon fibers by coating them with silicon or silicon carbide. For example, it is possible to form a coating layer of silicon or silicon carbide on a carbon fiber fabric by CVD, PVD, thermal spraying, etc., but in this case, the coating layer is only formed on the outer surface of the fabric. No coating layer is formed on the surface of the yarn existing inside. Therefore, these methods cannot substantially improve the physical properties of carbon fiber fabrics.

問題点を解決するための手段 本発明者は、炭素繊維織物の内部にまでケイ素または炭
化ケイ素の被覆層を形成させるべく鋭意研究を重ねた結
果、炭素繊維織物にケイ素または炭化ケイ素の蒸気を接
触させる場合には、炭素繊維織物の内部に存在する糸の
表面にまでケイ素または炭化ケイ素の被覆層が形成され
ること、その結果得られるケイ素−炭素複合繊維織物の
物性が著しく改善されることを見出した。
Means for Solving the Problems As a result of intensive research to form a coating layer of silicon or silicon carbide even inside the carbon fiber fabric, the inventor of the present invention discovered that the carbon fiber fabric was brought into contact with the vapor of silicon or silicon carbide. In this case, a coating layer of silicon or silicon carbide is formed even on the surface of the threads existing inside the carbon fiber fabric, and as a result, the physical properties of the resulting silicon-carbon composite fiber fabric are significantly improved. I found it.

すなわち、本発明は、下記のケイ素−炭素複合繊維織物
およびその製造方法を提供するものである: ■炭素繊維からなる織物乃至編物の繊維表面にケイ素お
よび/または炭化ケイ素被覆層を有することを特徴とす
るケイ素−炭素複合繊維織物乃至編物。
That is, the present invention provides the following silicon-carbon composite fiber fabric and method for producing the same: (1) A woven or knitted fabric made of carbon fibers is characterized by having a silicon and/or silicon carbide coating layer on the fiber surface. Silicon-carbon composite fiber woven or knitted fabric.

■炭素繊維からなる織物乃至編物をケイ素および/また
は炭化ケイ素の蒸気に接触させることを特徴とする上記
第1項に記載のケイ素−炭素複合繊維織物乃至編物の製
造方法。
(2) The method for producing a silicon-carbon composite fiber woven or knitted fabric as described in item 1 above, which comprises bringing the woven or knitted fabric made of carbon fiber into contact with silicon and/or silicon carbide vapor.

■炭素繊維からなる織物乃至編物の繊維の少なくとも一
部がケイ素化合物に変換されていることを特徴とするケ
イ素−炭素複合繊維織物乃至編物。
(2) A silicon-carbon composite fiber woven or knitted fabric characterized in that at least a portion of the fibers of the woven or knitted fabric made of carbon fibers are converted into a silicon compound.

■炭素i哉維かうなる織物乃至編物をケイ素および/ま
たは炭化ケイ素の蒸気に接触させた後、1300〜26
00°Cで熱処理することを特徴とする上記第3項に記
載のケイ素−炭素複合繊維織物乃至編物の製造方法。
■ After contacting the woven or knitted fabric made of carbon fibers with silicon and/or silicon carbide vapor,
3. The method for producing a silicon-carbon composite fiber woven or knitted fabric according to item 3 above, which is heat-treated at 00°C.

本発明において基材として使用する炭素繊維織物は、P
AN系、ピッチ系、レーヨン系、気相成長炭素系などの
いずれであっても良い。また、織物乃至編物の製造方法
にも、−切制限はない。
The carbon fiber fabric used as the base material in the present invention is P
It may be any of AN-based, pitch-based, rayon-based, vapor-grown carbon-based, etc. Furthermore, there is no limit to the method for producing woven or knitted materials.

本願特許請求の範囲第1項に記載の発明(以下本願第1
発明のようにいう)は、炭素繊維織物とSi源となる物
質、または炭素繊維織物とSiC源となる物質とを密閉
容器内に入れ、Si蒸気またはSiC蒸気が発生する温
度条件下に加熱し、発生した該蒸気と炭素繊維織物とを
接触させることにより、製造される。Si源としては、
Siが使用される。Si源は、平均粒径5mm以下程度
の小塊乃至粉末の形態で使用することが好ましい。
The invention set forth in Claim 1 of the present patent application (hereinafter referred to as Claim 1 of the present patent application)
According to the invention, a carbon fiber fabric and a substance serving as a Si source, or a carbon fiber fabric and a substance serving as a SiC source are placed in a closed container and heated under temperature conditions that generate Si vapor or SiC vapor. , by bringing the generated steam into contact with a carbon fiber fabric. As a Si source,
Si is used. The Si source is preferably used in the form of small lumps or powder with an average particle size of about 5 mm or less.

また、SiC源としては、SiCの蒸気が形成される限
り、特に限定されないが、5iC1S i 02と炭素
材料との混合物、Siと炭素材料との混合物などが例示
される。5iC77i9としてのSj成分とC成分との
配合比は、必要に応じて任意に選択され、特に限定され
ない。SiC源としても、平均粒径5mm以下程度の小
塊乃至粉末の形態であることが好ましい。SiC源用の
炭素祠料としてピッチを使用する場合には、ピッチ中に
5i02などをあらかじめ分散させておくことが好まし
い。Si源およびSiC源を併用しても良い。また、炭
素繊維織物の空隙内にSi源またはSIC源の粉末を充
填した状態で加熱する場合には、織物を構成するそれぞ
れの糸へのSiおよび/またはSiCの付着が効率良く
行われ、Si被覆層またはSiC被覆層が均一に形成さ
れる。炭素繊維織物とSiまたはSiCの蒸気との接触
時の温度は、SiCの蒸気が形成される限り、特に限定
されないが、使用するSi源またはSiC源材料の種類
、蒸発面積、蒸気圧など適宜考慮して、通常1300〜
2600℃程度の範囲内とする。
Further, the SiC source is not particularly limited as long as SiC vapor is formed, but examples thereof include a mixture of 5iC1S i 02 and a carbon material, a mixture of Si and a carbon material, and the like. The blending ratio of the Sj component and the C component as 5iC77i9 is arbitrarily selected as required and is not particularly limited. The SiC source is also preferably in the form of small lumps or powder with an average particle size of about 5 mm or less. When pitch is used as a carbon abrasive for a SiC source, it is preferable to disperse 5i02 or the like in the pitch in advance. A Si source and a SiC source may be used together. In addition, when heating the carbon fiber fabric with Si source or SIC source powder filled in the voids, Si and/or SiC are efficiently attached to each thread constituting the fabric, and Si The covering layer or SiC covering layer is formed uniformly. The temperature at the time of contact between the carbon fiber fabric and Si or SiC vapor is not particularly limited as long as SiC vapor is formed, but the type of Si source or SiC source material used, evaporation area, vapor pressure, etc. may be appropriately considered. Usually 1300~
The temperature should be within the range of about 2600°C.

接触時間は、所望の被覆層厚さ、織物または編物を構成
するそれぞれの糸の太さ、織物または編物の形成方法な
どに応じて定めれば良く、特に限定されない。
The contact time may be determined depending on the desired thickness of the coating layer, the thickness of each thread constituting the woven or knitted fabric, the method of forming the woven or knitted fabric, and is not particularly limited.

本願第3発明のケイ素−炭素複合繊維織物は、本願第1
発明のケイ素−炭素複合繊維織物を1300〜2600
9Cで熱処理することにより、製造される。この熱処理
においては、温度および時間に応じて、Si被覆層また
はSiC被覆層と炭素繊維糸との反応が進行して、炭素
繊維糸の少なくとも一部がSiC化される。この熱処理
工程は、前段のSiまたはSiC蒸気との接触工程と完
全に独立した状態で実施する必要はなく、該蒸気との接
触工程との接触工程を終えた炭素繊維織物を同一密閉容
器内で引き続き加熱しても良い。
The silicon-carbon composite fiber fabric of the third invention of the present application is the same as that of the first invention of the present application.
The silicon-carbon composite fiber fabric of the invention is 1300 to 2600
Manufactured by heat treatment at 9C. In this heat treatment, the reaction between the Si coating layer or the SiC coating layer and the carbon fiber yarn progresses depending on the temperature and time, and at least a portion of the carbon fiber yarn is converted into SiC. This heat treatment step does not need to be carried out completely independently of the preceding step of contacting with Si or SiC vapor, and the carbon fiber fabric that has undergone the contact step with the vapor is placed in the same closed container. You may continue heating.

この熱処理時間は、炭素繊維の表面と被覆層との界面層
のSi又はCの拡散による固相反応量を規制するもので
ある。この界面相の厚さは、用途に応じて定められるも
のであるから、熱処理時間は、特に限定されない。
This heat treatment time regulates the amount of solid phase reaction due to diffusion of Si or C in the interface layer between the surface of the carbon fiber and the coating layer. Since the thickness of this interfacial phase is determined depending on the application, the heat treatment time is not particularly limited.

本発明によるケイ素−炭素複合繊維織物は、Siおよび
/またはSiC彼覆層の厚さ、熱処理の程度などにより
、第1図に糸の1/4断面として概念的に示す■〜■の
4種の類型に大別される。
There are four types of silicon-carbon composite fiber fabrics according to the present invention, shown conceptually as a 1/4 cross section of yarn in FIG. It is roughly divided into two types.

第1図において、ハツチング部分は、不定比組成層また
は界面層を示す。なお、図示した各層の厚さは、必ずし
も炭素繊維糸における実際の相対的な厚さを示すもので
はない。また、不定比組成層または界面層においては、
Siの濃度は、表面側から内部側に向けて低くなってい
る。
In FIG. 1, hatched portions indicate non-stoichiometric composition layers or interface layers. Note that the illustrated thickness of each layer does not necessarily indicate the actual relative thickness of the carbon fiber yarn. In addition, in the non-stoichiometric composition layer or the interface layer,
The concentration of Si decreases from the surface toward the inside.

類型Iのものは、炭素繊維糸Cの表面にSiの被覆層が
存在しており、両層の間には、薄いSiC層が形成され
ている。
In Type I, a Si coating layer is present on the surface of the carbon fiber yarn C, and a thin SiC layer is formed between the two layers.

類型■のものは、炭素繊維糸の表面に当初形成されてい
たSi層が、熱処理により、中心部の炭素Cと反応して
、中心部にSiC層が形成されたものであり、表面の薄
いSi層と内側のSiC層とからなっている。
In type ①, the Si layer originally formed on the surface of the carbon fiber yarn reacts with the carbon C in the center through heat treatment, and a SiC layer is formed in the center. It consists of a Si layer and an inner SiC layer.

類型■のものは、炭素繊維糸の表面に当初形成されてい
たSiC層が、熱処理により、中心部の炭素Cと反応し
て、表面のSiC層と中心部のC層との間にSiCとC
とからなる混合層が形成されたものである。
In type ①, the SiC layer initially formed on the surface of the carbon fiber yarn reacts with the carbon C in the center through heat treatment, and SiC and carbon are formed between the SiC layer on the surface and the C layer in the center. C
A mixed layer consisting of

類型■のものは、炭素繊維糸の表面に当初形成されてい
たSiまたはSiC層が、熱処理により、中心部の炭素
Cと反応して、全体がSiC層となったものである。
In type (2), the Si or SiC layer originally formed on the surface of the carbon fiber yarn reacts with carbon C in the center by heat treatment, and the entire surface becomes a SiC layer.

発明の効果 本発明のケイ素−炭素複合繊維織物は、耐酸化性、機械
的強度などに優れているので、例えば、セラミックス(
ガラス、窒化物、炭化物など)、金属(アルミニウム、
チタンなど)などと組み合わせて得られる複合材料にお
ける強化基材として、G用である。
Effects of the Invention The silicon-carbon composite fiber fabric of the present invention has excellent oxidation resistance and mechanical strength, so it is suitable for use with ceramics (
glass, nitrides, carbides, etc.), metals (aluminum,
It is used as a reinforcing base material in composite materials obtained in combination with titanium, etc.).

実施例 以下実施例を示し、本発明の特徴とするところをより一
層明らかにする。
EXAMPLES Hereinafter, examples will be shown to further clarify the features of the present invention.

実施例I PAN系炭素炭素繊維物3.0gの空隙内にSi粉末(
200メツシュ通過)3.0gを充填し、密閉黒鉛容器
内に入れ、昇温速度8℃/分で1700°Cまで昇温し
、同温度で20分間保持した。
Example I Si powder (
200 mesh) was filled into a sealed graphite container, and the temperature was raised to 1700°C at a heating rate of 8°C/min, and held at the same temperature for 20 minutes.

l−記の過程において、炭素繊維糸の表面に先ずSiが
堆積し、これが炭素繊維糸と反応して、SlとCとの間
にSiCからなる界面層が形成され、第1図の類型Iに
相当するケイ素−炭素複合繊維織物が得られた。
In the process described in Figure 1, Si is first deposited on the surface of the carbon fiber yarn, and this reacts with the carbon fiber yarn to form an interfacial layer made of SiC between the Sl and C, resulting in Type I in Figure 1. A silicon-carbon composite fiber fabric corresponding to the above was obtained.

また、得られたケイ素−炭素複合繊維織物を粉砕し、粉
末をX線回折に供した結果は、第1表に示す通りであっ
た。
Further, the obtained silicon-carbon composite fiber fabric was pulverized and the powder was subjected to X-ray diffraction, and the results were as shown in Table 1.

第1表 2θ   該当物質   相対強度 2B、4     C100 28,4Si       30 35.6     SiC80 4L、4     SiC20 47,3S i        5 54.6     C20 実施例2 ピッチ系炭素繊維の織物5.0gとSi塊(平均粒径3
mm)15gとを密閉黒鉛容器内に収容し、昇温速度1
5°C/分で2100°Cまで昇温し、同温度で30分
間保持した。
Table 1 2θ Applicable substance Relative strength 2B, 4 C100 28,4Si 30 35.6 SiC80 4L, 4 SiC20 47,3S i 5 54.6 C20 Example 2 5.0 g of pitch-based carbon fiber fabric and Si lump (average Particle size 3
mm) in a sealed graphite container, and the heating rate was 1.
The temperature was raised to 2100°C at a rate of 5°C/min and held at the same temperature for 30 minutes.

上記の過程において、炭素繊維糸の表面に先ずSiが堆
積し、これが炭素繊維糸と反応して、SiとCとの間に
SiCからなる界面層が形成され、次いでこの界面層の
厚さが次第に増大して、最終的に第1図の類型Hに相当
するケイ素−炭素複合繊維織物が得られた。
In the above process, Si is first deposited on the surface of the carbon fiber yarn, and this reacts with the carbon fiber yarn to form an interfacial layer consisting of SiC between Si and C, and then the thickness of this interfacial layer increases. It was gradually increased, and finally a silicon-carbon composite fiber fabric corresponding to type H in FIG. 1 was obtained.

また、得られたケイ素−炭素複合繊維織物を粉砕し、粉
末をX線回折に供した結果は、第2表に示す通りであっ
た。
Further, the obtained silicon-carbon composite fiber fabric was pulverized and the powder was subjected to X-ray diffraction, and the results were as shown in Table 2.

2θ   該当物質   相対強度 2B、4     Si       2035.6 
    SiC100 414S i C25 47,3S i        3 実施例3 PAN系炭素炭素繊維物3.0gとSiC粉末(100
メツシュ通過)5.0gとを密閉黒鉛容器内に収容し、
昇温速度15℃/分で1800℃まで昇温し、同温度で
30分間保持した。
2θ Applicable substance Relative strength 2B, 4 Si 2035.6
SiC100 414S i C25 47,3S i 3 Example 3 3.0 g of PAN-based carbon fiber material and SiC powder (100
5.0g of mesh passing) was stored in a sealed graphite container,
The temperature was raised to 1800°C at a heating rate of 15°C/min and held at the same temperature for 30 minutes.

上記の過程において、炭素繊維糸の表面に先ずSiCが
堆積し、これが炭素繊維糸とわずかに反応して、Si/
Cの不定比組成を有する界面層(S i C+C)が形
成され、第1図の類型■に相当するケイ素−炭素複合繊
維織物が得られた。
In the above process, SiC is first deposited on the surface of the carbon fiber yarn, and this reacts slightly with the carbon fiber yarn, resulting in Si/
An interfacial layer (S i C+C) having a non-stoichiometric composition of C was formed, and a silicon-carbon composite fiber fabric corresponding to type (2) in FIG. 1 was obtained.

また、得られたケイ素−炭素複合繊維織物を粉砕し、粉
末をX線回折に供した結果は、第3表に示す通りであっ
た。
Further, the obtained silicon-carbon composite fiber fabric was pulverized and the powder was subjected to X-ray diffraction, and the results were as shown in Table 3.

第3表 2θ   該当物質   相対強度 26.4     C100 35,6SiC80 41,4SEC20 54,6C20 第2図は、本実施例により得られたケイ素−炭素複合繊
維織物の繊維糸の断面形状を示す走査型電子顕微鏡写真
(炭素繊維糸の断面直径:約7μm)である。糸の表面
に約0.8μmの均一なSiC被覆層が形成されており
、破断面は、その被覆膜を通って同一平面を有している
ことから、繊維糸と膜との間に Si/Cの不定比組成を有する界面層が存在しているこ
とが明らかである。
Table 3 2θ Applicable substance Relative strength 26.4 C100 35,6SiC80 41,4SEC20 54,6C20 Figure 2 shows the cross-sectional shape of the fiber yarn of the silicon-carbon composite fiber fabric obtained in this example. This is a micrograph (cross-sectional diameter of carbon fiber yarn: approximately 7 μm). A uniform SiC coating layer of about 0.8 μm is formed on the surface of the yarn, and the fracture surface has the same plane through the coating membrane, so there is no Si between the fiber yarn and the membrane. It is clear that there is an interfacial layer having a non-stoichiometric composition of /C.

次に、本実施例で得られたケイ素−炭素複合繊維織物を
750°Cに保持しつつ、N280%−0220%の混
合ガスを流ffi800ml/分で流通させて、耐酸化
性を測定した。結果を曲線Aとして第3図に示す。無処
理の炭素繊維織物についての同様な試、験結果を示す曲
線Bに比して、酸化による重量減少はほとんど認められ
ない。
Next, while maintaining the silicon-carbon composite fiber fabric obtained in this example at 750°C, a mixed gas of 80% N2-0220% was passed through the fabric at a flow rate of 800 ml/min to measure its oxidation resistance. The results are shown as curve A in FIG. Compared to curve B showing similar test results for an untreated carbon fiber fabric, almost no weight loss due to oxidation is observed.

また、本実施例で得られたケイ素−炭素複合繊維織物の
曲げ強度を測定した。結果を第4図に(m)として示す
。無処理の炭素繊m織物についての結果およびCVD法
によりSiC被覆した炭素繊維織物についての結果(C
VD)に比して、本発明品の曲げ強度が著しく向上して
いることが明らかである。
In addition, the bending strength of the silicon-carbon composite fiber fabric obtained in this example was measured. The results are shown in FIG. 4 as (m). Results for untreated carbon fiber fabrics and results for carbon fiber fabrics coated with SiC by CVD method (C
It is clear that the bending strength of the product of the present invention is significantly improved compared to VD).

実施例4 ピッチ系炭素繊維の織物5.0g(!:Si塊(平均粒
径3mm)15!’とを密閉黒鉛容器内に収容し、昇温
速度15°C/分で2100℃まで昇温し、同温度で3
時間保持した。
Example 4 5.0 g of pitch-based carbon fiber fabric (!: 15!: Si lumps (average particle size 3 mm)) was placed in a sealed graphite container, and the temperature was raised to 2100 °C at a heating rate of 15 °C/min. 3 at the same temperature
Holds time.

上記の過程において、炭素繊維糸の表面に先ずSiが堆
積し、これが2100℃での保持により炭素繊維糸と反
応して、SiとCとの間にSiCからなる界面層が形成
され、次いでこの界面層の厚さが次第に増大して、最終
的には炭素繊維糸の全てがSLCとなった第1図の類型
■に相当するケイ素−炭素複合繊維織物が得られた。
In the above process, Si is first deposited on the surface of the carbon fiber yarn, which reacts with the carbon fiber yarn by being held at 2100°C to form an interfacial layer consisting of SiC between Si and C. The thickness of the interfacial layer was gradually increased, and finally a silicon-carbon composite fiber fabric corresponding to type (2) in FIG. 1 was obtained in which all of the carbon fiber yarns were made of SLC.

また、得られたケイ素−炭素複合繊維織物を粉砕し、粉
末をX線回折に供した結果は、第4表に示す通りであっ
た。
Furthermore, the obtained silicon-carbon composite fiber fabric was pulverized and the powder was subjected to X-ray diffraction, and the results were as shown in Table 4.

第4表 2θ   該当物質   相対強度 35.6     S i C100 41,4S i C25 第5図は、本実施例により得られたケイ素−炭素複合繊
維織物の繊維糸の断面形状を示す走査型電子顕微鏡写真
である。糸の内部まで全面にわたって完全にSiC層が
形成されていることが明らかである。
Table 4 2θ Applicable substance Relative strength 35.6 S i C100 41,4 S i C25 Figure 5 is a scanning electron micrograph showing the cross-sectional shape of the fiber yarn of the silicon-carbon composite fiber fabric obtained in this example. It is. It is clear that the SiC layer is completely formed all over the inside of the yarn.

次に、本実施例で得られたケイ素−炭素複合繊維織物を
750℃に保持しつつ、N280%−0220%の混合
ガスを流量800m1/分で流通させて、耐酸化性を測
定した。結果を曲線Cとして第6図に示す。無処理の炭
素繊維織物についての同様な試験結果を示す曲線りに比
して、酸化による重量減少は全く認められない。本実施
例品の場合には、表面層でのSiC→5i02の反応に
より、むしろ若干の重量増加が認められる。
Next, while maintaining the silicon-carbon composite fiber fabric obtained in this example at 750°C, a mixed gas of 80% N2-0220% was passed through the fabric at a flow rate of 800 m1/min to measure its oxidation resistance. The results are shown as curve C in FIG. No weight loss due to oxidation is observed compared to curves showing similar test results for untreated carbon fiber fabric. In the case of the product of this example, a slight increase in weight is rather observed due to the reaction of SiC→5i02 in the surface layer.

実施例5 予めSiO2粉末(平均粒径2Azm)120gをピッ
チ(軟化点87°C,Q I −0,0196)100
gに分散させ、オートクレーブ中で温度300°C1圧
力40kg/ctJの条件下にPAN系炭素炭素繊維織
物200g隙内に含浸させた後、昇温速度2℃/分で1
000℃まで昇温し、初圧40kg/ctlで加圧炭化
処理した。
Example 5 120g of SiO2 powder (average particle size 2Azm) was prepared in advance with pitch (softening point 87°C, Q I -0,0196) 100g
After impregnating 200 g of PAN-based carbon fiber fabric in an autoclave at a temperature of 300° C. and a pressure of 40 kg/ctJ, the temperature was increased to 1° C./min at a heating rate of 2° C./min.
The temperature was raised to 000°C, and pressure carbonization treatment was performed at an initial pressure of 40 kg/ctl.

次いで、炭化処理した炭素繊維織物を密閉黒鉛容器内に
収容し、昇温速度15℃/分で2500°Cまで昇温し
、同温度で30分間保持した。
Next, the carbonized carbon fiber fabric was placed in a sealed graphite container, heated to 2500°C at a heating rate of 15°C/min, and held at the same temperature for 30 minutes.

上記の過程において、炭素繊維糸の表面に先ずSiCが
堆積し、これが2500 ’Cでの保持により炭素繊維
糸とわずかに反応して、S i / Cの不定比組成を
有する界面層が形成され、第1図の類型■に相当するケ
イ素−炭素複合繊維織物が得られた。
In the above process, SiC is first deposited on the surface of the carbon fiber yarn, which slightly reacts with the carbon fiber yarn by holding at 2500'C, forming an interfacial layer having a non-stoichiometric composition of Si/C. A silicon-carbon composite fiber fabric corresponding to type ① in FIG. 1 was obtained.

また、得られたケイ素−炭素複合繊維織物を粉砕し、粉
末をX線回折に供した結果は、第5表に示す通りであっ
た。
Further, the obtained silicon-carbon composite fiber fabric was pulverized and the powder was subjected to X-ray diffraction, and the results were as shown in Table 5.

第5表 λI   該当物質   相対強度 2B、4      C50 35,68i C100 4L、4     S i C25 54,6C10 実施例6 予めSi粉末(200メツシュ通過)28gをピッチ(
軟化点87℃、Ql−0,01%)18gに分散させ、
オートクレーブ中で温度300’C。
Table 5 λI Applicable material Relative strength 2B, 4 C50 35,68i C100 4L, 4 Si C25 54,6C10 Example 6 28g of Si powder (passed through 200 meshes) was added to the pitch (
Softening point: 87℃, Ql-0.01%) Dispersed in 18g,
Temperature 300'C in autoclave.

圧力40kg/ctjの条件下にピッチ系炭素繊維の織
物20gの空隙内に含浸させた後、昇温速度2’C/分
で800℃まで昇温し、初圧40kg/cJで炭化処理
した。
After impregnating the voids of 20 g of pitch-based carbon fiber fabric under a pressure of 40 kg/ctj, the temperature was raised to 800° C. at a heating rate of 2'C/min and carbonized at an initial pressure of 40 kg/cJ.

次いで、炭化処理した炭素繊維織物を密閉黒鉛容器内に
収容し、昇温速度20’C/分で1500℃まで昇温し
、同温度で2時間保持した。
Next, the carbonized carbon fiber fabric was placed in a sealed graphite container, heated to 1500°C at a heating rate of 20'C/min, and held at the same temperature for 2 hours.

上記の過程において、炭素繊維糸の表面に先ずSiCが
堆積し、これが1500°Cでの保持により炭素繊維糸
とわずかに反応して、Si/Cの不定比組成を有する界
面層が形成され、第1図の類型■に相当するケイ素−炭
素複合繊維織物が得られた。
In the above process, SiC is first deposited on the surface of the carbon fiber yarn, which reacts slightly with the carbon fiber yarn by holding at 1500°C, forming an interfacial layer having a non-stoichiometric composition of Si/C. A silicon-carbon composite fiber fabric corresponding to type ① in FIG. 1 was obtained.

また、得られたケイ素−炭素複合繊維織物を粉砕し、粉
末をX線回折に供した結果は、第6表に示す通りであっ
た。
Further, the obtained silicon-carbon composite fiber fabric was pulverized and the powder was subjected to X-ray diffraction, and the results were as shown in Table 6.

第6表 2θ   該当物質   相対強度 26.4      C100 35,6S i C60 4L、4     S i C15 54,6C20 実施例7 予め5iOz粉末(平均粒径5μm)5.0g:をノボ
ラック型フェノール樹脂7gに分散させ、オートクレー
ブ中で温度150°Cでレーヨン系炭素繊維の編物4.
0gの空1!l;を内に含浸硬化させた後、密閉黒鉛容
器内に収容し、昇温速度0.3°C/分で1300℃ま
で昇温し、同温度で15時間保持した。
Table 6 2θ Applicable substance Relative strength 26.4 C100 35,6S i C60 4L, 4 S i C15 54,6C20 Example 7 5iOz powder (average particle size 5 μm) 5.0g was predispersed in 7g of novolac type phenolic resin. 4. Knitted fabric of rayon-based carbon fiber at a temperature of 150°C in an autoclave.
0g sky 1! After impregnation and hardening, the sample was placed in a sealed graphite container, heated to 1300°C at a rate of 0.3°C/min, and held at the same temperature for 15 hours.

、上記の過程において、炭素繊維糸の表面に先ずSiC
が堆積し、これが1300°Cでの保持により炭素繊維
糸とわずかに反応して、Si/Cの不定比組成を有する
界面層が形成され、第1図の類型■に相当するケイ素−
炭素複合繊維編物が得られた。
, In the above process, SiC is first applied to the surface of the carbon fiber yarn.
is deposited, and when held at 1300°C, it slightly reacts with the carbon fiber yarn, forming an interface layer with a non-stoichiometric composition of Si/C, which corresponds to type ① in Figure 1.
A carbon composite fiber knitted fabric was obtained.

また、得られたケイ素−炭素複合繊維編物を粉砕し、粉
末をX線回折に供した結果は、第7表に示す通りであっ
た。
Further, the obtained silicon-carbon composite fiber knitted fabric was pulverized and the powder was subjected to X-ray diffraction, and the results were as shown in Table 7.

第7表 2θ   該当物質   相対強度 26.4      C80 35,6SiC80 41,4SEC20 54,6C18Table 7 2θ   Applicable substance  Relative strength 26.4 C80 35,6SiC80 41,4SEC20 54,6C18

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明によるケイ素−炭素複合繊維織物の糸
のケイ素化の状況をI〜■の4種の類型に大別して概念
的に示す断面である。第2図および第5図は、本発明実
施例により得られたケイ素−炭素複合繊維織物の繊維の
断面形状を示す走査型電子顕微鏡写真である。第3図お
よび第6図は、本発明実施例により得られたケイ素−炭
素複合繊維織物の耐酸化性を示すグラフである。第4図
は、本発明実施例により得られたケイ素−炭素複合繊I
t &S物の曲げ強度を示すグラフである。 第1図 第2図 第3図 日+    hM    <79y) 第4図 第6図 曲 問 (介) 第5図
FIG. 1 is a cross-sectional view conceptually showing the state of siliconization of the threads of the silicon-carbon composite fiber fabric according to the present invention, roughly divided into four types, I to II. FIG. 2 and FIG. 5 are scanning electron micrographs showing the cross-sectional shape of the fibers of the silicon-carbon composite fiber fabric obtained in the example of the present invention. FIGS. 3 and 6 are graphs showing the oxidation resistance of the silicon-carbon composite fiber fabrics obtained according to the examples of the present invention. FIG. 4 shows the silicon-carbon composite fiber I obtained by the example of the present invention.
It is a graph showing the bending strength of T&S products. Figure 1 Figure 2 Figure 3 Date + hM <79y) Figure 4 Figure 6 Song Question (Intermediate) Figure 5

Claims (4)

【特許請求の範囲】[Claims] (1)炭素繊維からなる織物乃至編物の繊維表面にケイ
素および/または炭化ケイ素被覆層を有することを特徴
とするケイ素−炭素複合繊維織物乃至編物。
(1) A silicon-carbon composite fiber woven or knitted fabric characterized by having a silicon and/or silicon carbide coating layer on the fiber surface of the woven or knitted fabric made of carbon fibers.
(2)炭素繊維からなる織物乃至編物をケイ素および/
または炭化ケイ素の蒸気に接触させることを特徴とする
第1請求項に記載のケイ素−炭素複合繊維織物乃至編物
の製造方法。
(2) Fabrics or knitted fabrics made of carbon fibers are made of silicon and/or carbon fibers.
The method for producing a silicon-carbon composite fiber woven or knitted fabric according to claim 1, wherein the fabric or knitted fabric is brought into contact with silicon carbide vapor.
(3)炭素繊維からなる織物乃至編物の繊維の少なくと
も一部がケイ素化合物に変換されていることを特徴とす
るケイ素−炭素複合繊維織物乃至編物。
(3) A silicon-carbon composite fiber woven or knitted fabric, characterized in that at least a portion of the fibers of the woven or knitted fabric made of carbon fibers are converted into a silicon compound.
(4)炭素繊維からなる織物乃至編物をケイ素および/
または炭化ケイ素の蒸気に接触させた後、1300〜2
600℃で熱処理することを特徴とする第3請求項に記
載のケイ素−炭素複合繊維織物乃至編物の製造方法。
(4) Fabrics or knitted fabrics made of carbon fiber with silicon and/or
or after contact with silicon carbide vapor, 1300-2
The method for producing a silicon-carbon composite fiber woven or knitted fabric according to claim 3, characterized in that heat treatment is performed at 600°C.
JP63050234A 1988-03-02 1988-03-02 Woven and knitted cloth consisting of silicon-carbon conjugated fiber and production thereof Granted JPH01229874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63050234A JPH01229874A (en) 1988-03-02 1988-03-02 Woven and knitted cloth consisting of silicon-carbon conjugated fiber and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63050234A JPH01229874A (en) 1988-03-02 1988-03-02 Woven and knitted cloth consisting of silicon-carbon conjugated fiber and production thereof

Publications (2)

Publication Number Publication Date
JPH01229874A true JPH01229874A (en) 1989-09-13
JPH0316422B2 JPH0316422B2 (en) 1991-03-05

Family

ID=12853321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63050234A Granted JPH01229874A (en) 1988-03-02 1988-03-02 Woven and knitted cloth consisting of silicon-carbon conjugated fiber and production thereof

Country Status (1)

Country Link
JP (1) JPH01229874A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011190545A (en) * 2010-03-12 2011-09-29 Gunze Ltd Circularly knitted carbon fiber structure and carbon fiber-reinforced silicon carbide-based composite material containing the same
JP2015529752A (en) * 2012-07-18 2015-10-08 ザ・ボーイング・カンパニーTheBoeing Company Reusable high temperature heat resistant fiber products for the aerospace industry

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029528A (en) * 1973-02-15 1975-03-25
JPS5322198A (en) * 1976-08-12 1978-03-01 Agency Of Ind Science & Technol Production of water-containing calcium borate
JPS5831167A (en) * 1981-08-19 1983-02-23 工業技術院長 Surface coated carbon fiber
JPS5959976A (en) * 1982-09-22 1984-04-05 信越化学工業株式会社 Production of silicon carbide coated carbon fiber
JPS59112028A (en) * 1982-12-15 1984-06-28 Mitsubishi Rayon Co Ltd Carbon fiber coated with silica compound and ceramic reinforced therewith
JPS59179875A (en) * 1983-03-26 1984-10-12 工業技術院長 Surface coated carbon fiber and production thereof
JPS605682A (en) * 1983-06-23 1985-01-12 Mitsubishi Electric Corp Charge transfer solid-state image pickup device
JPS6082344A (en) * 1983-10-11 1985-05-10 株式会社クラレ Inorganic composite material
JPH01104879A (en) * 1987-10-15 1989-04-21 Ibiden Co Ltd Composite carbon fiber and its production

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029528A (en) * 1973-02-15 1975-03-25
JPS5322198A (en) * 1976-08-12 1978-03-01 Agency Of Ind Science & Technol Production of water-containing calcium borate
JPS5831167A (en) * 1981-08-19 1983-02-23 工業技術院長 Surface coated carbon fiber
JPS5959976A (en) * 1982-09-22 1984-04-05 信越化学工業株式会社 Production of silicon carbide coated carbon fiber
JPS59112028A (en) * 1982-12-15 1984-06-28 Mitsubishi Rayon Co Ltd Carbon fiber coated with silica compound and ceramic reinforced therewith
JPS59179875A (en) * 1983-03-26 1984-10-12 工業技術院長 Surface coated carbon fiber and production thereof
JPS605682A (en) * 1983-06-23 1985-01-12 Mitsubishi Electric Corp Charge transfer solid-state image pickup device
JPS6082344A (en) * 1983-10-11 1985-05-10 株式会社クラレ Inorganic composite material
JPH01104879A (en) * 1987-10-15 1989-04-21 Ibiden Co Ltd Composite carbon fiber and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011190545A (en) * 2010-03-12 2011-09-29 Gunze Ltd Circularly knitted carbon fiber structure and carbon fiber-reinforced silicon carbide-based composite material containing the same
JP2015529752A (en) * 2012-07-18 2015-10-08 ザ・ボーイング・カンパニーTheBoeing Company Reusable high temperature heat resistant fiber products for the aerospace industry

Also Published As

Publication number Publication date
JPH0316422B2 (en) 1991-03-05

Similar Documents

Publication Publication Date Title
US5217657A (en) Method of making carbon-carbon composites
CN103086731B (en) Micro-region in-situ reaction preparation method for high strength fiber-reinforced ceramic matrix composite material
JP5944619B2 (en) Carbon fiber composite material, brake member using this carbon fiber composite material, structural member for semiconductor, heat resistant panel, heat sink
KR20110109697A (en) Oxidation coating method of carbon / carbon composites, carbon heater and cooking equipment
US5773122A (en) Reinforced carbon composites
JPH0751464B2 (en) Composite material
JP2735151B2 (en) Method for producing fiber-reinforced silicon carbide composite ceramics molded body
Klett et al. Flexible towpreg for the fabrication of high thermal conductivity carbon/carbon composites
JP3167738B2 (en) Method for producing carbon fiber reinforced ceramic composite material
JPH08226054A (en) Production of carbon primary molding and carbon/carbon composite material
Shim et al. The effect of temperature and atmospheric-pressure on mechanical and electrical properties of polymer-derived SiC fibers
JPH01229874A (en) Woven and knitted cloth consisting of silicon-carbon conjugated fiber and production thereof
EP0495095A1 (en) Process for forming crack-free pyrolytic boron nitride on a carbon structure and article.
McHenry et al. Elevated temperature strength of silicon carbide-on-carbon filaments
Marković Use of coal tar pitch in carboncarbon composites
JP2879675B1 (en) Method for producing two-dimensional fiber reinforced silicon carbide / carbon composite ceramics
EP3597621B1 (en) Method for producing silicon-carbide-based composite
Zhu et al. Fabricating 2.5 D SiCf/SiC composite using polycarbosilane/SiC/Al mixture for matrix derivation
Hu et al. In-situ preparation and mechanical property analysis of SiC/SiBCN (O) nanocomposites
JPH0292886A (en) Production of carbon fiber-reinforced composite material having oxidation resistance
JP3604438B2 (en) Silicon carbide based fiber composite material and method for producing the same
JP2607409B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites.
RU2058964C1 (en) Method for production of composite material based on carbon fiber and silicon carbide
JPH0952777A (en) Method for producing oxidation resistant C / C composite
JP2579563B2 (en) Oxidation-resistant treatment of carbon fiber reinforced carbon composites.

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term