JP6939552B2 - 多孔質中空糸膜 - Google Patents
多孔質中空糸膜 Download PDFInfo
- Publication number
- JP6939552B2 JP6939552B2 JP2017529093A JP2017529093A JP6939552B2 JP 6939552 B2 JP6939552 B2 JP 6939552B2 JP 2017529093 A JP2017529093 A JP 2017529093A JP 2017529093 A JP2017529093 A JP 2017529093A JP 6939552 B2 JP6939552 B2 JP 6939552B2
- Authority
- JP
- Japan
- Prior art keywords
- hollow fiber
- fiber membrane
- porous hollow
- columnar structure
- raman
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012528 membrane Substances 0.000 title claims description 248
- 239000012510 hollow fiber Substances 0.000 title claims description 244
- 229920000642 polymer Polymers 0.000 claims description 100
- 238000001069 Raman spectroscopy Methods 0.000 claims description 97
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 67
- 229920001519 homopolymer Polymers 0.000 claims description 34
- 229920005989 resin Polymers 0.000 claims description 24
- 239000011347 resin Substances 0.000 claims description 24
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 claims description 21
- 238000009826 distribution Methods 0.000 claims description 17
- 230000010287 polarization Effects 0.000 claims description 9
- 238000004736 wide-angle X-ray diffraction Methods 0.000 claims description 9
- 229920001577 copolymer Polymers 0.000 claims description 7
- 230000003287 optical effect Effects 0.000 claims description 3
- 238000001816 cooling Methods 0.000 description 55
- 239000007788 liquid Substances 0.000 description 53
- 239000002994 raw material Substances 0.000 description 52
- 239000000243 solution Substances 0.000 description 38
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 30
- 239000002904 solvent Substances 0.000 description 29
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 26
- 238000000034 method Methods 0.000 description 23
- 239000007864 aqueous solution Substances 0.000 description 22
- 238000005259 measurement Methods 0.000 description 22
- 239000011800 void material Substances 0.000 description 22
- 238000005191 phase separation Methods 0.000 description 18
- 238000002425 crystallisation Methods 0.000 description 16
- 230000008025 crystallization Effects 0.000 description 16
- 239000011550 stock solution Substances 0.000 description 16
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 15
- 239000013078 crystal Substances 0.000 description 15
- 238000011282 treatment Methods 0.000 description 15
- 238000004519 manufacturing process Methods 0.000 description 14
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 11
- 239000000203 mixture Substances 0.000 description 10
- 239000007787 solid Substances 0.000 description 9
- 239000000126 substance Substances 0.000 description 8
- 238000002441 X-ray diffraction Methods 0.000 description 7
- 239000003822 epoxy resin Substances 0.000 description 6
- 229920000647 polyepoxide Polymers 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000002033 PVDF binder Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 5
- 239000000178 monomer Substances 0.000 description 5
- 230000035699 permeability Effects 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 238000007599 discharging Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000008235 industrial water Substances 0.000 description 4
- 230000000717 retained effect Effects 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 239000003651 drinking water Substances 0.000 description 3
- 235000020188 drinking water Nutrition 0.000 description 3
- 238000004043 dyeing Methods 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 238000010884 ion-beam technique Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 239000012046 mixed solvent Substances 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 238000004065 wastewater treatment Methods 0.000 description 3
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 2
- FFWSICBKRCICMR-UHFFFAOYSA-N 5-methyl-2-hexanone Chemical compound CC(C)CCC(C)=O FFWSICBKRCICMR-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 238000003841 Raman measurement Methods 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 2
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 238000010612 desalination reaction Methods 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- HJOVHMDZYOCNQW-UHFFFAOYSA-N isophorone Chemical compound CC1=CC(=O)CC(C)(C)C1 HJOVHMDZYOCNQW-UHFFFAOYSA-N 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 229910052762 osmium Inorganic materials 0.000 description 2
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000005201 scrubbing Methods 0.000 description 2
- 239000013535 sea water Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 238000009987 spinning Methods 0.000 description 2
- 150000005846 sugar alcohols Polymers 0.000 description 2
- 238000004781 supercooling Methods 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- -1 trichloroethylene, ethylene Chemical group 0.000 description 2
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 1
- MIZLGWKEZAPEFJ-UHFFFAOYSA-N 1,1,2-trifluoroethene Chemical compound FC=C(F)F MIZLGWKEZAPEFJ-UHFFFAOYSA-N 0.000 description 1
- AVQQQNCBBIEMEU-UHFFFAOYSA-N 1,1,3,3-tetramethylurea Chemical compound CN(C)C(=O)N(C)C AVQQQNCBBIEMEU-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 241000223935 Cryptosporidium Species 0.000 description 1
- 238000005169 Debye-Scherrer Methods 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- PYVHTIWHNXTVPF-UHFFFAOYSA-N F.F.F.F.C=C Chemical compound F.F.F.F.C=C PYVHTIWHNXTVPF-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000000113 differential scanning calorimetry Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- BXKDSDJJOVIHMX-UHFFFAOYSA-N edrophonium chloride Chemical compound [Cl-].CC[N+](C)(C)C1=CC=CC(O)=C1 BXKDSDJJOVIHMX-UHFFFAOYSA-N 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000001891 gel spinning Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical compound FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 1
- ACCCMOQWYVYDOT-UHFFFAOYSA-N hexane-1,1-diol Chemical compound CCCCCC(O)O ACCCMOQWYVYDOT-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000001471 micro-filtration Methods 0.000 description 1
- 244000000010 microbial pathogen Species 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- KRTSDMXIXPKRQR-AATRIKPKSA-N monocrotophos Chemical group CNC(=O)\C=C(/C)OP(=O)(OC)OC KRTSDMXIXPKRQR-AATRIKPKSA-N 0.000 description 1
- 239000008239 natural water Substances 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- UWJJYHHHVWZFEP-UHFFFAOYSA-N pentane-1,1-diol Chemical compound CCCCC(O)O UWJJYHHHVWZFEP-UHFFFAOYSA-N 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011085 pressure filtration Methods 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- WVLBCYQITXONBZ-UHFFFAOYSA-N trimethyl phosphate Chemical compound COP(=O)(OC)OC WVLBCYQITXONBZ-UHFFFAOYSA-N 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/02—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D65/00—Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
- B01D65/08—Prevention of membrane fouling or of concentration polarisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
- B01D67/0009—Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
- B01D67/0016—Coagulation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
- B01D67/0009—Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
- B01D67/0018—Thermally induced processes [TIPS]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
- B01D67/0023—Organic membrane manufacture by inducing porosity into non porous precursor membranes
- B01D67/0025—Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching
- B01D67/0027—Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching by stretching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/08—Hollow fibre membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/30—Polyalkenyl halides
- B01D71/32—Polyalkenyl halides containing fluorine atoms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/30—Polyalkenyl halides
- B01D71/32—Polyalkenyl halides containing fluorine atoms
- B01D71/34—Polyvinylidene fluoride
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/26—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/02—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D01F6/08—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of halogenated hydrocarbons
- D01F6/12—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of halogenated hydrocarbons from polymers of fluorinated hydrocarbons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/02—Hydrophilization
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/08—Specific temperatures applied
- B01D2323/082—Cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/50—Control of the membrane preparation process
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/02—Details relating to pores or porosity of the membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/20—Specific permeability or cut-off range
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/24—Mechanical properties, e.g. strength
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/30—Chemical resistance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/34—Molecular weight or degree of polymerisation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/08—Seawater, e.g. for desalination
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Dispersion Chemistry (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- General Chemical & Material Sciences (AREA)
- Textile Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Artificial Filaments (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Description
−フッ化ピニリデン系樹脂に可塑剤およびフッ化ビニリデン系樹脂の良溶媒を添加して得られた組成物を膜状に押出し、その片側面から優先的に冷却して固化成膜した後、可塑剤を抽出し、更に延伸することで多孔膜を形成すること;
−多孔膜では、X線回折法により、結品配向部と、結品非配向部(ランダム配向部)とが認められること
が記載されている。
[1] フッ素樹脂系高分子を含有する多孔質中空糸膜であって、
前記多孔質中空糸膜の長手方向に配向する柱状組織を有し、
前記柱状組織における分子鎖が前記多孔質中空糸膜の長手方向に配向しており、
前記分子鎖のラマン配向パラメータの平均値νが1.5以上4.0以下である多孔質中空糸膜。
ラマン配向パラメータ=(I1270/I840)平行/(I1270/I840)垂直 ・・・(1)
(ただし、平行条件:多孔質中空糸膜の長手方向と偏光方向とが平行
垂直条件:多孔質中空糸膜の長手方向と偏光方向とが直交
I1270平行:平行条件時の1270cm−1のラマンバンドの強度
I1270垂直:垂直条件時の1270cm−1のラマンバンドの強度
I840平行:平行条件時の840cm−1のラマンバンドの強度
I840垂直:垂直条件時の840cm−1のラマンバンドの強度
である。)
[2] 前記柱状組織の短手長さが0.5μm以上3μm以下、且つ、該柱状組織のアスペクト比が3以上である、上記[1]に記載の多孔質中空糸膜。
[3] 前記柱状組織の太さ均一性が0.50以上である、上記[1]または[2]に記載の多孔質中空糸膜。
[4] 前記柱状組織における分子鎖の最大ラマン配向パラメータMと最小ラマン配向パラメータmとの比M/mが、1.5以上4.0以下である、上記[1]〜[3]のいずれか1項に記載の多孔質中空糸膜。
[5] 前記柱状組織における分子鎖の最大ラマン配向パラメータMが4.0以下である、上記[1]〜[4]のいずれか1項に記載の多孔質中空糸膜。
[6] 空隙率が40%以上80%以下である、上記[1]〜[5]のいずれか1項に記載の多孔質中空糸膜。
[7] 50kPa、25℃における純水透過性能が0.7m3/m2/hr以上であり、破断強度が23MPa以上であり、ヤング率が0.15GPa以上0.40GPa以下である、上記[1]〜[6]のいずれか1項に記載の多孔質中空糸膜。
[8] 下記式(2)に基づき算出される前記フッ素樹脂系高分子の分子鎖の前記多孔質中空糸膜の長手方向への配向度πが0.4未満であるか、または前記フッ素樹脂系高分子の分子鎖が無配向である、上記[1]〜[7]のいずれか1項に記載の多孔質中空糸膜。
配向度π=(180°−H)/180° ・・・(2)
(ただし、Hは広角X線回折像の円周方向における回折強度分布の半値幅(°)である。)
[9] 下記1)および2)の工程を備える多孔質中空糸膜の製造方法。
1)フッ素樹脂系高分子を含有する製膜原液から、熱誘起相分離により、長さ方向に配向し、かつ0.50以上1.00未満の太さ均一性を有する柱状組織を有する多孔質中空糸を形成する工程
2)前記1)で得られた多孔質中空糸を長手方向に、1%/秒〜150%/秒の速度で1.8倍以上2.4倍以下に延伸する工程
[10] 前記工程1)の熱誘起相分離が下記a)およびb)の冷却工程のうちの少なくとも一方を備える、上記[9]に記載の多孔質中空糸膜の製造方法。
a)前記製膜原液をTc−30℃<Tb≦Tcを満たす温度Tbの冷却浴に浸す工程
b)前記製膜原液をTb1≦Tc−30℃を満たす温度Tb1の冷却浴に浸した後、Tc−30℃<Tb2≦Tcを満たす温度Tb2の冷却浴に浸す工程
(ただし、Tcは前記フッ素樹脂系高分子を含有する製膜原液の結晶化温度である。)
(1−1)フッ素樹脂系高分子
本発明の多孔質中空糸膜は、フッ素樹脂系高分子を含有する。
本明細書において、フッ素樹脂系高分子とは、フッ化ビニリデンホモポリマーおよびフッ化ビニリデン共重合体のうちの少なくとも1つを含有する樹脂を意味する。フッ素系樹脂高分子は、複数の種類のフッ化ビニリデン共重合体を含有してもよい。
(a)寸法
図1に示すように、多孔質中空糸膜1は、多孔質中空糸膜1の長手方向に配向する柱状組織2を有する。「柱状組織」とは、均一な太さを有する一方向に長い形状の固形物である。柱状組織のアスペクト比(長手長さ/短手長さ)は3以上であることが好ましい。なお、図1では、柱状組織を写真で示すので、スケールを表示しているが、本発明はこれに限定されるものではない。なお、アスペクト比の上限は特に限定されないが、例えば、50とすることができる。
ここで、「長手長さ」とは柱状組織の長手方向の長さを指す。また、「短手長さ」とは柱状組織の短手方向の平均長さである。
本発明において、柱状組織の短手長さが0.5μm以上3μm以下であり、且つ、柱状組織のアスペクト比が3以上であることが好ましい。
後述するように、本発明の多孔質中空糸膜は、高分子を含有する製膜原液から中空糸を形成し、その中空糸を延伸することで、製造可能である。便宜上、延伸前の状態を「中空糸」と呼び、延伸後の状態を「中空糸膜」と呼ぶ。
まず、互いに平行である第一の断面と第二の断面とを選定する。第一の面と第二の面との距離は5μmとする。まず、それぞれの断面において、樹脂からなる部分と空隙部分とを区別し、樹脂部分面積と空隙部分面積とを測定する。次に、第一の断面を第二の断面に投影した時に、第一の断面における樹脂からなる部分と第二の断面における樹脂からなる部分とが重なる部分の面積、すなわち重なり面積を求める。下記式(3)および(4)に基づいて、1本の中空糸膜について任意の20組の第一の断面と上記第二の断面とについて、太さ均一性AおよびBをそれぞれ求める。
太さ均一性A=(重なり面積)/(第二の断面の樹脂部分面積) ・・・(3)
太さ均一性B=(重なり面積)/(第一の断面の樹脂部分面積) ・・・(4)
柱状組織は、フッ素樹脂系高分子を含有する。柱状組織は、フッ素樹脂系高分子を主成分として含有することが好ましく、柱状組織においてフッ素樹脂系高分子が占める割合は、80重量%以上が好ましく、90重量%以上がより好ましく、95重量%以上であることが更に好ましい。また、柱状組織は、フッ素樹脂系高分子のみで構成されていてもよい。
多孔質中空糸膜において、主たる構造が柱状組織であることが好ましい。多孔質中空糸膜において、柱状組織が占める割合は、80重量%以上が好ましく、90重量%以上がより好ましく、95重量%以上であることが更に好ましい。また、多孔質中空糸膜は、柱状組織のみで構成されていてもよい。
多孔質中空糸膜は、柱状組織の集合体である、とも表現できる。
ここで、「長手方向に配向する」とは、柱状組織の長手方向と多孔質中空糸膜の長手方向とが成す角度のうち鋭角の角度が20度以内であることを意味する。
(a)ラマン配向
本発明の分子鎖の配向は、ラマン分光法による配向解析により求めることができる。まず、多孔質中空糸膜の長手方向に沿う断面において、ミクロトームによる切削を行うことで、多孔質中空糸膜を切片化する。こうして得られた切片を光学顕微鏡で観察することで、柱状組織を確認しながら、柱状組織の長手方向に沿って、1μm間隔でレーザーラマン測定を行う。一つの柱状組織における測定点の数は、後述する柱状組織の長手長さ(μm)を1μmで除した値(小数点以下切り捨て)とする。たとえば、柱状組織の長手長さが20.5μmの時には、測定点数は20点となる。
ラマン配向パラメータ=(I1270/I840)平行/(I1270/I840)垂直 ・・・(1)
式(1)において、
平行条件:多孔質中空糸膜の長手方向と偏光方向とが平行
垂直条件:多孔質中空糸膜の長手方向と偏光方向とが直交
I1270平行:平行条件時の1270cm−1のラマンバンドの強度
I1270垂直:垂直条件時の1270cm−1のラマンバンドの強度
I840平行:平行条件時の840cm−1のラマンバンドの強度
I840垂直:垂直条件時の840cm−1のラマンバンドの強度
である。
最大ラマン配向パラメータM、最小ラマン配向パラメータmは、それぞれ柱状組織における主たる配向箇所の配向度と、延伸時の力点となる部分の配向度とを表すと考えられる。このため、得られる多孔質中空糸膜の強度、伸度、透水性等の性能のバランスを考慮して、Mやmを適切な範囲とすればよい。多孔質中空糸膜に高い靱性を持たせるため、Mおよびmは好ましくは4.0以下、より好ましくは3.5以下、特に好ましくは3.0以下である。なお、下限値は特に限定されないが、例えば1.1である。
本発明の多孔質中空糸膜において、フッ素樹脂系高分子の分子鎖は、多孔質中空糸膜の長手方向に配向しているが、X線回折測定における分子鎖の配向度πが0.4未満であるか、あるいは分子鎖が無配向である。配向度πは、下記式(2)に基づき、広角X線回折測定によって得られた半値幅H(°)から算出される。
配向度π=(180°−H)/180° ・・・(2)
(ただし、Hは広角X線回折像の円周方向における回折強度分布の半値幅(°)である。)
配向度πを算出するためには、多孔質中空糸膜の長手方向が鉛直となるように繊維試料台に取り付ける。なお、多孔質中空糸膜の短手方向とは、中空糸の径方向と平行な方向であり、長手方向とは、短手方向に垂直な方向である。また、短手方向は、中空面と平行な方向、すなわち中空面の面内方向と言い換えることができ、長手方向とは、中空面に垂直な方向と言い換えることができる。
本発明の多孔質中空糸膜は、高い純水透過性能と高い強度とを両立するために、空隙率は40%以上80%以下が好ましく、45%以上75%以下がより好ましく、50%以上70%以下がさらに好ましい。空隙率が、40%以上であることで高い純水透過性能が得られ、80%以下であることで高い強度が得られるので、水処理用の多孔質中空糸膜として好適である。
空隙率(%)={100×(空隙部分面積)}/{(樹脂部分面積)+(空隙部分面積)} ・・・(5)
本発明の多孔質中空糸膜は、実使用に適した高い靱性を有することが好ましく、靱性は引張試験のヤング率で示すことができる。多孔質中空糸膜のヤング率は、多孔質中空糸膜の用途に合わせて選択できるが、好ましくは0.15GPa以上0.40GPa未満、より好ましくは0.22GPa以上0.38GPa未満、さらに好ましくは0.24GPa以上0.36GPa未満である。ヤング率が0.15GPaより以上であることで、使用時に応力がかかっても中空糸膜が変形しにくくなる。また、ヤング率が0.40GPa未満であることで、例えば水処理用途で頻繁に実施されるスクラビング洗浄などによって中空膜が揺れても、中空糸膜が折れにくい。
本発明の多孔質中空糸膜は、本発明の目的を逸脱しない範囲で、上述した柱状組織以外の組織を含有していてもよい。柱状組織以外の構造としては、例えば、アスペクト比(長手長さ/短手長さ)が3未満の球状組織が挙げられる。球状組織の短手長さおよび長手長さは、0.5μm以上3μm以下の範囲であることが好ましい。球状組織を用いる場合に、その短手長さおよび長手長さが前記範囲であれば、多孔質中空糸膜の強度の低下が抑制され、かつ良好な純水透過性能を維持することができる。
占有率(%)={(各組織の占める面積)/(写真全体の面積)}×100 ・・・(6)
本発明の多孔質中空糸膜を製造する方法について、以下に例示する。多孔質中空糸膜の製造方法は、少なくとも、
1)フッ素樹脂系高分子を含有する製膜原液から、熱誘起相分離により、長さ方向に配向し、かつ0.50以上1.00未満の太さ均一性を有する柱状組織を有する中空糸を形成する工程、および
2)上記1)で得られた多孔質中空糸を長手方向に1.8倍以上2.4倍以下に、延伸速度1%/秒以上150%/秒以下で延伸する工程
を備える。
本発明における多孔質中空糸膜の製造方法は、フッ素樹脂系高分子溶液を調整する工程をさらに備える。フッ素樹脂系高分子を、フッ素樹脂系高分子の貧溶媒または良溶媒に、結晶化温度以上の比較的高温で溶解することで、フッ素樹脂系高分子溶液(つまり、フッ素樹脂系高分子を含有する製膜原液)を調製する。
中空糸の形成工程においては、温度変化により相分離を誘起する熱誘起相分離法を利用して、フッ素樹脂系高分子を含有する製膜原液から、中空糸を得る。後述する1.8倍以上の高倍率延伸を行うためには、中空糸は、その長さ方向に配向する柱状組織を有し、かつ、柱状組織の太さ均一性は0.50以上1.00未満であることが好ましい。柱状組織の太さ均一性の下限は、0.60以上であることがより好ましく、0.70以上であることが更に好ましく、0.80以上であることが特に好ましい。
a)前記製膜原液をTc−30℃<Tb≦Tcを満たす温度Tbの冷却浴に浸す工程
b)Tb1≦Tc−30℃を満たす温度Tb1の冷却浴に浸した後、Tc−30℃<Tb2≦Tcを満たす温度Tb2の冷却浴に浸す工程
(ただし、Tcは前記フッ素樹脂系高分子を含有する製膜原液の結晶化温度である。)
本発明では、以上の方法で得られる柱状組織を有するフッ素樹脂系高分子からなる多孔質中空糸膜を低速度で高倍率延伸することで、該高分子の分子鎖を該中空糸膜の長手方向に配向させる。その結果、上述の範囲のラマン配向パラメータおよびX線回折における配向度が実現される。
延伸速度(%/秒)=(延伸倍率×100−100)÷延伸時間(秒)
ここで、延伸倍率は「延伸後の長さ(m)÷延伸前の長さ(m)」により算出される。延伸時間は、実質的に延伸に使用した時間(秒)を用いる。延伸倍率は延伸装置の設定速度から算出してもよいが、好ましくは、延伸する直前の多孔質中空糸膜の長手方向に10cmの着色をしてから延伸を実施し、延伸前後の着色部分の長さを測定するのがよい。その際に延伸に使用した時間も実測することができる。
多孔質中空糸膜4本からなる有効長さ200mmの小型モジュールを作製した。このモジュールに、温度25℃、ろ過差圧16kPaの条件で、1時間にわたって蒸留水を送液し得られた透過水量(m3)を測定し、単位時間(h)および単位膜面積(m2)当たりの数値に換算し、さらに圧力(50kPa)換算して純水透過性能(m3/m2/h)とした。なお、単位膜面積は平均外径と多孔質中空糸膜の有効長とから算出した。
引っ張り試験機(TENSILON(登録商標)/RTM−100、東洋ボールドウィン株式会社製)を用い、測定長さ50mmの試料を、25℃の雰囲気中で引っ張り速度50mm/分で、試料を変えて5回以上試験し、破断強度、破断伸度、ヤング率の平均値を求めることで算出した。
多孔質中空糸膜中のポリフッ化ビニリデンホモポリマーの配向のパラメータを以下の操作により求めた。
多孔質中空糸膜の長手方向の断面を、ミクロトームによる切削により切片化した。多孔質中空糸膜1本あたり10個の柱状組織を選択し、光学顕微鏡で柱状組織を確認しながら、それぞれの柱状組織について、その長手方向に沿って、1μm間隔でレーザーラマン分光法により散乱強度の測定を行った。
それぞれの配向パラメータを式(1)により算出し、各配向パラメータの平均値をラマン配向パラメータνとした。また、10個の相異なる柱状組織の中で、最も大きな配向パラメータと最も小さな配向パラメータとを選び、それらについてそれぞれ平均値を求め、最大ラマン配向パラメータM、最小ラマン配向パラメータmとし、M/mを算出した。
ラマン配向パラメータ=(I1270/I840)平行/(I1270/I840)垂直 ・・・(1)
平行条件:多孔質中空糸膜の長手方向と偏光方向とが平行
垂直条件:多孔質中空糸膜の長手方向と偏光方向とが直交
I1270平行:平行条件時の1270cm−1のラマンバンドの強度
I1270垂直:垂直条件時の1270cm−1のラマンバンドの強度
I840平行:平行条件時の840cm−1のラマンバンドの強度
I840垂直:垂直条件時の840cm−1のラマンバンドの強度
レーザーラマン分光装置および測定条件は以下の通りである。
装置:Jobin Yvon/愛宕物産 T−64000
条件:測定モード;顕微ラマン
対物レンズ;×100
ビーム径;1μm
光源;Ar+レーザー/514.5nm
レーザーパワー;100mW
回折格子;Single 600gr/mm
スリット;100μm
検出器;CCD/Jobin Yvon 1024×256
まず、多孔質中空糸膜をエポキシ樹脂で樹脂包埋し、オスミウム染色処理することで、空隙部分をエポキシ樹脂で埋めた。次に、集束イオンビーム(FIB)を備えた走査型電子顕微鏡(SEM)を用いて、多孔質中空糸膜の短手方向に平行な面を、FIBを用いて切り出し、FIBによる切削加工とSEM観察とを、多孔質中空糸膜の長手方向に向かって50nm間隔で繰り返し200回実施し、10μmの深さの情報を得た。
太さ均一性は、上記FIBを用いた連続断面観察で得た多孔質中空糸膜の短手方向に平行な第一の断面と第二の断面とを比較することで求めた。ここで、第一の断面と第二の断面とは、5μmの間隔を持つ互いに平行な面となるように、20組を選定した。
まず、それぞれの断面において、樹脂からなる部分と空隙部分(エポキシ部分)とを区別し、樹脂部分面積と空隙部分面積とを測定した。次に、両断面に垂直な方向から、第一の断面を第二の断面に投影した時に、第一の断面の樹脂からなる部分と第二の断面の樹脂からなる部分とが重なる部分の面積(重なり面積)を測定した。
各組における太さ均一性を、下記式(3)および(4)によって求められる太さ均一性A、Bを平均した値として算出した。AとBとの平均値が20個得られるので、この20個の値から得られる平均値を、その膜の太さ均一性とした。
また、16組以上で太さ均一性0.50以上となった場合に柱状組織を有するとし、15組以下の場合には繊維状組織を有するとした。
太さ均一性A=(重なり面積)/(第二の断面の樹脂部分面積) ・・・(3)
太さ均一性B=(重なり面積)/(第一の断面の樹脂部分面積) ・・・(4)
多孔質中空糸膜の長手方向が鉛直となるように繊維試料台に取り付け、X線回折装置(Rigaku社製、高分子用SmartLab、CuKα線)を用いて、X線回折測定(2θ/θスキャン、βスキャン)を行った。まず、2θ/θスキャンで、2θ=20.4°にピークトップがあることを確認した。次に、βスキャンにて、2θ=20.4°の回折ピークに対し、方位角方向に0°から360°までの強度を測定することにより、方位角方向の強度分布を得た。ここで、方位角180°の強度と方位角90°の強度との比が0.80以下、または、1.25以上となる場合にピークが存在するとみなし、この方位角方向の強度分布において、ピーク高さの半分の位置における幅(半値幅H)を求め、下記式(2)によって配向度πを算出した。なお、βスキャンにおける強度の極小値が0°と180°付近に見られたため、これらを通る直線をベースラインとした。
配向度π=(180°−H)/180° ・・・(2)
各例で作製した多孔質中空糸膜について、その長手方向に沿った断面を、走査型電子顕微鏡を用いて3000倍で撮影した。撮影された画像から、任意に10個の柱状組織を選択し、それぞれの長手長さ、短手長さを測定した。ここで、各柱状組織の長手長さとしては、長手方向の最大長さを測定した。また、上述したように、各柱状組織の長手長さを1μmで除して小数点以下を切り捨てることで得られた値を測定点数とし、短手方向の長さを測定し、それらの平均値を算出することで、各柱状組織の短手長さを求めた。
上記撮影を5箇所で行い、それぞれ任意の10個の柱状組織について長手長さと短手長さとを求め、合計50個の長手長さと合計50個の短手長さとを得た。ついで、合計50個の長手長さの平均値を算出し、長手長さの代表値とし、合計50個の短手長さの平均値を算出し、短手長さの代表値とした。
空隙率は、「(vi)太さ均一性」で得た20組の第一の断面と第二の断面、すなわち、合計40点の断面から、任意の20点の断面について、樹脂部分面積と空隙部分面積とを用いて、下記式(5)によって求め、それらの平均値を用いた。
空隙率(%)={100×(空隙部分面積)}/{(樹脂部分面積)+(空隙部分面積)} ・・・(5)
多孔質中空糸膜の長手方向の断面を、走査型電子顕微鏡を用いて3000倍で任意の20カ所の写真を撮影し、下記式(6)でそれぞれ求め、それらの平均値を採用した。ここで写真全体の面積および組織の占める面積は、撮影された写真を紙に印刷し、写真全体に対応する紙の重量およびそこから切り取った組織部分に対応する紙の重量としてそれぞれ置き換えて求めた。
占有率(%)={(各組織の占める面積)/(写真全体の面積)}×100 ・・・(6)
セイコー電子工業株式会社製DSC−6200を用いて、フッ素樹脂系高分子と溶媒など製膜高分子原液組成と同組成の混合物を密封式DSC容器に密封し、昇温速度10℃/minで溶解温度まで昇温し、30分保持して均一に溶解した後に、降温速度10℃/minで降温する過程で観察される結晶化ピークの立ち上がり温度を結晶化温度Tcとした。
重量平均分子量41.7万のフッ化ビニリデンホモポリマー(株式会社クレハ製KF1300、重量平均分子量:41.7万、数平均分子量:22.1万)35重量%とγ−ブチロラクトン65重量%とを150℃で溶解した。こうして得られたフッ化ビニリデンホモポリマー溶液(つまり原料液)のTcは46℃であった。
原料液の加圧および吐出には、二重管式口金と、その口金につながれた配管と、その配管上に配置された2つのギヤーポンプとを備える装置を用いた。ギヤーポンプ間の配管内で、上記原料液を、2.5MPaに加圧しながら、99〜101℃で15秒間滞留させた。その後、二重管式口金の内側の管からγ−ブチロラクトン85重量%水溶液を吐出しながら、外側の管から原料液を吐出した。γ−ブチロラクトン85重量%水溶液からなる温度20℃の冷却浴中に原料液を20秒間滞留させ、固化させた。
得られた多孔質中空糸膜は、太さ均一性0.55の柱状組織を有し、柱状組織の占有率は85%であり、球状組織占有率は15%であった。
ついで、95℃の水中にて、上記で得られた多孔質中空糸膜を延伸速度9%/秒で2.0倍に延伸した。
延伸後の多孔質中空糸膜を観察したところ、柱状組織が認められた。また、多孔質中空糸膜において、長手長さの代表値16μm、短手長さの代表値2.1μm、太さ均一性0.51の柱状組織を有し、空隙率が56%、フッ化ビニリデンホモポリマー分子鎖の多孔質中空糸膜の長手方向への配向度πは算出できず無配向であり、ラマン配向パラメータνは1.82、最大ラマン配向パラメータMは2.31、最小ラマン配向パラメータmは1.32、M/mは1.8であった。延伸後の多孔質中空糸膜の構造と性能とを表1に示す。
フッ化ビニリデンホモポリマーの濃度を36重量%とした以外は、実施例1と同様に原料液を調整した。原料液のTcは48℃であった。
原料液を、実施例1と同様に加圧してから、二重管式口金から吐出した。吐出された原料液をγ−ブチロラクトン85重量%水溶液からなる温度10℃の第1冷却浴中に10秒間滞留させ、さらに、γ−ブチロラクトン85重量%水溶液からなる温度20℃の第2冷却浴中に20秒間滞留させ、固化させた。
得られた多孔質中空糸膜は、太さ均一性0.64の柱状組織を有し、柱状組織の占有率は87%であり、球状組織占有率は13%であった。
ついで、95℃の水中にて、上記で得られた多孔質中空糸膜を延伸速度44%/秒で2.4倍に延伸した。延伸後の多孔質中空糸膜は、長手長さの代表値18μm、短手長さの代表値1.9μm、太さ均一性0.60の柱状組織を有し、空隙率が55%、フッ化ビニリデンホモポリマー分子鎖の多孔質中空糸膜の長手方向への配向度πは0.25であり、ラマン配向パラメータνは2.35、最大ラマン配向パラメータMは2.84、最小ラマン配向パラメータmは1.21、M/mは2.4であった。延伸後の多孔質中空糸膜の構造と性能とを表1に示す。
フッ化ビニリデンホモポリマーの濃度を39重量%とした以外は、実施例1と同様に原料液を調整した。原料液のTcは52℃であった。
原料液を、実施例1と同じ装置で2.5MPaに加圧しながら、99〜101℃で20秒間滞留させた。その後、実施例1と同様に二重管式口金から吐出した。吐出された原料液を、γ−ブチロラクトン85重量%水溶液からなる温度5℃の第1冷却浴中に10秒間滞留させ、ついで、γ−ブチロラクトン85重量%水溶液からなる温度30℃の第2冷却浴中に40秒間滞留させることで、固化させた。
得られた多孔質中空糸膜は、太さ均一性0.69の柱状組織を有し、柱状組織の占有率は91%であり、球状組織占有率は9%であった。
ついで、95℃の水中にて、上記で得られた多孔質中空糸膜を延伸速度142%/秒で2.4倍に延伸した。
延伸後の多孔質中空糸膜は、長手長さの代表値22μm、短手長さの代表値1.8μm、太さ均一性0.62の柱状組織を有し、空隙率が54%、フッ化ビニリデンホモポリマー分子鎖の多孔質中空糸膜の長手方向への配向度πは0.31であり、ラマン配向パラメータνは2.53、最大ラマン配向パラメータMは3.08、最小ラマン配向パラメータmは1.14、M/mは2.7であった。延伸後の多孔質中空糸膜の構造と性能とを表1に示す。
フッ化ビニリデンホモポリマーの濃度を39重量%とした以外は、実施例1と同様に原料液を調整した。この原料液のTcは52℃であった。
原料液を、実施例1と同じ装置で2.5MPaに加圧しながら、99〜101℃で20秒間滞留させた。その後、実施例1と同様に、原料液を二重管式口金から吐出した。吐出された原料液を、γ−ブチロラクトン85重量%水溶液からなる温度5℃の第1冷却浴中に10秒間滞留させ、ついで、γ−ブチロラクトン85重量%水溶液からなる温度35℃の第2冷却浴中に50秒間滞留させ、固化させた。
得られた多孔質中空糸膜は、太さ均一性0.68の柱状組織を有し、柱状組織の占有率は92%であり、球状組織占有率は8%であった。
ついで、95℃の水中にて、上記で得られた多孔質中空糸膜を延伸速度2%/秒で1.8倍に延伸した。
延伸後の多孔質中空糸膜は、長手長さの代表値13μm、短手長さの代表値1.9μm、太さ均一性0.66の柱状組織を有し、空隙率が53%、フッ化ビニリデンホモポリマー分子鎖の多孔質中空糸膜の長手方向への配向度πは算出できず無配向であり、ラマン配向パラメータνは2.13、最大ラマン配向パラメータMは2.69、最小ラマン配向パラメータmは1.65、M/mは1.6であった。延伸後の多孔質中空糸膜の構造と性能とを表1に示す。
重量平均分子量41.7万のフッ化ビニリデンホモポリマー(株式会社クレハ製KF1300、重量平均分子量:41.7万、数平均分子量:22.1万)38重量%とジメチルスルホキシド62重量%とを130℃で溶解した。このフッ化ビニリデンホモポリマー溶液(つまり原料液)のTcは29℃であった。
原料液を実施例1と同じ装置で2.5MPaに加圧しながら、78〜80℃で20秒間滞留させた。その後、二重管式口金の内側の管からジメチルスルホキシド90重量%水溶液を吐出しながら、外側の管から原料液を吐出した。ジメチルスルホキシド85重量%水溶液からなる温度20℃の冷却浴中に冷却浴中で20秒間滞留させることで、原料液を固化させた。
得られた多孔質中空糸膜は、太さ均一性0.62の柱状組織を有し、柱状組織の占有率は94%であり、球状組織占有率は6%であった。
ついで、95℃の水中にて、上記で得られた多孔質中空糸膜を延伸速度19%/秒で2.0倍に延伸した。延伸後の多孔質中空糸膜は、長手長さの代表値19μm、短手長さの代表値2.3μm、太さ均一性0.61の柱状組織を有し、空隙率が57%、フッ化ビニリデンホモポリマー分子鎖の多孔質中空糸膜の長手方向への配向度πは算出できず無配向であり、ラマン配向パラメータνは2.32、最大ラマン配向パラメータMは2.61、最小ラマン配向パラメータmは1.42、M/mは1.8であった。延伸後の多孔質中空糸膜の構造と性能とを表1に示す。
吐出した原料液を、ジメチルスルホキシド85重量%水溶液からなる温度−3℃の第1冷却浴中に10秒間滞留させ、ついで、ジメチルスルホキシド85重量%水溶液からなる温度20℃の第2冷却浴中に30秒間滞留させた以外は、実施例5と同様に、多孔質中空糸膜を得た。
得られた多孔質中空糸膜は、太さ均一性0.68の柱状組織を有し、柱状組織の占有率は93%であり、球状組織占有率は7%であった。
ついで、95℃の水中にて、上記で得られた多孔質中空糸膜を延伸速度146%/秒で1.8倍に延伸した。
延伸後の多孔質中空糸膜は、長手長さの代表値19μm、短手長さの代表値2.0μm、太さ均一性0.66の柱状組織を有し、空隙率が56%、フッ化ビニリデンホモポリマー分子鎖の多孔質中空糸膜の長手方向への配向度πは算出できず無配向であり、ラマン配向パラメータνは2.18、最大ラマン配向パラメータMは2.56、最小ラマン配向パラメータmは1.29、M/mは2.0であった。延伸後の多孔質中空糸膜の構造と性能とを表1に示す。
フッ化ビニリデンホモポリマーの濃度を42重量%とした以外は、実施例5と同様に、原料液を得た。原料液のTcは35℃であった。
原料液を実施例5と同様に加圧した後、吐出した。吐出された原料液を、ジメチルスルホキシド85重量%水溶液からなる温度−3℃の第1冷却浴中に10秒間滞留させ、ついで、ジメチルスルホキシド85重量%水溶液からなる温度20℃の第2冷却浴中に50秒間滞留させることで、固化させた。得られた多孔質中空糸膜は、太さ均一性0.72の柱状組織を有し、柱状組織の占有率は95%であり、球状組織占有率は5%であった。
ついで、95℃の水中にて、上記で得られた多孔質中空糸膜を延伸速度125%/秒で2.4倍に延伸した。延伸後の多孔質中空糸膜は、長手長さの代表値22μm、短手長さの代表値1.8μm、太さ均一性0.70の柱状組織を有し、空隙率が56%、フッ化ビニリデンホモポリマー分子鎖の多孔質中空糸膜の長手方向への配向度πは0.34であり、ラマン配向パラメータνは2.96、最大ラマン配向パラメータMは3.31、最小ラマン配向パラメータmは1.42、M/mは2.3であった。延伸後の多孔質中空糸膜の構造と性能とを表1に示す。
フッ化ビニリデンホモポリマーの濃度を42重量%とした以外は、実施例5と同様に、原料液を得た。原料液のTcは35℃であった。
原料液を実施例5と同様に加圧した後、吐出した。吐出された原料液をジメチルスルホキシド85重量%水溶液からなる温度−3℃の第1冷却浴中に10秒間滞留させ、ついで、ジメチルスルホキシド85重量%水溶液からなる温度20℃の第2冷却浴中に50秒間滞留させ、固化させた。
得られた多孔質中空糸膜は、太さ均一性0.72の柱状組織を有し、柱状組織の占有率は95%であり、球状組織占有率は5%であった。
ついで、95℃の水中にて、上記で得られた多孔質中空糸膜を延伸速度16%/秒で2.4倍に延伸した。
延伸後の多孔質中空糸膜は、長手長さの代表値23μm、短手長さの代表値1.9μm、太さ均一性0.72の柱状組織を有し、空隙率が55%、フッ化ビニリデンホモポリマー分子鎖の多孔質中空糸膜の長手方向への配向度πは算出できず無配向であり、ラマン配向パラメータνは2.48、最大ラマン配向パラメータMは2.75、最小ラマン配向パラメータmは1.33、M/mは2.1であった。延伸後の多孔質中空糸膜の構造と性能とを表1に示す。
実施例1と同様に原料液を調整した。原料液を実施例1と同様の装置により2.5MPaに加圧しながら、99〜101℃で15秒間滞留させた。その後、実施例1と同様に原料液を口金から吐出した。吐出された原料液をγ−ブチロラクトン85重量%水溶液からなる温度5℃の冷却浴中に20秒間滞留させ固化させた。
得られた多孔質中空糸膜は、太さ均一性0.42の柱状組織を有し、柱状組織の占有率は90%であり、球状構造占有率は10%であった。
ついで、95℃の水中にて、上記で得られた多孔質中空糸膜を延伸速度44%/秒で1.5倍に延伸した。
延伸後の多孔質中空糸膜は、長手長さの代表値12μm、短手長さの代表値2.2μm、太さ均一性0.39の柱状組織を有し、空隙率が56%、フッ化ビニリデンホモポリマー分子鎖の多孔質中空糸膜の長手方向への配向度πは算出できず無配向であり、ラマン配向パラメータνは1.01、最大ラマン配向パラメータMは1.03、最小ラマン配向パラメータmは1.00、M/mは1.0であった。延伸後の多孔質中空糸膜の構造と性能とを表2に示す。
フッ化ビニリデンホモポリマーの濃度を39重量%とした以外は、実施例1と同様に原料液を調整した。このフッ化ビニリデンホモポリマー溶液のTcは52℃であった。
原料液を実施例1と同様の装置により2.5MPaに加圧しながら、99〜101℃で15秒間滞留させた。その後、実施例1と同様に、原料液を吐出した。吐出された原料液を、γ−ブチロラクトン85重量%水溶液からなる温度5℃の冷却浴中に10秒間滞留させ、ついで、γ−ブチロラクトン85重量%水溶液からなる温度30℃の第2冷却浴中に40秒間滞留させることで、固化させた。得られた多孔質中空糸膜は、太さ均一性0.69の柱状組織を有し、柱状組織の占有率は91%であり、球状構造占有率は9%であった。
ついで、95℃の水中にて、上記で得られた多孔質中空糸膜を延伸速度44%/秒で3.0倍に延伸した。
延伸後の多孔質中空糸膜は、長手長さの代表値19μm、短手長さの代表値1.8μm、太さ均一性0.60の柱状組織を有し、空隙率が60%、フッ化ビニリデンホモポリマー分子鎖の多孔質中空糸膜の長手方向への配向度πは0.86であり、ラマン配向パラメータνは4.35、最大ラマン配向パラメータMは7.90、最小ラマン配向パラメータmは1.59、M/mは5.0であった。
延伸後の多孔質中空糸膜の構造と性能とを表2に示す。得られた中空糸膜は、延伸配向によって高強度化していたが、透水性と伸度とが低くヤング率が高い膜であった。
得られた中空糸膜を30cmにカットし、直径10cm×長さ50cmの円筒容器に張った水の中に沈め、エアー流量10L/分、25℃の条件で1分間曝気を行ったところ、糸折れが発生した。
フッ化ビニリデンホモポリマーの濃度を36重量%とした以外は、実施例1と同様にして、原料液を調整した。この原料液のTcは48℃であった。
原料液を実施例1と同じ装置で2.5MPaに加圧しながら、99〜101℃で20秒間滞留させた。その後、実施例1と同様に、原料液を二重管式口金から吐出した。吐出された原料液を、γ−ブチロラクトン85重量%水溶液からなる温度5℃の冷却浴中に20秒間滞留させ、ついで、γ−ブチロラクトン85重量%水溶液からなる温度20℃の第2冷却浴中に20秒間滞留させることで、固化させた。
得られた多孔質中空糸膜は、太さ均一性0.66の柱状組織を有し、柱状組織の占有率は91%であり、球状構造占有率は9%であった。
ついで、95℃の水中にて、上記で得られた多孔質中空糸膜を延伸速度175%/秒で2.4倍に延伸したところ糸切れが発生し延伸することができなかった。
重量平均分子量41.7万のフッ化ビニリデンホモポリマー(株式会社クレハ製KF1300、重量平均分子量:41.7万、数平均分子量:22.1万)38重量%とジメチルスルホキシド62重量%とを130℃で溶解した。このフッ化ビニリデンホモポリマー溶液(つまり原料液)のTcは29℃であった。
原料液を実施例1と同じ装置で0.2MPaに加圧しながら、64〜66℃で20秒間滞留させた。その後、二重管式口金の内側の管からジメチルスルホキシド90重量%水溶液を吐出しながら、外側の管から原料液を吐出した。吐出された原料液を、ジメチルスルホキシド85重量%水溶液からなる温度−3℃の冷却浴中に20秒間滞留させることで、原料液を固化させた。
得られた多孔質中空糸膜は、太さ均一性0.44の柱状組織を有し、柱状組織の占有率は25%であり、球状構造占有率は75%であった。
ついで、95℃の水中にて、上記で得られた多孔質中空糸膜を延伸速度16%/秒で1.5倍に延伸した。
延伸後の多孔質中空糸膜は、長手長さの代表値14μm、短手長さの代表値2.1μm、太さ均一性0.42の柱状組織を有し、空隙率が59%、フッ化ビニリデンホモポリマー分子鎖の多孔質中空糸膜の長手方向への配向度πは算出できず無配向であり、ラマン配向パラメータνは1.03、最大ラマン配向パラメータMは1.08、最小ラマン配向パラメータmは1.01、M/mは1.1であった。延伸後の多孔質中空糸膜の構造と性能とを表2に示す。
重量平均分子量41.7万のフッ化ビニリデンホモポリマー(株式会社クレハ製KF1300、重量平均分子量:41.7万、数平均分子量:22.1万)38重量%とジメチルスルホキシド62重量%とを130℃で溶解した。このフッ化ビニリデンホモポリマー溶液(つまり原料液)のTcは29℃であった。
原料液を実施例1と同じ装置で2.5MPaに加圧しながら、78〜80℃で20秒間滞留させた。その後、二重管式口金の内側の管からジメチルスルホキシド90重量%水溶液を吐出しながら、外側の管から原料液を吐出した。吐出した原料液をジメチルスルホキシド85重量%水溶液からなる温度−3℃の冷却浴中に10秒間滞留させ、ついで、ジメチルスルホキシド85重量%水溶液からなる温度20℃の第2冷却浴中に30秒間滞留させることで、固化させた。
得られた多孔質中空糸膜は、太さ均一性0.68の柱状組織を有し、柱状組織の占有率は93%であり、球状構造占有率は7%であった。
ついで、95℃の水中にて、上記で得られた多孔質中空糸膜を延伸速度44%/秒で1.5倍に延伸した。
延伸後の多孔質中空糸膜は、長手長さの代表値17μm、短手長さの代表値2.0μm、太さ均一性0.68の柱状組織を有し、空隙率が58%、フッ化ビニリデンホモポリマー分子鎖の多孔質中空糸膜の長手方向への配向度πは算出できず無配向であり、ラマン配向パラメータνは1.01、最大ラマン配向パラメータMは1.05、最小ラマン配向パラメータmは1.01、M/mは1.0であった。延伸後の多孔質中空糸膜の構造と性能を表2に示す。
Claims (5)
- フッ素樹脂系高分子を含有する多孔質中空糸膜であって、
前記多孔質中空糸膜の長手方向に配向する柱状組織を有し、
前記柱状組織は、フッ化ビニリデンホモポリマーおよびフッ化ビニリデン共重合体のうちの少なくとも1つを含有する樹脂を含有し、
前記柱状組織の短手長さが0.5μm以上3μm以下、かつ、該柱状組織のアスペクト比が3以上であり、
前記多孔質中空糸膜における前記柱状組織が占める割合が80重量%以上であり、
前記柱状組織における分子鎖が前記多孔質中空糸膜の長手方向に配向しており、
前記多孔質中空糸膜1本あたり10個の柱状組織を選択し、光学顕微鏡で柱状組織を確認しながら、それぞれの柱状組織について、その長手方向に沿って、1μm間隔でレーザーラマン分光法により散乱強度の測定を行い、それぞれの配向パラメータを式(1)により算出した際の、各配向パラメータの平均値であるラマン配向パラメータνが1.5以上4.0以下であり、
前記10個の柱状組織の中で、最も大きな配向パラメータと最も小さな配向パラメータとを選び、それらについてそれぞれ平均値を求め、最大ラマン配向パラメータをM、最小ラマン配向パラメータをmとした際の、M/mが1.5以上4.0以下であり、Mが4.0以下である多孔質中空糸膜。
ラマン配向パラメータ=(I1270/I840)平行/(I1270/I840)垂直 ・・・(1)
(ただし、平行条件:多孔質中空糸膜の長手方向と偏光方向とが平行
垂直条件:多孔質中空糸膜の長手方向と偏光方向とが直交
I1270平行:平行条件時の1270cm−1のラマンバンドの強度
I1270垂直:垂直条件時の1270cm−1のラマンバンドの強度
I840平行:平行条件時の840cm−1のラマンバンドの強度
I840垂直:垂直条件時の840cm−1のラマンバンドの強度
である。) - 前記柱状組織の太さ均一性が0.50以上である、請求項1に記載の多孔質中空糸膜。
- 空隙率が40%以上80%以下である、請求項1または2に記載の多孔質中空糸膜。
- 50kPa、25℃における純水透過性能が0.7m3/m2/hr以上であり、破断強度が23MPa以上であり、ヤング率が0.15GPa以上0.40GPa以下である、請求項1〜3のいずれか1項に記載の多孔質中空糸膜。
- 下記式(2)に基づき算出される前記フッ素樹脂系高分子の分子鎖の前記多孔質中空糸膜の長手方向への配向度πが0.4未満であるか、または前記フッ素樹脂系高分子の分子鎖が無配向である、請求項1〜4のいずれか1項に記載の多孔質中空糸膜。
配向度π=(180°−H)/180° ・・・(2)
(ただし、Hは広角X線回折像の円周方向における回折強度分布の半値幅(°)である。)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016108319 | 2016-05-31 | ||
JP2016108319 | 2016-05-31 | ||
PCT/JP2017/020161 WO2017209151A1 (ja) | 2016-05-31 | 2017-05-30 | 多孔質中空糸膜およびその製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2017209151A1 JPWO2017209151A1 (ja) | 2019-03-28 |
JP6939552B2 true JP6939552B2 (ja) | 2021-09-22 |
Family
ID=60477512
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017529093A Active JP6939552B2 (ja) | 2016-05-31 | 2017-05-30 | 多孔質中空糸膜 |
Country Status (8)
Country | Link |
---|---|
US (1) | US11077407B2 (ja) |
EP (1) | EP3466527B1 (ja) |
JP (1) | JP6939552B2 (ja) |
KR (1) | KR102267825B1 (ja) |
CN (1) | CN109195694B (ja) |
AU (1) | AU2017272761B2 (ja) |
HU (1) | HUE066452T2 (ja) |
WO (1) | WO2017209151A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6939554B2 (ja) * | 2016-06-24 | 2021-09-22 | 東レ株式会社 | 複合多孔質中空糸膜、複合多孔質中空糸膜の製造方法、複合多孔質中空糸膜モジュール及び複合多孔質中空糸膜モジュールの運転方法 |
CN111050889B (zh) * | 2017-09-01 | 2023-03-03 | 旭化成株式会社 | 多孔性中空纤维膜、多孔性中空纤维膜的制造方法及过滤方法 |
Family Cites Families (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5318417A (en) | 1988-11-10 | 1994-06-07 | Kopp Clinton V | Extrusion head for forming polymeric hollow fiber |
US5277851A (en) | 1988-11-10 | 1994-01-11 | Ford Douglas L | Process of making a porous hollow fiber membrane |
BR8907138A (pt) | 1988-11-10 | 1991-02-13 | Memtec Ltd | Processo de preparacao de material polimerico poroso e produto resultante |
US5489406A (en) | 1990-05-09 | 1996-02-06 | Memtec Limited | Method of making polyvinylidene fluoride membrane |
US5698101A (en) | 1990-07-09 | 1997-12-16 | Memtec Limited | Hollow fiber membranes |
US20040135274A1 (en) * | 1998-03-16 | 2004-07-15 | Shigenobu Matsuda | Microporous membrane |
JP2000192327A (ja) | 1998-12-22 | 2000-07-11 | Toray Monofilament Co Ltd | ポリ弗化ビニリデン系樹脂繊維及びその製造方法ならびに水産資材用繊維 |
CN100341935C (zh) | 2003-03-13 | 2007-10-10 | 株式会社吴羽 | 1,1-二氟乙烯类树脂多孔膜及其制造方法 |
JP4885539B2 (ja) | 2003-03-13 | 2012-02-29 | 株式会社クレハ | フッ化ビニリデン系樹脂多孔膜およびその製造方法 |
CN1270814C (zh) * | 2004-09-30 | 2006-08-23 | 浙江大学 | 用微观相分离方法制备聚偏氟乙烯中空纤维微孔膜的方法 |
CN1281301C (zh) | 2004-09-30 | 2006-10-25 | 浙江大学 | 用熔纺-拉伸法制备聚偏氟乙烯中空纤维膜的方法 |
JP4931796B2 (ja) * | 2005-02-15 | 2012-05-16 | 株式会社クレハ | フッ化ビニリデン系樹脂中空糸多孔膜、それを用いる水の濾過方法およびその製造方法 |
JP2006281202A (ja) | 2005-03-11 | 2006-10-19 | Toray Ind Inc | 中空糸膜、それを用いた浸漬型膜モジュール、分離装置、ならびに中空糸膜の製造方法 |
JP4835221B2 (ja) * | 2005-03-25 | 2011-12-14 | 東レ株式会社 | 中空糸膜およびその製造方法 |
JP5050499B2 (ja) | 2005-12-09 | 2012-10-17 | 東レ株式会社 | 中空糸膜の製造方法および中空糸膜 |
JP5641553B2 (ja) * | 2006-09-26 | 2014-12-17 | 東レ株式会社 | 中空糸膜の製造方法 |
JP2008297383A (ja) | 2007-05-30 | 2008-12-11 | Toray Ind Inc | 高分子成型体の製造方法 |
US20090226814A1 (en) | 2008-03-07 | 2009-09-10 | Kotaro Takita | Microporous membrane, battery separator and battery |
KR101338730B1 (ko) | 2009-02-05 | 2013-12-06 | 가부시끼가이샤 구레하 | 불화비닐리덴계 수지 다공막 및 그 제조 방법 |
JP5552289B2 (ja) | 2009-09-04 | 2014-07-16 | 株式会社クレハ | フッ化ビニリデン系樹脂多孔膜の製造方法 |
JP2012040521A (ja) | 2010-08-20 | 2012-03-01 | Toray Ind Inc | 中空糸膜および中空糸膜の製造方法 |
EP3023138B1 (en) | 2013-07-18 | 2021-11-17 | Kuraray Co., Ltd. | Hydrophilised vinylidene fluoride-based porous hollow fibre membrane, and manufacturing method therefor |
CN103432916B (zh) * | 2013-09-03 | 2015-04-29 | 天津工业大学 | 一种增强型聚偏氟乙烯中空纤维膜的制备方法 |
US9833893B2 (en) | 2013-09-27 | 2017-12-05 | Ty-Flot, Inc. | Drop-prevention pouch for cordless power tools |
KR20160015439A (ko) | 2014-07-30 | 2016-02-15 | 경희대학교 산학협력단 | Pvdf 중공사막의 제조방법 |
HUE051691T2 (hu) | 2014-12-26 | 2021-10-28 | Toray Industries | Porózus üreges szálmembrán |
CN108430610B (zh) | 2015-12-28 | 2021-04-09 | 东丽株式会社 | 中空丝膜组件和其运转方法 |
-
2017
- 2017-05-30 JP JP2017529093A patent/JP6939552B2/ja active Active
- 2017-05-30 US US16/305,757 patent/US11077407B2/en active Active
- 2017-05-30 EP EP17806704.7A patent/EP3466527B1/en active Active
- 2017-05-30 HU HUE17806704A patent/HUE066452T2/hu unknown
- 2017-05-30 AU AU2017272761A patent/AU2017272761B2/en active Active
- 2017-05-30 WO PCT/JP2017/020161 patent/WO2017209151A1/ja unknown
- 2017-05-30 KR KR1020187034154A patent/KR102267825B1/ko active Active
- 2017-05-30 CN CN201780032422.9A patent/CN109195694B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
AU2017272761A1 (en) | 2018-12-13 |
CN109195694A (zh) | 2019-01-11 |
KR102267825B1 (ko) | 2021-06-24 |
EP3466527B1 (en) | 2024-04-03 |
AU2017272761B2 (en) | 2021-12-23 |
HUE066452T2 (hu) | 2024-08-28 |
WO2017209151A1 (ja) | 2017-12-07 |
EP3466527A4 (en) | 2020-02-26 |
CN109195694B (zh) | 2021-09-24 |
US20200246756A1 (en) | 2020-08-06 |
JPWO2017209151A1 (ja) | 2019-03-28 |
EP3466527A1 (en) | 2019-04-10 |
KR20190014507A (ko) | 2019-02-12 |
US11077407B2 (en) | 2021-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101784141B1 (ko) | 다공질 중공사막 | |
KR102281519B1 (ko) | 중공사막 모듈 | |
JP6547832B2 (ja) | 複合多孔質中空糸膜、複合多孔質中空糸膜モジュール及び複合多孔質中空糸膜モジュールの運転方法 | |
JP6939552B2 (ja) | 多孔質中空糸膜 | |
CN109414658B (zh) | 复合多孔质中空纤维膜及制备方法、膜组件及运行方法 | |
JP6662305B2 (ja) | 多孔質中空糸膜 | |
JP2018171557A (ja) | 多孔質中空糸膜 | |
KR102524285B1 (ko) | 다공질 중공사막 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200327 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210119 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20210312 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210405 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210803 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210816 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6939552 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |